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Bayes rule for models
A prior distribution over model space p(m) (or ‘hypothesis
space’) can be updated to a posterior distribution after
observing data y .

This is implemented using Bayes rule

p(m|y) = p(y |m)p(m)

p(y)

where p(y |m) is referred to as the evidence for model m and
the denominator is given by

p(y) =
∑
m′

p(y |m′)p(m′)
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Model Evidence

The evidence is the denominator from the first
(parameter) level of Bayesian inference

p(θ|y ,m) =
p(y |θ,m)p(θ|m)

p(y |m)

The model evidence is not straightforward to compute,
since this computation involves integrating out the
dependence on model parameters

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.
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Posterior Model Probability
Given equal priors, p(m = i) = p(m = j) the posterior
model probability is

p(m = i |y) =
p(y |m = i)

p(y |m = i) + p(y |m = j)

=
1

1 + p(y |m=j)
p(y |m=i)

Hence
p(m = i |y) = σ(log Bij)

where
Bij =

p(y |m = i)
p(y |m = j)

is the Bayes factor for model 1 versus model 2 and

σ(x) =
1

1 + exp(−x)

is the sigmoid function.
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Bayes factors
The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = i |y) = σ(log Bij)
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Bayes factors
The posterior model probability is a sigmoidal function of
the log Bayes factor

p(m = i |y) = σ(log Bij)

From Raftery (1995).
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Odds Ratios

If we don’t have uniform priors one can work with odds
ratios.

The prior and posterior odds ratios are defined as

π0
ij =

p(m = i)
p(m = j)

πij =
p(m = i |y)
p(m = j |y)

resepectively, and are related by the Bayes Factor

πij = Bij × π0
ij

eg. priors odds of 2 and Bayes factor of 10 leads
posterior odds of 20.

An odds ratio of 20 is 20-1 ON in bookmakers parlance.
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Likelihood
We consider the same frameworks as in lecture 4, ie
Bayesian estimation of nonlinear models of the form

y = g(w) + e

where g(w) is some nonlinear function, and e is zero
mean additive Gaussian noise with covariance Cy . The
likelihood of the data is therefore

p(y |w , λ) = N(y ;g(w),Cy )

The error covariances are assumed to decompose into
terms of the form

C−1
y =

∑
i

exp(λi)Qi

where Qi are known precision basis functions and λ are
hyperparameters.
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Priors

Typically Q = INy and the observation noise precision
s = exp(λ) where λ is a latent variable, also known as a
hyperparameter.

The hyperparameters are constrained by the prior

p(λ) = N(λ;µλ,Cλ)

We allow Gaussian priors over model parameters

p(w) = N(w ;µw ,Cw )

where the prior mean and covariance are assumed
known.

This is not Empirical Bayes.
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Joint Log Likelihood

Writing all unknown random variables as θ = {w , λ}, the
above distributions allow one to write down an expression
for the joint log likelihood of the data, parameters and
hyperparameters

log p(y , θ) = log[p(y |w , λ)p(w)p(λ)]

Here it splits into three terms

log p(y , θ) = log p(y |w , λ)
+ log p(w)

+ log p(λ)
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Joint Log Likelihood
The joint log likelihood is composed of sum squared
precision weighted prediction errors and entropy terms

L = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
wC−1

w ew −
1
2

log |Cw | −
Nw

2
log 2π

− 1
2

eT
λ C−1

λ eλ −
1
2

log |Cλ| −
Nλ

2
log 2π

where Ny , Nw and Nλ are the numbers of data points,
parameters and hyperparameters. The prediction errors
are the difference between what is expected and what is
observed

ey = y − g(mw )

ew = mw − µw

eλ = mλ − µλ
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Variational Laplace

The Variational Laplace (VL) algorithm assumes an
approximate posterior density of the following factorised
form

q(θ|m) = q(w |m)q(λ|m)

q(w |m) = N(w ;mw ,Sw )

q(λ|m) = N(λ;mλ,Sλ)

See lecture 4 and Friston et al. (2007).
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Free Energy
In the lecture on approximate inference we showed that

log p(y |m) = F (m) + KL[q(θ|m)||p(θ|y ,m)]

Because KL is always positive F provides a lower bound
on the model evidence.

