
Empirical Bayes

Will Penny

Linear Models
fMRI analysis

Gradient Ascent

Online learning
Delta Rule

Newton Method

Bayesian Linear
Models
MAP Learning

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

Restricted
Maximum
Likelihood
Augmented Form

ReML Objective Function

References

Empirical Bayes

Will Penny

3rd March 2011



Empirical Bayes

Will Penny

Linear Models
fMRI analysis

Gradient Ascent

Online learning
Delta Rule

Newton Method

Bayesian Linear
Models
MAP Learning

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

Restricted
Maximum
Likelihood
Augmented Form

ReML Objective Function

References

General Linear Model

The General Linear Model (GLM) is given by

y = Xw + e

where y are data, X is a design matrix, and e are zero
mean Gaussian errors with covariance V . The above
equation implicitly defines the likelihood function

p(y |w) = N(y ; Xw ,V )

where the Normal density is given by

N(x ;µ,C) =
1

(2π)N/2|C|1/2 exp
(
−1

2
(x − µ)T C−1(x − µ)

)
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Maximum Likelihood
If we know V then we can estimate w by maximising the
likelihood or equivalently the log-likelihood

L = −N
2

log 2π − 1
2

log |V | − 1
2

(y − Xw)T V−1(y − Xw)

We can compute the gradient with help from the Matrix
Reference Manual

dL
dw

= X T V−1y − X T V−1Xw

to zero. This leads to the solution

ŵML = (X T V−1X )−1X T V−1y

This is often referred to as Weighted Least Squares
(WLS), ŵML = ŵWLS. For example, some observations
may be more reliable than others (Penny et al, 2007).
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fMRI analysis
For fMRI time series analysis we have a linear model at
each voxel i

yi = Xwi + ei

Vi = Cov(ei) is estimated first (see later) and then the
regression coefficients are computed using Maximum
Likelihood (ML) estimation.

ŵi = (X T V−1
i X )−1X T V−1

i yi

The fitted responses are then ŷi = Xŵi (SPM Manual)
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fMRI analysis
The uncertainty in the ML estimates is given by

S = (X T V−1
i X )−1

Contrast vectors c can then be used to test for specific
effects

µc = cT ŵi

The uncertainty in the effect is then

σ2
c = cT Sc

and a t-score is then given by t = µc/σc
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Least Squares

For isotropic error covariance V = λI, the normal
equations are

dL
dw

= λX T y − λX T Xw

This leads to the Ordinary Least Squares (OLS) solution
ŵML = ŵOLS,

ŵOLS = (X T X )−1X T y
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Gradient Ascent

In gradient ascent approaches an objective function, L, is
maximised by changing parameters w to follow the local
gradient

τ
dw
dt

=
dL
dw

where τ is the time constant that defines the learning
rate. In discrete time, parameters are then updated as

wt = wt−1 +
1
τ

dL
dwt−1

Smaller time constants τ correspond to bigger updates at
each step. That is, faster learning rates. In the batch
version of gradient ascent the gradient is computed
based on all pattern pairs xn, yn for n = 1..N. In the
sequential version updates are based on gradients from
individual patterns (see later).
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Neural Implementations

Many ’neural implementations’ or neural network models
are derived by taking a standard statistical model eg.
linear models, hierarchical linear models, (non-)linear
dynamical systems, and then maximimising some cost
function (eg the likelihood or posterior probability) using a
sequential gradient ascent approach.

When the same model is applied to, for example,
neuroimaging data more sophisticated optimisation
methods eg. Newton Methods (see later) are used.
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Online Learning - Sequential Gradient Ascent
In some situations observations may be made
sequentially. For independent observations we have

p(y |w) =
N∏

n=1

p(yn|w)

where

p(yn|w) = N(yn; xnw , λ−1)

=
1
Z

exp
(
−λ

2
(yn − xnw)2

)
and xn is the nth row of X . Now take logs to give

Ln = log p(yn|w)

= −λ
2

(yn − xnw)2 − log Z

Predictions with smaller error have higher likelihood.
Online learning then proceeds by following the gradients
based on individual patterns.
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Online Learning

For the linear model the learning rule for the i th
coefficient is

τ
dwi

dt
=

dLn

dwi
= λxn(i)(yn − xnw)

Learning is faster for high precision observations, larger
inputs and bigger prediction errors. One can use this in
signal processing applications such as Real-Time fMRI.
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Delta Rule

If λ is the same for all observations it can be absorbed
into the learning rate. The above expression then
reduces to the Delta Rule (Widrow and Hoff, 1960).

