Approximate Inference

Will Penny

31st March 2011

Approximate Inference

Will Penny

Information Theory

Information

Kullback-Lieble

Gaussia

Asymmetry

Multimoda

Variational Bayes

Variational Free Energy Factorised Approximations

Variational Energy

Approximate Posteri

Nonlinea Regressi

Nonlinear Regression

riors

Posterior

Energies

radient Ascent

Approach to Limit

Priors

Other Applications

Doforonoon

Shannon (1948) asked how much information is received when we observe a specific value of the variable x?

If an unlikely event occurs then one would expect the information to be greater. So information must be inversely proportional to p(x), and monotonic.

Shannon also wanted a definition of information such that if x and y are independent then the total information would sum

$$h(x_i,y_j)=h(x_i)+h(y_j)$$

Given that we know that in this case

$$p(x_i, y_j) = p(x_i)p(y_j)$$

then we must have

$$h(x_i) = \log \frac{1}{p(x_i)}$$

This is the self-information or surprise.

Entropy

The entropy of a random variable is the average surprise. For discrete variables

$$H(x) = \sum_{i} p(x_i) \log \frac{1}{p(x_i)}$$

The uniform distribution has maximum entropy.

A single peak has minimum entropy. We define

$$0 \log 0 = 0$$

If we take logs to the base 2, entropy is measured in bits.

Approximate Inference

Will Penny

Information Theory
Information

Entropy

Gaussians
Asymmetry

/ariational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Vonlinear

onlinear Regression

Posterior Energies Bradient Ascent

Adaptive Step S

Approach to Limit
Priors
Posterior

Other Applications

Source Coding Theorem

Assigning code-words of length $h(x_i)$ to each symbol x_i results in the maximum rate of information transfer in a noiseless channel. This is the Source Coding Theorem (Shannon, 1948).

$$h(x_i) = \log \frac{1}{p(x_i)}$$

If channel is noisy, see Noisy Channel Coding Theorem (Mackay, 2003)

Approximate Inference

Will Penny

Information Theory

Entropy

Kullback-Liebler Divergenc Gaussians Asymmetry

ariational Bayes

Variational Free Energy
Factorised Approximations
Variational Energy

Nonlinear Regressio

Nonlinear Regression Priors

Posterior Energies

Gradient Ascen

Approach to Limit
Priors

Posterior

Other Applications

Prefix Codes

No code-word is a prefix of another. Use number of bits $b(x_i) = ceil(h(x_i))$. We have

$$h(x_i) = \log_2 \frac{1}{p(x_i)}$$

 $b(x_i) = \log_2 \frac{1}{q(x_i)}$

Hence, each code-word has equivalent

$$q(x_i) = 2^{-b(x_i)}$$

i	$p(x_i)$	$h(x_i)$	$b(x_i)$	$q(x_i)$	CodeWord
1	0.016	5.97	6	0.016	101110
2	0.189	2.43	3	0.125	100
3	0.371	1.43	2	0.250	00
4	0.265	1.92	2	0.250	01
5	0.115	3.12	4	0.063	1010
6	0.035	4.83	5	0.031	10110
7	0.010	6.67	7	0.008	1011110
8	0.003	8.53	9	0.002	101111100

Approximate Inference

Will Penny

Information Theory
Information

Entropy

Gaussians
Asymmetry

ariational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Approximate Posterior