F is known as the negative variational free energy.
Henceforth ’free energy’.
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Free Energy

In lecture 4 we showed that

F =

∫
q(θ) log

p(Y , θ)
q(θ)

dθ

We can write is as two terms

F =

∫
q(θ) log p(Y |θ)dθ +

∫
q(θ) log

p(θ)
q(θ)

dθ

=

∫
q(θ) log p(Y |θ)dθ + KL[q(θ)||p(θ)]

where this KL is between the approximate posterior and
the prior - not to be confused with the earlier. The first
term is referred to as the averaged likelihood.
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Free Energy
For our nonlinear model with Gaussian priors and
approximate Gaussian posteriors F is composed of sum
squared precision weighted prediction errors and Occam
factors

F = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

− 1
2

eT
λ C−1

λ eλ −
1
2

log
|Cλ|
|Sλ|

where prediction errors are the difference between what
is expected and what is observed

ey = y − g(mw )

ew = mw − µw

eλ = mλ − µλ
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Accuracy and Complexity

The free energy for model m can be split into an accuracy
and a complexity term

F (m) = Accuracy(m)− Complexity(m)

where

Accuracy(m) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

and

Complexity(m) =
1
2

eT
wC−1

w ew +
1
2

log
|Cw |
|Sw |

+
1
2

eT
λ C−1

λ eλ +
1
2

log
|Cλ|
|Sλ|
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Complexity

Model complexity will tend to increase with the number of
parameters Nw because distances tend to be larger in
higher dimensional spaces.

For the parameters we have

Complexity(m) =
1
2

eT
wC−1

w ew +
1
2

log
|Cw |
|Sw |

where
ew = mw − µw

But this will only be the case if these extra parameters
diverge from their prior values and have smaller posterior
(co)variance than prior (co)variance.
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Complexity

In the limit that the posterior equals the prior
(ew = 0,Cw = Sw ), the complexity term equals zero.

Complexity(m) =
1
2

eT
wC−1

w ew +
1
2

log
|Cw |
|Sw |

Because the determinant of a matrix corresponds to the
volume spanned by its eigenvectors, the last term gets
larger and the model evidence smaller as the posterior
volume, |Sw |, reduces in proportion to the prior volume,
|Cw |.

Models for which parameters have to specified precisely
(small posterior volume) are brittle. They are not good
models (complexity is high).



Bayesian Model
Comparison

Will Penny

Bayes rule for
models
Bayes factors

Nonlinear Models
Variational Laplace

Free Energy

Complexity

Decompositions

AIC and BIC

Linear Models
fMRI example

DCM for fMRI
Priors

Decomposition

Group Inference
Fixed Effects

Random Effects

Gibbs Sampling

References

Correlated Parameters

Other factors being equal, models with strong correlation
in the posterior are not good models.

For example, given a model with just two parameters the
determinant of the posterior covariance is given by

|Sw | = (1− r2)σ2
w1
σ2

w2

where r is the posterior correlation, σw1 and σw2 are the
posterior standard deviations of the two parameters.

For the case of two parameters having a similar effect on
model predictions the posterior correlation will be high,
therefore implying a large complexity penalty.
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Decompositions

It is also instructive to decompose approximations to the
model evidence into contributions from specific sets of
parameters or predictions. In the context of DCM, one
can decompose the accuracy terms into contributions
from different brain regions (Penny et al 2004).

If the relative cost is E then the contribution to the Bayes
factor is 2−E . This enables insight to be gained into why
one model is better than another.
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Decompositions

Similarly, it is possible to decompose the complexity term
into contributions from different sets of parameters. If we
ignore correlation among different parameter sets then
the complexity is approximately

Complexity(m) ≈ 1
2

∑
j

(
eT

wj
C−1

wj
ewj + log

|Cwj |
|Swj |

)

where j indexes the j th parameter set. In the context of
DCM these could index input connections (j = 1), intrinsic
connections (j = 2), modulatory connections (j = 3) etc.
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Bayesian Information Criterion

A simple approximation to the log model evidence is given
by the Bayesian Information Criterion (Schwarz, 1978)

BIC = log p(y |ŵ ,m)− Nw

2
log Ny

where ŵ are the estimated parameters, Nw is the number
of parameters, and Ny is the number of data points.

BIC is a special case of the Free Energy approximation
that drops all terms that do not scale with the number of
data points (see Penny et al, 2004).

