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Given probabilities B
p(A), p(B), and the Beyesrul
joint probability A

p(A, B), we can write
the conditional
probabilities

pea) = 20

p(A, B)
p(B)

Eliminating p(A, B) gives Bayes rule

P(AB) =

p(B1A) = P2 )
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The terms in Bayes rule Bayes e
P(AIB)p(B)
B|A) = 2AZMAAE)
p(B|A) o(A)

are referred to as the prior, p(B), the likelihood, p(A|B),
and the posterior, p(B|A).

The probability p(A) is a normalisation term and can be
found by marginalisation. For example,

pA=1) = S pA=1.8)
B

p(A=1,B=0)+p(A=1,B=1)
— p(A=1|B=0)p(B=0)+p(A=1B=1)p(B=1)
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Johnson et al (2001) consider Bayesian inference in for Wil Penny
Magnetic Resonance Angiography (MRA). An Aneurysm is a

localized, blood-filled balloon-like bulge in the wall of a blood Meclcal Decison Making
vessel. They commonly occur in arteries at the base of the

brain.

MRA can miss sizable
Intracranial Aneurysms (1A)’s but
is non-invasive (top).

Intra-Arterial Digital Subtraction
Angiography (DSA) (bottom) is
the gold standard method for
detecting IA but is an invasive
procedure requiring local
injection of a contrast agent via
a tube inserted into the relevant
artery.
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Given patient 1’s symptoms
(oculomotor palsy), the prior
probability of IA (prior to

MRA) is believed to be 90%.

Medical Decision Making

For 1As bigger than 6mm
MRA has a sensitivity and
specificity of 95% and 92%.

What then is the probability of
IA given a negative MRA test
result ?
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The probability of IA given a negative test can be found Medical Decision Making
from Bayes rule

P(MRA = 0[IA = 1)p(IA = 1)

p(JA=1|MRA = 0) =
D(MRA = 0[IA = 1)p(JA = 1) + p(MRA = 0|/A = 0)p(JA = 0)

where p(/A = 1) is the probability of IA prior to the MRA
test. MRA test sensitivity and specificity are

P(MRA = 1|IA = 1)
p(MRA = 0|IA = 0)

We have p(MRA = 0[/A=1) =1 — p(MRA = 1|IA = 1)
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Nagative test result
Prior (ciinical) protabiity = 0.490 Bayes rule
Medical Decision Making
Posterkor probabiity = (1—sanstivity) X prior protamiity Directed Acyclic Graph
e Joint Probability

[1- sensiivify) x prior prababiiity + specificity X (1— prior probabiliy)

Marginalisation
Multiple Causes

= (1-0.95)x0.90 Explaining Away
(1-0.95)% 0.90 +0.92x (1 —0.90) Perception as Inference

Gaussians

Posterior probabiity = 0.3285 Sensory Integration
Decision Making Dynamics

Positive test rasult
Prior {clinical) probabliy = 0.90
Posterir probabiity = sensitivity x prior probanility

(senslEivity x prior probability) + (1 spacificity) x (1- prior probabiity)
= 0.95x0.90
(0.95x 0.90) + (1-0.92) x (1-0.99)

Posterior probabilty = 0.9907

Fig 3 Probability of a posterior communicating artery aneurysm
given a negative or positive result from magnetic resonance
angiography and a prior clinical probability of 90%. Sensitivity and
specificity of angiography are 95% and 92% respectively.
Probabilities are expressed between 0.0 (0%) and 1.0 (100%)
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Fig 4 Influence of prior clinical probability on the probability of a
disease after a negative or positive test result. Test sensitivity and

specificity are 95% and 92% respectively

A negative MRA cannot therefore be used to exclude a
diagnosis of IA. In both reported cases |IA was initially
excluded, until other symptoms developed or other tests

also proved negative.
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Medical Decision Making

