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Information A rence”
Shannon (1948) asked how much information is received Will Penny

when we observe a specific value of the variable x ?
Information

If an unlikely event occurs then one would expect the
information to be greater. So information must be
inversely proportional to p(x), and monotonic.

Shannon also wanted a definition of information such that
if x and y are independent then the total information
would sum

h(xi, ;) = h(x;) + h(y))
Given that we know that in this case

p(xi, y;) = p(xi)p(y;)

then we must have

h(x;) = log p(1x,)

This is the self-information or surprise.



Entropy

The entropy of a random variable is the average surprise.

For discrete variables

Hix) = 3 p(x)log s

The uniform distribution has maximum entropy.
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A single peak has minimum entropy. We define
Olog0 =0

If we take logs to the base 2, entropy is measured in bits.

Approximate
Inference

Will Penny

Entropy



Source Coding Theorem
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Assigning code-words of length h(x;) to each symbol x;
results in the maximum rate of information transfer in a
noiseless channel. This is the Source Coding Theorem
(Shannon, 1948).

lxi) = log p(x;)

If channel is noisy, see Noisy Channel Coding Theorem
(Mackay, 2003)
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Prefix Codes

No code-word is a prefix of another. Use number of bits

b(x;) = ceil(h(x;)). We have

1

Hence, each code-word has equivalent

ONO O WN = —

p(xi)
0.016
0.189
0.371
0.265
0.115
0.035
0.010
0.003

h(x; log, ——
( I) g2 P(Xi)
1
b(x; log, ——
( I) 92 q(Xi)
q(x) = 2—b(x;)

h(x;) b(x) q(x)
5.97 6 0.016
2.43 3 0.125
1.43 2 0.250
1.92 2 0.250
3.12 4 0.063
4.83 5 0.031
6.67 7 0.008
8.53 9 0.002

CodeWord
101110
100
00
01
1010
10110
1011110
101111100
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Relative Entropy RS
Average length of code word Will Penny

B = > plx)bx)

Entropy

]
= X;)log ——— = 2.65bits
Zj:p( Dleg Lo

Entropy
HO) = 32 px)h(x)
1 .
= Zj:p(x,') log o) 2.20bits

Difference is relative entropy

KL(pl|q)

B(x) — H(x)

N1 PX0)
Z p(Xl) Iog q(Xi)

= 0.45bits



Continuous Variables Rl

Will Penny

Entropy

For continuous variables the (differential) entropy is

H(x) = / p(x) log pgx)dx

Out of all distributions with mean m and standard
deviation o the Gaussian distribution has the maximum
entropy. This is

H(x) = %(1 +log2r7) + % log o2



Relative Entropy Mrirence.

Will Penny

We can write the Kullback-Liebler (KL) divergence

Kullback-Liebler Divergence

MMM=/%W%§XW

as a difference in entropies
s
q(x)

This is the average surprise assuming information is
encoded under p(x) minus the average surprise under
g(x). Its the extra number of bits/nats required to transmit
messages.

Ki(allp) = [ a(toq ssdx — [ atooq o



Univariate Gaussians i
Will Penny
For Gaussians —
p(x) = N(X;pp, 0p)
q(x) = N(x;puq,05)
we have
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Multivariate Gaussians Rl

Will Penny

For Gaussians

p(x) = N(x; up, Cp)
q(x) = N(X; g, Cq)

we have

17 1. Gl
KL(q||p) = e Cyle+ Iog|Cq’+ Tr(c cq)

2
where d = dim(x) and

€= liqg — tp
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For densities q(x) and p(x) the Relative Entropy or
Kullback-Liebler (KL) divergence from g to p is Asymmety

q(x)
KL :/ x)lo ax
[9llel = | a(x)log 25
The KL-divergence satisfies Gibbs’ inequality

KL[qllp] = 0

with equality only if g = p. In general KL[q||p] # KL[p||q],
so KL is not a distance measure.



Different Variance - Asymmetry Mrirence.

Will Penny

KLiallel = [ q(x)log Zgjgdx

If 04 # op then KL(q]|p) # KL(pl|q)
08

Asymmetry
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Here KL(q||p) = 0.32 but KL(p||q) = 0.81.



Same Variance - Symmetry

If oq = op then KL(q||p) = KL(p||q) eg. distributions that
just have a different mean
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Here KL(ql||p) = KL(p||q) = 0.12.
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Approximating multimodal with unimodal RS
Will Penn
We approximate the density p (blue), which is a Gaussian ’
mixture, with a Gaussian density g (red).