τ
dwi

dt
= xn(i)(yn − xnw)

If observations have different precisions then

τ
dwi

dt
= λnxn(i)(yn − xnw)
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Example - Linear Regression

For the linear model

Y = Xw + e

with Cov(e) = λ−1I the log-likelihood is

L(w) = −λ
2

(y − Xw)T (y − Xw)

The gradient is

j(w) =
dL
dw

= λX T y − λX T Xw
= λX T (y − Xw)

Following this gradient corresponds to the Delta rule.
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Example
For the log-likelihood L(w)

the local gradient does not always point in the direction of
the optimum (ŵML = [3,6]T ). And convergence is slower
for w2 than w1. This is because regressors did not have
the same variance. They were also correlated.
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The Problem with Gradient Ascent

A problem with (the batch version of) gradient descent is
that large learning rates (big steps) will lead to
instabilities.

This is because for many optimisation functions the local
gradient does not point in the direction of the optimum.

Conversely, small learning rates lead to very slow
convergence (in terms of the number of discrete steps).
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Newton Method
This can be remedied with the Newton Method in which
information about the curvature of the error surface is
also used (Press, 1988; from 2nd-order Taylor expansion)

wt = wt−1 − H−1
w jw

and

jw (i) =
dL

dw(i)

Hw (i , j) =
d2L

dw(i)dw(j)

where jw is the gradient vector and Hw is the curvature
matrix, also referred to as the Hessian.

As maximum is approached the gradient gets smaller,
hence the curvature is negative (hence minus sign
above).
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Example - Linear Regression
The gradient is

j(w) = λX T y − λX T Xw

as before and the curvature is

H = −λX T X

The parameter update is therefore

wt = wt−1 + (X T X )−1X T (y − Xwt−1)

Hence

w1 = w0 + ŵML − (X T X )−1X T Xw0

= ŵML

That is, learning in one step !
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Example - Linear Regression
The Newton weight update is

w1 = w0 + (X T X )−1X T (y − Xw0)

Learning in one step.
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Bayesian GLM

A Bayesian GLM is defined as

y = Xw + e1

w = µw + e2

where the errors are zero mean Gaussian with
covariances Cov[e1] = Cy and Cov[e2] = Cw .

p(y |w) ∝ exp
(
−1

2(y − Xw)T C−1
y (y − Xw)

)
p(w) ∝ exp

(
−1

2(w − µw )T C−1
w (w − µw )

)
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Bayesian GLM

The posterior distribution is then

p(w |y) ∝ p(y |w)p(w)

Taking logs and keeping only those terms that depend on
w gives

log p(w |y) = −1
2

(y − Xw)T C−1
y (y − Xw)

− 1
2

(w − µw )T C−1
w (w − µw ) + ..

= −1
2

wT (X T C−1
y X + C−1

w )w

+ wT (X T C−1
y y + C−1

w µw ) + ..
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Bayesian GLM
If p(x) = N(x ; m,S) then

p(x) ∝ exp
(
−1

2
(x −m)T S−1(x −m)

)
Taking logs of the Gaussian density p(x) and keeping only
those terms that depend on x gives

log p(x) = −1
2

xT S−1x + xT S−1m + ..

For our posterior we have

log p(w |y) = −1
2

wT (X T C−1
y X + C−1

w )w

+ wT (X T C−1
y y + C−1

w µw ) + ..

Equating terms gives

p(w |y) = N(mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )
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GLM posterior

The posterior density is

p(w |y) = N(mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

The posterior precision is the sum of the prior precision
and the data precision.

The posterior mean is a relative precision weighted
combination of the data mean and the prior mean.

If µw = 0 we have a shrinkage prior.
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Bayesian GLM with two parameters

The prior (dashed line)
has mean µw = [0,0]T

(cross) and precision
C−1

w = diag([1,1]). The
likelihood (dotted line)
has mean X T y = [3,2]T

(circle) and precision
(X T C−1

y X )−1 =

diag([10,1]). The
posterior (solid line) has
mean m = [2.73,1]T

(cross) and precision
S−1

w = diag([11,2]).