Nonlinear Regression

riors osterior

nergies radient Asce

Adaptive Step

Approach to Limit

Priors Posterior

outer Application

Relative Entropy

Average length of code word

$$B(x) = \sum_{i} p(x_{i})b(x_{i})$$

$$= \sum_{i} p(x_{i})\log \frac{1}{q(x_{i})} = 2.65bits$$

Entropy

$$H(x) = \sum_{i} p(x_{i})h(x_{i})$$

$$= \sum_{i} p(x_{i}) \log \frac{1}{p(x_{i})} = 2.20 bits$$

Difference is relative entropy

$$KL(p||q) = B(x) - H(x)$$

$$= \sum_{i} p(x_{i}) \log \frac{p(x_{i})}{q(x_{i})}$$

$$= 0.45bits$$

Approximate Inference

Will Penny

Information Theory

Entropy

Kullback-Liebler Divergence Gaussians

Multimodal

Variational Bayes

Variational Free Energy
Factorised Approximations
Variational Energy

Approximate Posteriors

Nonlinea Regressi

> Priors Posterior

Energies

Adaptive Step 9

Approach to Limit

Priors

Other Applications

Continuous Variables

For continuous variables the (differential) entropy is

$$H(x) = \int p(x) \log \frac{1}{p(x)} dx$$

Out of all distributions with mean m and standard deviation σ the Gaussian distribution has the maximum entropy. This is

$$H(x) = \frac{1}{2}(1 + \log 2\pi) + \frac{1}{2}\log \sigma^2$$

Approximate Inference

Will Penny

Information Theory

Entropy

Kullback-Liebler Divergend Gaussians Asymmetry

ariational Bayes

Variational Free Energy
Factorised Approximations

Approximate Posteriors

Nonlinear

onlinear Regression

Posterior

inergies Gradient Ascen

Approach to Limit

Priors Posterior

Other Applications

nergies radient Ascent

Gradient Ascent Adaptive Step Sizi

Approach to Limit

Posterior

Other Applications

References

We can write the Kullback-Liebler (KL) divergence

$$\mathit{KL}[q||p] = \int q(x) \log \frac{q(x)}{p(x)} dx$$

as a difference in entropies

$$KL(q||p) = \int q(x) \log \frac{1}{p(x)} dx - \int q(x) \log \frac{1}{q(x)} dx$$

This is the average surprise assuming information is encoded under p(x) minus the average surprise under q(x). Its the extra number of bits/nats required to transmit messages.

Univariate Gaussians

For Gaussians

$$p(x) = N(x; \mu_p, \sigma_p^2)$$

 $q(x) = N(x; \mu_q, \sigma_q^2)$

we have

$$\mathit{KL}(q||p) = \frac{(\mu_q - \mu_p)^2}{2\sigma_p^2} + \frac{1}{2}\log\left(\frac{\sigma_p^2}{\sigma_q^2}\right) + \frac{\sigma_q^2}{2\sigma_p^2} - \frac{1}{2}$$

Approximate Inference

Will Penny

Information Theory

Information

Kullback-Liebler Divergence

Gaussians

Multimodality

Variational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear

Nonlinear Regression

riors

Posterior Energies

Eriergies Gradient Ascei

Approach to Limit

Priors Posterior

Other Applications

Multivariate Gaussians

For Gaussians

$$p(x) = N(x; \mu_p, C_p)$$

 $q(x) = N(x; \mu_q, C_q)$

we have

$$\mathit{KL}(q||p) = rac{1}{2}e^{T}C_{p}^{-1}e + rac{1}{2}\lograc{|C_{p}|}{|C_{q}|} + rac{1}{2}\mathrm{Tr}\left(C_{p}^{-1}C_{q}
ight) - rac{d}{2}$$

where d = dim(x) and

$$e = \mu_q - \mu_p$$

Approximate Inference

Will Penny

Information Theory

Entropy

Kullback Liebler Divergence

Gaussians

Asymmetry Multimodalit

/ariational Bayes

Variational Free Energy Factorised Approximations Variational Energy

lonlinear legression

Ionlinear Regression

Posterior Energies

Gradient Ascent Adaptive Step Size

Approach to Limit

Priors Posterior

Other Applications

Roforonoos

Asymmetry

For densities q(x) and p(x) the Relative Entropy or Kullback-Liebler (KL) divergence from q to p is

$$\mathit{KL}[q||p] = \int q(x) \log \frac{q(x)}{p(x)} dx$$

The KL-divergence satisfies Gibbs' inequality

$$KL[q||p] \ge 0$$

with equality only if q = p. In general $\mathit{KL}[q||p] \neq \mathit{KL}[p||q]$, so KL is not a distance measure.