There is a complexity penalty of 1
2 log Ny for each

parameter.
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An Information Criterion

An alternative approximation is Akaike’s Information
Criterion or ‘An Information Criterion’ (AIC) - Akaike
(1973)

AIC = log p(y |ŵ ,m)− Nw

There is a complexity penalty of 1 for each parameter.

AIC and BIC are attractive because they are so easy to
implement.
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Linear Models
For Linear Models

y = Xw + e

where X is a design matrix and w are now regression
coefficients. The posterior distribution is analytic and
given by

S−1
w = X T C−1

y X + C−1
w

mw = Sw

(
X T C−1

y y + C−1
w µw

)
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Model Evidence
If we assume the error precision is known then for linear
models the free energy is exactly equal to the log model
evidence.

We have sum squared precision weighted prediction
errors and Occam factors as before

L = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

+ −1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

where prediction errors are the difference between what
is expected and what is observed

ey = y − g(mw )

ew = mw − µw

See Bishop (2006) for derivation.
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fMRI example

We use a linear model

y = Xw + e

with design matrix from Henson et al (2002).

See also SPM Manual. We considered ‘complex’ models
(with 12 regressors) and ‘simple’ models (with last 9 only).
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fMRI example
Likelihood

p(y |w) = N(y ;Xw ,Cy )

where Cy = σ2
e INy .

Parameters were drawn from the prior

p(w) = N(w ;µw ,Cw )

with µw = 0 and Cw = σ2
p Ip with set σp to correspond to the

magnitude of coefficients in a face responsive area.
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fMRI example

The parameter σe (observation noise SD) was set to give
a range of SNRs where

SNR =
std(g)
σe

and g = Xw is the signal. For each SNR we generated
100 data sets.

We first look at model comparison behaviours when the
true model is complex. For each generated data set we
fitted both simple and complex models and computed the
log Bayes factor. We then averaged this over runs.
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True Model: Complex GLM
Log Bayes factor of complex versus simple model versus
the signal to noise ratio, SNR, when true model is the
complex GLM for F (solid), AIC (dashed) and BIC (dotted).
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True Model: Simple GLM
Log Bayes factor of simple versus complex model versus
the signal to noise ratio, SNR, when true model is the
simple GLM for F (solid), AIC (dashed) and BIC (dotted).
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DCM for fMRI
We consider a ‘simple’ and ‘complex’ DCM for fMRI
(Friston et al 2003)

Neurodynamics evolve according to
 żP

żF
żA

 =

 aPP aPF aPA
aFP aFF aFA
aAP aAF aAA

 + uint

 0 0 0
bFP 0 0
bAP 0 0

 zP
zF
zA

 + uaud

 cP
0
0



where uaud is a train of auditory input spikes and uint
indicates whether the input is intelligible (Leff et al 2008).
For the simple DCM we have bAP = 0.
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Priors

Neurodynamic priors are

p(aii) = N(aii ;−1, σ2
self )

p(aij) = N(aij ;1/64, σ2
cross)

p(b) = N(b;0, σ2
b)

p(c) = N(c;0, σ2
c )

where

σself = 0.25
σcross = 0.50

σb = 2
σc = 2
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Simulations
To best reflect the empirical situation, data were
generated using a and c parameters as estimated from
original fMRI data (Leff et al 2008).

For each simulation the modulatory parameters bFP (and
bAP for the complex model) were drawn from the prior.
Neurodynamics and hemodynamics were then integrated
to generate signals g.

Observation noise SD σe was set to a achieve a range of
SNRs. Models were fitted using Variational Laplace
(lecture 4).
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True Model: Simple DCM
Log Bayes factor of simple versus complex model versus
the signal to noise ratio, SNR, when true model is the
simple DCM for F (solid), AIC (dashed) and BIC (dotted).
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True Model: Complex DCM
Log Bayes factor of complex versus simple model versus
the signal to noise ratio, SNR, when true model is the
complex DCM for F (solid), AIC (dashed) and BIC (dotted).
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Decomposition

The complex model was correctly detected by F at high
SNR but not by AIC or BIC.

Decomposition of F into accuracy and complexity terms

F (m) = Accuracy(m)− Complexity(m)

showed that the accuracy of the simple and complex
models was very similar. So differences in accuracy did
not drive differences in F.
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Decomposition
The simple model was able to fit the data from the
complex model quite well by having a very strong intrinsic
connection from F to A.