Multiple potential causes (eg. IA, X) and observations
(eg. headache, oculomotor palsy, double vision, drooping
eye lids, blood in CSF)

G D ®
RO ERC
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For a Directed Acyclic Graph (DAG)

° e Directed Acyclic Graph

The joint probability of all variables, x, can be written

down as .

p(x) = [ p(xilpalx])

i=1
where pa[x;] are the parents of x;.
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A DAG specfies the joint probability of all variables.

p(X1, X2, X3, Xa, X5) = P(X1)p(x2)P(X3|X1)p(Xa|X1, X2)P(X5|Xa)

The negative log of the joint probability is known as the
Gibbs Energy. All other variables can be gotten from the
joint probability via marginalisation.

Joint Probability
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p(xy) = /P(X1,X2)O'X2

Marginalisation

P(Xq, %)

p(x;) |
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p(x1, X2) = / / / P(Xt X, Xa, X4, X5) X304 s

p(X4):////p(x17X27X37X47X5)dx1dx2dx3dx5

1://///P(X1,X2,X3,X4,X5)dX1dX2dX3dX4dX5

pix) = p(x1, x2)

p(X2:3,X3 :4):ZP(X1,X2 :3,X3:4)

X1



Did | Leave The Sprinkler On ?

A single observation with multiple potential causes (not
mutually exclusive). Both rain, r, and the sprinkler, s, can
cause my lawn to be wet, w.

p(w,r,s) = p(r)p(s)p(wlr, s)

Bayesian Inference

Will Penny

Bayes rule
Medical Decision Making
Directed Acyclic Graph
Joint Probability
Marginalisation

Multiple Causes

Explaining Away
Perception as Inference
Gaussians

Sensory Integration
Decision Making Dynamics



Did | Leave The Sprinkler On ?

The probability that the sprinkler was on given i've seen
the lawn is wet is given by Bayes rule

pw=1[s=1)p(s=1)
p(w =1)
pw=1,s=1)
pw=1,s=1)+p(w=1,5=0)

p(s=1w=1) =

where the joint probabilities are obtained from
marginalisation

and from the generative model we have

p(w,r,s) = p(r)p(s)p(wlr, s)

Bayesian Inference

Will Penny

Multiple Causes:
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Rain r will make my lawn wet wy and nextdoors w»
whereas the sprinkler s only affects mine.

,O(W1, Wa, T, S) = p(r)p(S)p(W1 ’I’, S)p(W2|f)



After looking next door g e
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Use Bayes rule again

wy=1,mwm=1,s=1
p(s = 1wy =1, wp = 1) = p(w; 2 ) Multiple Causes

pwy =1, wp=1,s=1)+pw =1, wp =1,5=0)
with joint probabilities from marginalisation

1
p(W1 :1,W2:1,S=1)=ZP(W1 :17W2:1,r7S:1)
r=0

1
pwi=1,up=1,5=0)=> p(wi =1,w=1,r,5=0)
r=0
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Bayesian models force us to
be explicit about exactly what
it is we believe.

p(r=1)=0.01

p(s=1)=0.02
p(w=1|r=0,s=0) =0.001
p(w=1r=0,s=1)=0.97
p(w=1|r=1,s=0)=0.90
p(w=1r=1,s=1)=0.99

These numbers give

p(s=1lw=1)=0.67
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Explaining Away

Numbers same as before. In addition
p(wo =1|r=1)=0.90
Now we have

p(s=1lwy =1, wo, =1)=0.21
p(r=1wy =1, w, =1)=0.80

The fact that my grass is wet has been explained away by
the rain (and the observation of my neighbours wet lawn).
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In Helmholtz’s view

our percepts are our

best guess as to what s
is in the world, given

both sensory data and

prior experience. He

proposed that

perception is

unconscious

inference.



Gaussians

Precision is inverse variance eg. a variance of 0.1 is a
precision of 10.