Left Mode Right Mode Moment Matched
KL(q,p) 1.17 0.09 0.07
KL(p,q) 23.2 0.12 0.07

Multimodality

Minimising either KL produces the moment-matched solution.



Approximate Bayesian Inference RS
Will Penn
True posterior p (blue), approximate posterior g (red). o
Gaussian approx at mode is a Laplace approximation.

Left Mode Right Mode Moment Matched
L(q,p) 1.17 0.09 0.07
L(p,q) 23.2 0.12 0.07

Multimodality
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Minimising either KL produces the moment-matched solution.



Distant Modes Mrirence.
We approximate the density p (blue), which is a Gaussian Wil Penny
mixture, with a Gaussian density g (red).

Left Mode Right Mode Moment Matched
KL(q,p) 0.69 0.69 3.45
KL(p,a) 43.9 15.4 0.97

Minimising KL(q||p) produces mode-seeking. Minimising
KL(p||q) produces moment-matching.



Multiple dimensions RS

Will Penny

In higher dimensional spaces, unless modes are very

close, minimising KL(p||q) produces moment-matching

(a) and minimising KL(q||p) produces mode-seeking (b

and c). Mutimodalty

»

(c)

Minimising KL(q||p) therefore seems desirable, but how
do we do it if we don’t know p ?



Approximate

Varlatlonal Free Energy Inference
Given a probabilistic model of some data, the log of the Hipeny

evidence can be written as
ogp(Y) = [ q(6)logp(¥)ds
_ p(Y.0)
= [awios B
/q(e) log P, 9)} 0

L :p?éwﬂ

where g(6) is the approximate posterior. Hence

Variational Free Energy

log p(Y) = F + KL(q()lIp(0]Y))



Variational Free Energy RS

Will Penny

We have
p( Y, 9) Variational Free Energy

F:/q(ﬂ)log 0 de

which in statistical physics is known as the negative
variational free energy.




Variational Free Energy Mrirence.
Will Penny
logptY) ————

KL

log p(Y) = F + KL[q(6)|p(6]Y)]

Variational Free Energy

Because KL is always positive, due to the Gibbs
inequality, F provides a lower bound on the model
evidence. Moreover, because KL is zero when two
densities are the same, F will become equal to the model
evidence when q(#) is equal to the true posterior. For this
reason q(#) can be viewed as an approximate posterior.



Factorised Approximations Mrirence.
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To obtain a practical learning algorithm we must also
ensure that the integrals in F are tractable. One generic
procedure for attaining this goal is to assume that the
approximating density factorizes over groups of
parameters. In physics, this is known as the mean field
approximation. Thus, we consider:

a() = [ a0

where 6; is the ith group of parameters. We can also write
this as

q(¢) = q(61)q(6\;)
where 6\; denotes all parameters notin the ith group.



Variational Energy RS
Will Penn
The distributions g(¢;) which maximise F can then be ’

derived as follows.
v, 9)} do

JEGL {p(

//q(e 0\, log [ e)q(e)\,)} do\ ;do;

= /q [/ q(6\;)log p(Y, 0)d9\,] de; — /q )log q(6;)d6; + C

F

Variational Energy

[ atepnepds; — [ ateiyiogateas,; + ¢

where the constant C contains terms not dependent on
q(6;) and

1(0;) = / q(6\;)log p(Y,0)db\;

This quantity is known as the variational energy for the ith
partition.



ApprOX|mate Poste”ors Approximate
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Writing /(6;) = log exp /(6;) gives

F = / q(6;)log {exg('( "))]de,+c

This is minimised when

Approximate Posteriors

a(9) = 20U

where Z is the normalisation factor needed to make q(0,)
a valid probability distribution.

Free-form versus Fixed-form approximations (Beal,
2003).



Mean Field Models Rl

Will Penny
For mean field approaches
q(6;) = f(m;, ;)
where moments of densities are functions of each other
m; = gi(m;,S)) Apposimate Posterirs

Si = g(m;,S))

Neural populations interact with each other via sufficient
statistics (Deco et al. 2008). For example, cells in one
population are only affected by average firing rate in other
populations (the mean field, m;). Or additionally, by
synchronisation level of other populations (S;).



Approximate

Factorised Approximations e
For Will Penny
q(z) = 9(z1)a(z2)
minimising KL(q, p) where p is green and q is red
produces left plot, where minimising KL(p, q) produces
right plot.
1 1

29 Approximate Posteriors
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Hence minimising variational free energy tends to
produce approximations on left rather than right. That is,
uncertainty is underestimated. See Minka (2005) for
other divergences.