In this example, the measurements are more informative about
w(1) than w(2). This is reflected in the posterior distribution.
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Tennis
From Wolpert and Ghahramani (2006)

p(w |y) = N(mw ,Sw )

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )
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MAP Learning
The posterior density is given by Bayes rule

p(w |y) =
p(y |w)p(w)

p(y)

The Maximum A Posterior (MAP) estimate is given by

ŵ = arg max
w

p(w |y)

Because the maxima of log[x ] is the same as the
maximum of x we can also write

ŵ = arg max
w

L(y ,w)

where
L = log[p(y |w)p(w)]

is the joint log likelihood. For Linear Gaussian models
MAP parameters are equivalent to the posterior mean.
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MAP Learning

Online MAP learning follows the gradient of the joint log
likelihood

τ
dw
dt

=
dL
dw

This splits into two derivatives - one for the likelihood
(shown earlier) and one for the prior. For prior mean µw
and isotropic prior covariance Cw = λw Ip we have

log p(w) = −λw

2
(w − µw )T (w − µw )− log Z

Hence
d log p(w)

dw
= λw (µ− w)
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MAP Learning

The overall MAP learning rule is

τ
dw
dt

= λw (µw − wi) + λnxT
n (yn − xnw)

For µ = 0 we have the ML update plus a decay term

τ
dwi

dt
= −λwwi + λnxn(i)(yn − xnw)
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MEG Source Reconstruction

MEG Source Reconstruction is achieved through
inversion of the linear model

y = Xw + e

(d × 1) = (d × p)(p × 1) + (d × 1)

for MEG data, y with d sensors and p potential sources,
w , lying perpendicular to the cortical surface. The lead
field matrix is specified by X . For our example we have
d = 274 and p = 8192.

The above equation is for a single time point.
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Generative Models

Likelihood
p(y |w) = N(y ; Xw ,Cy )

Prior
p(w) = N(w ; 0,Cw )

We let

Cy = λ1Q1

Cw = λ2Q2

For shrinkage priors Q2 = Ip, MAP estimation results in
the minimum norm method of source reconstruction. This
is implemented in SPM as the ‘IID’ option
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Smoothness Priors

For smoothness priors Q2 = KK T corresponding to the
operation of a Gaussian smoothing kernel, MAP
estimation results something similar to the Low
Resolution Tomography (LORETA) method.

This is implemented in SPM as the ‘COH’ option. Note,
these are not location priors.
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Posterior Density

From earlier we have

S−1
w = X T C−1

y X + C−1
w

mw = SwX T C−1
y y

However, Sw is p× p with p = 8192 so cannot be inverted
easily. But we can use the matrix inversion lemma, also
known as the Woodbury identity (Bishop, 2006)

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

to ensure that only d × d matrices need inverting.
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Simulation

Two sinusoidal sources were placed in bilateral auditory
cortex and produced this MEG data (Barnes, 2010),
comprising d = 274 time series (butterfly plot)
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LORETA
We fix λ1 = 1. Here we set λ2 = 0.01.

This shows the posterior mean activity for the 500 dipoles
with the greatest power (over peristimulus time)
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LORETA

We fix λ1 = 1. Here we set λ2 = 0.1.
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LORETA

We fix λ1 = 1. Here we set λ2 = 1.
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Empirical Bayes
Hyperparameters, λ, can be estimated so as to maximise
the model evidence. This forms the basis of Empirical
Bayes.

The marginal likelihood or model evidence is given by

p(y |λ) =

∫
p(y ,w , λ)dw

=

∫
p(y |w , λ)p(w |λ)dw

The log model evidence is

L(λ) = log p(y |λ)

For linear models this can be derived as in Bishop (2006)
or as in my Maths for Brain Imaging notes.

In this formulation λ are not treated as random variables.
There is no prior on them.
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Model Evidence

The model evidence is composed of sum squared
precision weighted prediction errors and Occam factors

L(λ) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
d
2

log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

where λ is a vector of hyperparameters that parameterise
the covariances Cw and Cy . The prediction errors are the
difference between what is expected and what is
observed

ey = y − Xmw

ew = mw − µw
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Empirical Bayes

We iterate between finding the parameters w and
hyperparameters λ. For linear Gaussian models this
corresponds to computing the posterior over w

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

and then setting λ to maximise the model evidence.

λ̂ = arg max
λ

L(λ)

These two steps are then iterated and can be thought of
as E and M steps in an EM optimisation algorithm.
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Isotropic Covariances

For a Bayesian GLM

y = Xw + e1

w = µw + e2

with isotropic covariances

Cy = λy IN
Cw = λw Ip

and d data points and p parameters. The equations for
updating λ can be derived as shown in Chapter 10 of
Bishop (2005).
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Well-determined parameters
Define

γ =

p∑
j=1

αj

αj + λ̂w

where αj are eigenvalues of the data precision term
X T C−1

y X . If αj >> λ̂w for all j then γ = p. Parameters
have all been determined by the data. So γ is equivalent
to number of well-determined parameters.
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M-Step
Then

1
λ̂w

=
eT

w ew

γ

1
λ̂y

=
eT

y ey

d − γ

where the prediction errors are

ey = y − Xmw

ew = mw − µw

This effectively partitions the degrees of freedom in the
data into those for estimating the prior and the likelihood.