For a Gaussian prior with mean mg and precision g, and
a Gaussian likelihood with mean mp and precision A\p the
posterior is Gaussian with

A = X+
Ao AD
m = —myg+-—m
\ o+)\ D

So, (1) precisions add and (2) the posterior mean is the
sum of the prior and data means, but each weighted by
their relative precision.

Bayesian Inference

Will Penny

Gaussians



Gau SSlanS Bayesian Inference

The two solid curves show the probability densities for the e
prior my = 20, A\g = 1 and the likelihood mp = 25 and
Ap = 3. The dotted curve shows the posterior distribution
with m = 23.75 and A\ = 4. The posterior is closer to the
likelihood because the likelihood has higher precision.
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Sensory Integration sayesian inierence
Ernst and Banks (2002) asked subjects which of two ST
sequentially presented blocks was the taller. Subjects used
either vision alone, touch alone or a combination of the two.

If vision v and touch t information are independent given

Sensory Integration

an object x then we have

p(v,t,x) = p(v|x)p(t|x)p(x)
Bayesian fusion of sensory information then produces a
posterior density
p(v|x)p(t|x)p(x)
p(v.t)

p(x|v,t) =
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In the abscence of prior information about block size (ie
p(x) is uniform), for Gaussian likelihoods, the posterior

will also be a Gaussian with precision A,;. From Bayes

rule for Gaussians we know that precisions add

Sensory Integration

/\vt = /\v +)\t

and the posterior mean is a relative-precision weighted
combination

Av

t

my = —My+ —Mm;
)\vt )\vt

my; = Wwymy + Wim;

with weights w, and w;.



Vision and Touch

Ernst and Banks (2002)
asked subjects which of two
sequentially presented blocks
was the taller. Subjects used
either vision alone, touch
alone or a combination of the
two.

Bayesian Inference

Will Penny

Explaining Awa

Perception as Inference
Gaussians
Sensory Integration

Decision Making Dynamics
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They recorded the accuracy with which discrimination could be
made and plotted this as a function of difference in block
height. This was first done for each condition alone. One can
then estimate precisions, A, and ); by fitting a cumulative
Gaussian density function.

Within-modality discrimination

1.00

Sensory Integration

T
» Haptic

Visual zi- — — —|—
~0— 0% 2|

0750 o 67% &
-0-133% &
—A—200% &

0.50

0.251

dard
¥

Proportion of trials perceived as 'taller' »

50 55 60
Comparison height (mm)

They manipulated the accuracy of the visual discrimination by
adding noise onto one of the stereo images.



Vision and Touch Together B
Optimal fusion predicts weights from Bayes rule Wil Penny

)\Vt = )\v + )\[
AV At
my; = —m,+—m
>\vt )\vt
my = WwW,my+ Wim;
10,0 : .
| Visual-haptic 5’ Sensory Integration
E . =———"Predicted| g
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They observed visual capture at low levels of visual noise
and haptic capture at high levels.
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In the Eriksen Flanker task subjects have to implement
the following stimulus-response mappings

Stimulus Response

1.HHH Right

o S H S ng ht Decision Making Dynarmics
3.8SS Left

4. HSH Left

Put simply, the subject should press the right button if the
central cue is H and left if it is S. On trial type one and
three the flankers are compatible (M = C) and on two
and four they are incompatible (M = /).
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If subjects are too slow an auditory beep is emitted. This
is the deadlined Flanker task.

A From Gratton et al, 1988
1

Decision Making Dynamics

Accuracy
=
()]

—A—C P B
—e—| \x:m

200 400
RT bins (ms)

On incompatible trials initial average accuracy dips below
the chance level.
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Yu et al. (2009) assume three populations of neurons, x,
that are driven by the three stimuli, s
3
p(x|s) = [ [ N(xi; i, o%)
i=1
\ pzls=H) pz|s=S) m B>.5
0.2
5
&) &) &

p(x|s = SHS) = p(x|sz=H,M=1)
N(x1;1,0%)N(x2; —1,0%)N(x3; 1, 0?)
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Joint probability

p(Xa S2, M) = p(X|527 M)p(SZ)p(M)

Likelihood s

p(x|s2, M) = Hp(Xi\Sza M)

i=1
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Consider a discrete set of time points t(n) within the trial
withn=1,2,..N.