Approximate Inference

Will Penny

Information Theory
Information

Kullback-Liebler Div Gaussians

Asymmetry

Variational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear

Nonlinear Regression

Posterior Energies

aradient Asce

pproach to Limi

Approach to Limit
Priors

osterior

. .

Different Variance - Asymmetry

$$KL[q||p] = \int q(x) \log \frac{q(x)}{p(x)} dx$$

If $\sigma_q \neq \sigma_p$ then $\mathit{KL}(q||p) \neq \mathit{KL}(p||q)$

Here KL(q||p) = 0.32 but KL(p||q) = 0.81.

Approximate Inference

Will Penny

Information Theory
Information

Entropy
Kullback-Liebler Divergence

Asymmetry

fultimodality

Variational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Approximate Posteri

Regression
Nonlinear Regre

Posterior Energies

Adaptive Step S

Approach to Limit
Priors
Posterior

Other Applications

References

· 4 ロ ト 4 個 ト 4 重 ト 4 重 ト - 重 - かなぐ

Same Variance - Symmetry

If $\sigma_q = \sigma_p$ then KL(q||p) = KL(p||q) eg. distributions that just have a different mean

Here KL(q||p) = KL(p||q) = 0.12.

Approximate Inference

Will Penny

Asymmetry

Approximating multimodal with unimodal

We approximate the density p (blue), which is a Gaussian mixture, with a Gaussian density q (red).

	Left Mode	Right Mode	Moment Matched
KL(q,p)	1.17	0.09	0.07
KL(p,q)	23.2	0.12	0.07

Minimising either KL produces the moment-matched solution.

Approximate Inference

Will Penny

Information Theory
Information

ullback-Liebler Divergend ausslans

ussians ymmetry

Multimodality

ariational Bayes

/ariational Free Energy Factorised Approximations /ariational Energy

Vonlinear Regression

Nonlinear Regression

Posterior Energies

Gradient Ascent Adaptive Step Si

Approach to Limit Priors

Other Application

Poforonoos

Approximate Bayesian Inference

True posterior p (blue), approximate posterior q (red). Gaussian approx at mode is a Laplace approximation.

	Left Mode	Right Mode	Moment Matched
KL(q,p)	1.17	0.09	0.07
KL(p,q)	23.2	0.12	0.07

Minimising either KL produces the moment-matched solution.

Approximate Inference

Will Penny

Multimodality

Distant Modes

We approximate the density p (blue), which is a Gaussian mixture, with a Gaussian density q (red).

	Left Mode	Right Mode	Moment Matched
KL(q,p)	0.69	0.69	3.45
KL(p,q)	43.9	15.4	0.97

Minimising KL(q||p) produces mode-seeking. Minimising KL(p||q) produces moment-matching.

Approximate Inference

Will Penny

Information Theory
Information

Gaussians

Multimodality

ariational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear Regressio

riors
osterior
nergies
radient Ascent

Adaptive Step

Approach to Limit
Priors
Posterior

Other Applications

Multiple dimensions

In higher dimensional spaces, unless modes are very close, minimising $\mathit{KL}(p||q)$ produces moment-matching (a) and minimising $\mathit{KL}(q||p)$ produces mode-seeking (b and c).

Minimising KL(q||p) therefore seems desirable, but how do we do it if we don't know p?