Nonlinear Regression

We consider the framework implemented in the SPM
function spm-nlisi-GN.m. It implements Bayesian
estimation of nonlinear models of the form

y=gw)+e

where g(w) is some nonlinear function of parameters w,
and e is zero mean additive Gaussian noise with
covariance Cy. The likelihood of the data is therefore

p(y|w, ) = N(y; g(w), Cy)

The error precision matrix is assumed to decompose linearly

C,' =) exp(\)Q;
i

where Q; are known precision basis functions and )\ are
hyperparameters eg Q = /, noise precision s = exp(\).
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Approximate

P I'IO rS Inference

Will Penny
We allow Gaussian priors over model parameters

p(w) = N(w; puw, Cw)

where the prior mean and covariance are assumed
known.

The hyperparameters are constrained by the prior
P(A) = N(A; pa, Cy)

This is not Empirical Bayes.



VL Posteriors Rl

Will Penny

The Variational Laplace (VL) algorithm, implemented in
spm-nlsi-GN.m, assumes an approximate posterior
density of the following factorised form

a(w,Aly) = a(wly)a(\ly)
q(W|y) = N(W;mW,SW)
a(Aly) = N(Amy, S))

This is a fixed-form variational method.



Energies RS

Will Penny

The above distributions allow one to write down an
expression for the joint log likelihood of the data,
parameters and hyperparameters

L(w, \) = log[p(y|w, \)p(w)p(N)]

The negative of this is known as the Gibbs Energy. Here
it splits into three terms

L( W? )\) = Iog p(y| W? >\) Energies
log p(w)
log p(A)



Joint Log Likelihood Mrirence.
The joint log likelihood is composed of sum squared HHipenny

precision weighted prediction errors and entropy terms
1 _ 1 N,
L = —fe;Cy1ey — 5log|Cy| - ?ylog27r
1 1 N,
— feWC ew — 5 10g |Cw| — —W log 27
1 1 N
- feAC eA——Iog\CA\——Iogzw

where prediction errors are the difference between what
is expected and what is observed

Energies

ey = y—g(me)
ey = My — pw
e\ = Mmy—pux



Variational Energies Mrirence.

Will Penny

The approximate posteriors are estimated by minimising
the Kullback-Liebler (KL) divergence between the true
posterior and these approximate posteriors. This is
implemented by maximising the following (negative)
variational energies

Iw) = / L(w, )g(»)
) = / L(w, \)q(w)



Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of the variational energies at the
current parameter estimate, my,(old). For example, for
the parameters we have

- di(w)
B0 = iy

S dRi(w)
D GahawG)

where j and j index the ith and jth parameters, j, is the
gradient vector and H,, is the curvature matrix. The
estimate for the posterior mean is then given by

mw(new) = my(old) + Amy,
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Approximate

Adaptlve Step SIZG Inference

Will Penny
The change is given by
Amy = [exp(VHw) — | Hy i

This last expression implements a ‘temporal
regularisation’ with parameter v (Friston et al. 2007). In
the limit v — oo the update reduces to

which is equivalent to a Newton update. This implements

a step in the direction of the gradient with a step size Asapivo Sip Size
given by the inverse curvature. Big steps are taken in

regions where the gradient changes slowly (low

curvature).



Approach to Limit RS

Will Penny
y(t) = —60 + V5[1 —exp(—t/7)] + e(t)
20
05 10 20 30 40 e Bl
ms
V,=30,7=8

Noise precision
s=exp(A) =1
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A plot of log p(w) where w = [log 7, log V]
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pw = [3,1.6]7, Cy, = diag([1/16,1/16]);



Samples from Prior RS
Will Penny

The true model parameters are unlikely apriori

V,=30,7=8

12 \ : ; .

Priors

40 50




PI’IOF NOISG PreC|S|0n Approximate

Inference
Q = I. Noise precision s = exp(\) with Will Penny

p(A) = N(X; 115, Cy)

P(s)
P(s)

0 1 2 0 1 2
S S
with ) = 0. We used Cy, = 1/16 (left)and C\, = 1/4
(right). True noise precision, s = 1.



Posterior Landscape

A plot of log[p(y|w)p(w)]
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Approximate
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Path of 6 VL iterations (x marks start) o

ebler Divergence
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VL optimisation | RS

Will Penny

Global maxima

Entropy

Kullback-Liebler Divergence

Variational Free Energy
Factorised Approximations
Variational Energy
o Approximate Posteriors
)
o
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VL optimisation Il

Local maxima

log b

-2 -1.5 -1 -0.5 0
log a
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