Decision Making Dynamics

Denote x, as population vector observed at time t(n) and
Xn = [Xo0, X1, ..., Xn] @s all vectors observed up until time
point t(n).

Yu et al. (2009) formulate a discrete time inferential
model. We will consider continuous time models later.
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Decision Making Dynamics
n=1..N

Joint probability

P(Xn, S2, M) = p(Xn|s2, M)p(s2)p(M)

Likelihood

N
p(Xnls2, M) = [ p(xals2, M)

n=1
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The following joint probability is updated recursively

_ p(xalS2, M)p(s2, M| X—1)
PLo2 MIXa) = 5~ o Pxal s M)p(5, M X, 1)

Then marginalise over M to get decision probability

p(sz = HIXa) = p(sz = H,M = C|Xn)+p(sz = H,M = I X,)

Initialise with

p(s2 = H,M=C|X)) = p(s2=H)p(M=C)
p(s2=H,M=C|X) = 053
p(s2=H,M=1Xo) = 05(1-5)

where p(M = C) = 5.



Inference
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On most trials (18 out of 20) evidence slowly accumulates
in favour of the central stimulus being s, = H. This is
reflected in the posterior probability p(s; = H|Xh).

1

0.8

Decision Making Dynamics

0.6

LIX,)

0.4

p(r

0.2

0 5 10 15 20

This corresponds to evidence for a left button press.
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For compatibility bias g > 0.5

D Accuracyvs. RT

ensory Integration

n Making Dynamics

Accuracy

Model RT

The model also shows the initial dip for incompatible
flankers.



Neural Implementation e
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The Bayesian inference equations Y

P(Xn|S2, M)p(S2, M| Xn-1)
M| Xn) =
p(s2: M| Xy) > g, POXalS5, M)p(sh, M1 X 1)

p(s2 = H|Xy) = p(se = H,M = C|Xy) + p(s2 = HM = 1| Xp)

can be implemented as a network model.

Decision Making Dynamics

The hidden layer
representations are
self-exciting and
require divisive
normalisation. In the
compatibility bias
model the compatible
pathway is initially
excited.
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As the number of stimuli grows exact inference becomes
intractable. Instead, we can initially assume compatibility.

p(x1(t)[s1 = H)p(xa(t)|s2 = H)p(x3(t)|s3 = H)p(sp = HIX;—1)
2s=H,s P(x1(1)]s1 = s)p(xz(t)|s2 = s)p(x3(t)|s3 = s)p(sz = s|X;—1)

p(sz = HIXt) =

Decision Making Dynamics

If the flankers are detected to be incompatible we can
then switch to an inferential scheme which ignores them

p(s2 = H|Xt) = p(x2(t)|s2 = H)p(s2 = H|X;-1)



Conflict detection
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Compatibility can be inferred from a conflict detector

pir=LIXy)

Decision Making Dynamics

0 5 10 15 20

which measures the energy in the decision region
(Botvinick et al. 2001)

Et = Er 1+ p(s2 = HIXt)p(s2 = S| Xt)
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Detecting conflict using an energy measure gives similar
results to using an entropy measure, H

A Conflict Monitoring B Accuracy vs. RT
1

s E incomp

== =E comp
= H incomp
===Hcomp

Decision Making Dynamics

0.5

Conflict
‘l
|
i
{
F
Fraction

0 100 200 300 0 100 200
Timesteps Model RT

Approximate inference yields behaviour similar to exact
inference and empirical data.
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Output of conflict monitoring enhances M = Cor M = |
pathway.
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