Typically, for the simple model âAF = 1.5. Whereas for the
complex model âAF = 0.3.

This leads to a large complexity penalty (in F ) for the
simple model

Complexity ≈ 1
2

∑
j

eT
wj

C−1
wj

ewj + ...
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Decomposition

Typically, for the simple model âAF = 1.5. Whereas for the
complex model âAF = 0.3.

Complexity ≈ 1
2

∑
j

eT
wj

C−1
wj

ewj + ...

≈ 1
2σ2

cross
(âAF − 1/64)2

So the simple model pays a bigger complexity penalty.

Hence it is detected by F as the worst model. But BIC
and AIC do not detect this as they pay the same penalty
for each parameter (regardless of its estimated
magnitude).
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Fixed Effects
Two models, twenty subjects.

log p(Y |m) =
N∑

n=1

log p(yn|m)

The Group Bayes Factor (GBF) is

Bij =
N∏

n=1

Bij(n)
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Random Effects

11/12=92% subjects favour model 1.

GBF = 15 in favour of model 2. FFX inference does not
agree with the majority of subjects.
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Random Effects

For RFX analysis it is possible that different subjects use
different models. If we knew exactly which subjects used
which models then this information could be represented
in a [N ×M] assignment matrix, A, with entries anm = 1 if
subject m used model n, and anm = 0 otherwise.

For example, the following assignment matrix

A =

 0 1
0 1
1 0


indicates that subjects 1 and 2 used model 2 and subject
3 used model 1.

We denote rm as the frequency with which model m is
used in the population. We also refer to rm as the model
probability.
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Generative Model
In our generative model we have a prior p(r |α). A vector of
probabilities is then drawn from this.

An assigment for each subject an is then drawn from p(an|r).
Finally an specifies which log evidence value to use for each
subject. This specifies p(yn|an).

The joint likelihood for the RFX model is

p(y ,a, r |α) =
N∏

n=1

[p(yn|an)p(an|r)]p(r |α)
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Prior Model Frequencies

We define a prior distribution over r which is a Dirichlet

p(r|α0) = Dir(α0) =
1

Z

M∏
m=1

r
α0(m)−1
m

where Z is a normalisation term and the parameters, α0, are strictly positively valued and the mth entry
can be interpreted as the number of times model m has been selected.

Example with α0 = [3, 2] and r = [r1, 1− r1].

In the RFX generative model we use a uniform prior α0 = [1, 1] or more generally α0 = ones(1,M).
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Model Assignment

The probability of the ‘assignation vector’, an, is then
given by the multinomial density

p(an|r) = Mult(r) =
M∏

m=1

ranm
m

The assignments then indiciate which entry in the model
evidence table to use for each subject, p(yn|an).
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Gibbs Sampling

Samples from the posterior densities p(r |y) and p(a|y)
can be drawn using Gibbs sampling (Gelman et al 1995).

This can be implemented by alternately sampling from

r ∼ p(r |a, y)
a ∼ p(a|r , y)

and discarding samples before convergence.

This is like a sample-based EM algorithm.
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Gibbs Sampling

STEP 1: model probabilites are drawn from the prior
distribution

r ∼ Dir(αprior )

where by default we set αprior (m) = α0 for all m (but see
later).

STEP 2: For each subject n = 1..N and model m = 1..M
we use the model evidences from model inversion to
compute

unm = exp (log p(yn|m) + log rm)

gnm =
unm∑M

m=1 unm

Here, gnm is our posterior belief that model m generated
the data from subject n.
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Gibbs Sampling

STEP 3: For each subject, model assignation vectors are
then drawn from the multinomial distribution

an ∼ Mult(gn)

We then compute new model counts

βm =
N∑

n=1

anm

αm = αprior (m) + βm

and draw new model probabilities

r ∼ Dir(α)

Go back to STEP 2 !
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Gibbs Sampling

These steps are repeated Nd times. For the following
results we used a total of Nd = 20,000 samples and
discarded the first 10,000.
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Gibbs Sampling
These remaining samples then constitute our
approximation to the posterior distribution p(r |Y ). From
this density we can compute usual quantities such as the
posterior expectation, E [r |Y ].
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Random Effects
11/12=92% subjects favoured model 1.

E [r1|Y ] = 0.84
p(r1 > r2|Y ) = 0.99

where the latter is called the exceedance probability.
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