Approximate Inference

Will Penny

Information Theory

Entropy

Gaussians Asymmetry

Multimodality

Variational Bayes
Variational Free Energy
Easterised Approximation

Variational Energy Approximate Posteriors

Nonlinear Regressio

iors esterior

nergies

Adaptive Step

pproach to Lin

Priors
Posterior

Other Applications

$$\begin{aligned} \log p(Y) &= \int q(\theta) \log p(Y) d\theta \\ &= \int q(\theta) \log \frac{p(Y,\theta)}{p(\theta|Y)} d\theta \\ &= \int q(\theta) \log \left[\frac{p(Y,\theta)q(\theta)}{q(\theta)p(\theta|Y)} \right] d\theta \\ &= \int q(\theta) \log \left[\frac{p(Y,\theta)}{q(\theta)} \right] d\theta \\ &+ \int q(\theta) \log \left[\frac{q(\theta)}{p(\theta|Y)} \right] \end{aligned}$$

where $q(\theta)$ is the approximate posterior. Hence

$$\log p(Y) = F + KL(q(\theta)||p(\theta|Y))$$

Approximate Inference

Will Penny

Information Theory
Information

Kullback-Liebler Divergence Gaussians

Variational Bayes

Variational Free Energy

Variational Energy
Approximate Posteriors

Regression

Nonlinear Regression

Priors
Posterior
Energies

Adaptive Step S

Approach to Limit

Priors Posterior

Other Applications

Variational Free Energy

We have

$$F = \int q(\theta) \log \frac{p(Y, \theta)}{q(\theta)} d\theta$$

which in statistical physics is known as the *negative* variational free energy.

Approximate Inference

Will Penny

Information Theory

Informatio

Kullback-Liebler Diverge

Asymme

Multimod

Variational Bayes

Variational Free Energy

Variational Energy

Nonlinear

Nonlinear Regression

riors

osterior nergies

radient Ascent

Approach to Limit

Priors Posterior

Other Applications

Variational Free Energy

 $\log p(Y) = F + KL[q(\theta)||p(\theta|Y)]$

Because KL is always positive, due to the Gibbs inequality, F provides a lower bound on the model evidence. Moreover, because KL is zero when two densities are the same, F will become equal to the model evidence when $q(\theta)$ is equal to the true posterior. For this reason $q(\theta)$ can be viewed as an *approximate posterior*.

Approximate Inference

Will Penny

Information Theory
Information

Kullback-Liebler Divergend Gaussians

Variational Dava

Variational Bayes

Variational Free Energy
Factorised Approximations

Variational Energy
Approximate Posteriors

Nonlinear Regression

Nonlinear Regression Priors

Posterior Energies

Energies
Gradient Asse

Gradient Ascent Adaptive Step Size

Approach to Limit

Priors

Other Applications

laforances

To obtain a practical learning algorithm we must also ensure that the integrals in F are tractable. One generic procedure for attaining this goal is to assume that the approximating density factorizes over groups of parameters. In physics, this is known as the mean field approximation. Thus, we consider:

$$q(\theta) = \prod_i q(\theta_i)$$

where θ_i is the *i*th group of parameters. We can also write this as

$$q(\theta) = q(\theta_i)q(\theta_{\setminus i})$$

where θ_{i} denotes all parameters *not* in the *i*th group.

$$\begin{split} F &= \int q(\theta) \log \left[\frac{p(Y,\theta)}{q(\theta)} \right] d\theta \\ &= \int \int q(\theta_i) q(\theta_{\setminus i}) \log \left[\frac{p(Y,\theta)}{q(\theta_i) q(\theta_{\setminus i})} \right] d\theta_{\setminus i} d\theta_i \\ &= \int q(\theta_i) \left[\int q(\theta_{\setminus i}) \log p(Y,\theta) d\theta_{\setminus i} \right] d\theta_i - \int q(\theta_i) \log q(\theta_i) d\theta_i + C \\ &= \int q(\theta_i) l(\theta_i) d\theta_i - \int q(\theta_i) \log q(\theta_i) d\theta_i + C \end{split}$$

where the constant C contains terms not dependent on $q(\theta_i)$ and

$$I(\theta_i) = \int q(\theta_{\setminus i}) \log p(Y, \theta) d\theta_{\setminus i}$$

This quantity is known as the variational energy for the *i*th partition.