Setting λ to maximise the marginal likelihood produces
unbiased estimates of variances whereas ML estimation
produces biased estimates.
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Linear Covariances

For a Bayesian GLM

y = Xw + e1

w = µw + e2

with covariances

Cy =
∑

i

λiQi

Cw =
∑

i ′
λi ′Qi ′

where Q are known covariance basis functions. The
M-step is

λ̂ = arg max
λ

L(λ)
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Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of L(λ) at the current parameter
estimate, λold

jλ(i) =
dL(λ)

dλ(i)

Hλ(i , j) =
d2L(λ)

dλ(i)dλ(j)

where i and j index the i th and j th parameters, jλ is the
gradient vector and Hλ is the curvature matrix. The new
estimate is then given by

λnew = λold − H−1
λ jλ
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MEG Source Reconstruction

Hyperparameters set using Empirical Bayes.

The minimum norm method, also implemented in SPM as
the IID option.



Empirical Bayes

Will Penny

Linear Models
fMRI analysis

Gradient Ascent

Online learning
Delta Rule

Newton Method

Bayesian Linear
Models
MAP Learning

MEG Source
Reconstruction

Empirical Bayes
Model Evidence

Isotropic Covariances

Linear Covariances

Gradient Ascent

MEG Source
Reconstruction

Restricted
Maximum
Likelihood
Augmented Form

ReML Objective Function

References

Smoothness Priors

Hyperparameters set using Empirical Bayes.

This is similar to the LORETA method, implemented in
SPM as the COH option.
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Restricted Maximum Likelihood

The posterior over w

S−1
w = X T C−1

y X + C−1
w

mw = Sw (X T C−1
y y + C−1

w µw )

can also be written in a more compact form.
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Augmented Form

This compact form is

S−1
w = X̄ T V−1X̄

mw = Sw (X̄ T V−1ȳ)

where

X̄ =

[
X
Ip

]
V =

[
Cy 0
0 Cw

]
ȳ =

[
y
µw

]

where we’ve augmented the data matrix with prior
expectations; ȳ is (d + p)× 1 and X̄ is (d + p)× p.
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Augmented Form

Estimation in a Bayesian GLM is therefore equivalent to
Maximum Likelihood estimation (ie. for IID covariances
this is the same as Weighted Least Squares) with
augmented data.

mw = (X̄ T V−1X̄ )−1X̄ T V−1ȳ

Prior beliefs can be thought of as extra data points.
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Model Evidence
The previous expression for the model evidence

L(λ) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
wC−1

w ew −
1
2

log
|Cw |
|Sw |

can now be written more compactly

L(λ) = −1
2

ēT V−1ē − 1
2

log |V | −
Ny

2
log 2π

+
1
2

log |Sw |

where the overall prediction errors are

ēT = [eT
y ,e

T
w ]
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Restricted Maximum Likelihood

If we eliminate mw and Sw from the model evidence
equation we end up with the Restricted Maximum
Likelihood (ReML) objective function.
Substituting for Sw gives

L(λ) = −1
2

ēT V−1ē − 1
2

log |V | −
Ny

2
log 2π

− 1
2

log |X̄ T V−1X̄ |

where
ē = ȳ − X̄mw
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Restricted Maximum Likelihood

ē = ȳ − X̄mw

= ȳ − X̄Sw X̄ T V−1ȳ
= ȳ − X̄ (X̄ T V−1X̄ )−1X̄ T V−1ȳ
= Rȳ

where R is called the residual-forming matrix

R = I − X̄ (X̄ T V−1X̄ )−1X̄ T V−1

Hence

ēT V−1ē = ȳT RT V−1Rȳ
= Tr(V−1RȳȳT RT )
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Restricted Maximum Likelihood

The Restricted Maximum Likelihood (ReML) objective
function is therefore

L(λ) = −1
2

Tr(V−1RȳȳT RT )− 1
2

log |V | −
Ny

2
log 2π

− 1
2

log |X̄ T V−1X̄ |

This only depends on X̄ , V and ȳ ȳT . This can also be
used for nonaugmented matrices. This function is
optimised in SPM’s ReML function (Friston et al, 2002)
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