Approximate Inference

Will Penny

Variational Energy

radient Ascent

Approach to Limit

Priors
Posterior

Other Applications

References

Writing $I(\theta_i) = \log \exp I(\theta_i)$ gives

$$F = \int q(\theta_i) \log \left[\frac{\exp(I(\theta_i))}{q(\theta_i)} \right] d\theta_i + C$$
$$= KL[q(\theta_i)|| \exp(I(\theta_i))] + C$$

This is minimised when

$$q(\theta_i) = \frac{\exp[I(\theta_i)]}{Z}$$

where Z is the normalisation factor needed to make $q(\theta_i)$ a valid probability distribution.

Free-form versus Fixed-form approximations (Beal, 2003).

For mean field approaches

where moments of densities are functions of each other

 $m_i = g_1(m_i, S_i)$

 $q(\theta_i) = f(m_i, S_i)$

 $S_i = g_2(m_i, S_i)$

Neural populations interact with each other via sufficient statistics (Deco et al. 2008). For example, cells in one population are only affected by average firing rate in other populations (the mean field, m_i). Or additionally, by synchronisation level of other populations (S_i).

$$q(z)=q(z_1)q(z_2)$$

minimising KL(q, p) where p is green and q is red produces left plot, where minimising KL(p, q) produces right plot.

Hence minimising variational free energy tends to produce approximations on left rather than right. That is, uncertainty is underestimated. See Minka (2005) for other divergences.

Approximate Inference

Will Penny

Information Theory
Information

Kullback-Liebler Divergence
Gaussians

ariational Baves

Variational Free Energy Factorised Approximations Variational Energy

Approximate Posteriors

Nonlinear Regression

> ors sterior

inergies Gradient Asce

Adaptive Step

Approach to Limit
Priors
Posterior

Other Applications

Nonlinear Regression

We consider the framework implemented in the SPM function *spm-nlsi-GN.m.* It implements Bayesian estimation of nonlinear models of the form

$$y = g(w) + e$$

where g(w) is some nonlinear function of parameters w, and e is zero mean additive Gaussian noise with covariance C_y . The likelihood of the data is therefore

$$p(y|w,\lambda) = \mathsf{N}(y;g(w),C_y)$$

The error precision matrix is assumed to decompose linearly

$$C_y^{-1} = \sum_i \exp(\lambda_i) Q_i$$

where Q_i are known precision basis functions and λ are hyperparameters eg Q = I, noise precision $s = \exp(\lambda)$.

Approximate Inference

Will Penny

Information Theory
Information

Entropy

Kullback-Liebler Diverge Gaussians

Variational Baves

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear

Nonlinear Regression

Nonlinear Regression

Posterior Energies

Gradient Ascent Adaptive Step Size

Approach to Limit

Priors Posterior

Other Application

Asymmetry Multimodal

Variational Baves

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear Regression

Nonlinear Regression

Priors

Posterior Energies

Gradient Asce

Adaptive Step

Approach to Limit

Priors Posterior

Other Applications

References

We allow Gaussian priors over model parameters

$$p(\mathbf{w}) = N(\mathbf{w}; \mu_{\mathbf{w}}, C_{\mathbf{w}})$$

where the prior mean and covariance are assumed known.

The hyperparameters are constrained by the prior

$$p(\lambda) = N(\lambda; \mu_{\lambda}, C_{\lambda})$$

This is not Empirical Bayes.

VL Posteriors

The Variational Laplace (VL) algorithm, implemented in *spm-nlsi-GN.m*, assumes an approximate posterior density of the following factorised form

$$q(w, \lambda|y) = q(w|y)q(\lambda|y)$$

 $q(w|y) = N(w; m_w, S_w)$
 $q(\lambda|y) = N(\lambda; m_\lambda, S_\lambda)$

This is a fixed-form variational method.

Approximate Inference

Will Penny

Information Theory

Kullback-Liebler Dive Gaussians

Multimoda

Variational Bayes

Variational Free Energy Factorised Approximations

Approximate Posterio

Nonlinear Regression

Nonlinear Regressi

Priors

Posterior

Practice Ascent

Approach to Limit

Priors Posterior

Other Applications

Poforonoos

Variational Free Energy Factorised Approximations Variational Energy

Approximate Posterior

Regression

Nonlinear Regressio

iors sterior

Energies

Gradient Ascent Adaptive Step Size

Approach to Limit

Priors Posterior

Other Applications

References

The above distributions allow one to write down an expression for the joint log likelihood of the data, parameters and hyperparameters

$$L(w, \lambda) = \log[p(y|w, \lambda)p(w)p(\lambda)]$$

The negative of this is known as the Gibbs Energy. Here it splits into three terms

$$L(w, \lambda) = \log p(y|w, \lambda) + \log p(w) + \log p(\lambda)$$

$$L = -\frac{1}{2}e_{y}^{T}C_{y}^{-1}e_{y} - \frac{1}{2}\log|C_{y}| - \frac{N_{y}}{2}\log 2\pi$$
$$- \frac{1}{2}e_{w}^{T}C_{w}^{-1}e_{w} - \frac{1}{2}\log|C_{w}| - \frac{N_{w}}{2}\log 2\pi$$
$$- \frac{1}{2}e_{\lambda}^{T}C_{\lambda}^{-1}e_{\lambda} - \frac{1}{2}\log|C_{\lambda}| - \frac{N_{\lambda}}{2}\log 2\pi$$

where prediction errors are the difference between what is expected and what is observed

$$e_y = y - g(m_\theta)$$

 $e_w = m_w - \mu_w$
 $e_\lambda = m_\lambda - \mu_\lambda$

Approximate Inference

Will Penny

Information Theory

Entropy Kullback-Liebler Divergenc

> Asymmetry Multimodality

Variational Bayes

Factorised Approximations
Variational Energy

onlinear

Nonlinear Regression
Priors

Energies

Gradient Ascent

Approach to Limit

Priors Posterior

Other Applications

Variational Energies

The approximate posteriors are estimated by minimising the Kullback-Liebler (KL) divergence between the true posterior and these approximate posteriors. This is implemented by maximising the following (negative) variational energies

$$I(w) = \int L(w,\lambda)q(\lambda)$$

$$I(\lambda) = \int L(w,\lambda)q(w)$$

Approximate Inference

Will Penny

Information Theory

Gaussians

Multimodal

riational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Approximate Posterio

Regression Nonlinear Regressi

riors osterior

Energies

adient Ascent

Approach to Limit

Priors Posterior

Other Applications

Adaptive Sten Siz

Approach to Limit

Priors

Posterior

Other Applications

References

This maximisation is effected by first computing the gradient and curvature of the variational energies at the current parameter estimate, $m_w(old)$. For example, for the parameters we have

$$j_w(i) = \frac{dI(w)}{dw(i)}$$
 $H_w(i,j) = \frac{d^2I(w)}{dw(i)dw(j)}$

where i and j index the ith and jth parameters, j_w is the gradient vector and H_w is the curvature matrix. The estimate for the posterior mean is then given by

$$m_w(\textit{new}) = m_w(\textit{old}) + \Delta m_w$$

$$\Delta m_w = \left[\exp(vH_w) - I \right] H_w^{-1} j_w$$

This last expression implements a 'temporal regularisation' with parameter ν (Friston et al. 2007). In the limit $v \to \infty$ the update reduces to

$$\Delta m_w = -H_w^{-1} j_w$$

which is equivalent to a Newton update. This implements a step in the direction of the gradient with a step size given by the inverse curvature. Big steps are taken in regions where the gradient changes slowly (low curvature).

Adaptive Step Size

Approach to Limit

$$y(t) = -60 + V_a[1 - \exp(-t/\tau)] + e(t)$$

$$V_a = 30, \tau = 8$$

Noise precision

$$s = \exp(\lambda) = 1$$

Approximate Inference

Will Penny

Information Theory

Information

Kullback-Liebler Divergen

Multimodal

Variational Bayes

Variational Free Energy
Factorised Approximations
Variational Energy

Nonlinea

Regress

Priors Posterior

Energies Gradient Ascer

Adaptive Step

Approach to Limit

Priors Posterior

Other Applications

Prior Landscape

A plot of $\log p(w)$ where $w = [\log \tau, \log V_a]$

$$\mu_{w} = [3, 1.6]^{T}, C_{w} = diag([1/16, 1/16]);$$

Approximate Inference

Will Penny

Information Theory

Informatio

Kullback-Liebler Divergend Gaussians

/ariational Baves

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear Regression

Priors
Posterior
Energies
Gradient Ascent

and the second second

Priors

Other Applications

- ·

4□ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q ○

Samples from Prior

The true model parameters are unlikely apriori

$$V_a = 30, \tau = 8$$

Approximate Inference

Will Penny

Information Theory

Informatio

Kullback-Liebler Divergenc Gaussians

Asymmetry Multimodality

/ariational Bave

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear

Nonlinear Regress

Posterior Energies

radient Ascen

Approach to Limit

Priors

Other Applications

Prior Noise Precision

Q = I. Noise precision $s = \exp(\lambda)$ with

$$p(\lambda) = N(\lambda; \mu_{\lambda}, C_{\lambda})$$

with $\mu_{\lambda}=0$. We used $C_{\lambda}=1/16$ (left) and $C_{\lambda}=1/4$ (right). True noise precision, s=1.

Approximate Inference

Will Penny

Information Theory
Information

Kullback-Liebler Divergend Gaussians

Variational Rayes

Variational Free Energy
Factorised Approximations
Variational Energy
Approximate Posteriors

Nonlinea Regressi

riors
osterior
nergies
iradient Ascent

Approach to Limit

Priors Poster

Other Applications

Posterior Landscape

A plot of $\log[p(y|w)p(w)]$

Approximate Inference

Will Penny

Posterior

VL optimisation

Path of 6 VL iterations (x marks start)

Approximate Inference

Will Penny

Information Theory

Information

Kullback-Liebler Diverge Gaussians

Asymmetry Multimodality

ariational Bave

Variational Free Energy
Factorised Approximations
Variational Energy

Nonlinear Regression

rioninear Hegressi Priors Posterior Energies

Gradient Ascer Adaptive Step 8

Approach to Limit

Priors

Other Applications

Deference

VL optimisation I

Global maxima

Approximate Inference

Will Penny

Information Theory

Informatio

Kullback-Liebler Divergend

Asymmetry Multimodality

ariational Bayes

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear Regression

Priors
Posterior
Energies
Gradient Ascent

daptive Step Size

Approach to Limit

Other Applications

Deference

VL optimisation II

Local maxima

Approximate Inference

Will Penny

Information Theory

Information

Kullback-Liebler Divergenc

Asymmetry Multimodality

ariational Baye

Variational Free Energy Factorised Approximations Variational Energy

Nonlinear Regression

riors
bosterior
inergies

aragient Asce Adaptive Step

Approach to Limit

Other Applications

References

M. Beal (2003) PhD Thesis. Gatsby Computational Neuroscience Unit. UCL.

C. Bishop (2006) Pattern Recognition and Machine Learning, Springer.

G. Deco et al. (2008) The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields, PLoS CB 4(8). e1000092.

D. Mackay (2003) Information Theory, Inference and Learning Algorithms, Cambridge.

K. Friston et al. (2007) Variational Free Energy and the Laplace Approximation. Neuroimage 34(1), 220-234.

T. Minka et al. (2005) Divergence Measures and Message Passing, Microsoft Research Cambridge.

W. Penny (2006) Variational Bayes. In SPM Book, Elsevier.