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Neural Mass Model

Jansen and Rit (1995), building on the work of Lopes Da
Sliva and others, developed a biologically inspired model
of EEG activity. It was originally developed to explain
alpha activity and Event-Related Potentials (ERPs).

It models a cortical unit with three subpopulations of cells
I Stellate cells with average membrane potential vs

and current cs.
I Pyramidal cells with average membrane potential vp

and current cp.
I Inhibitory interneurons with average membrane

potential vi and current ci .
Here I describe the model as formulated in David et al.
(2006).
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Firing Rate Curves
Membrane potentials are transformed into firing rates via
sigmoidal functions (David et al 2006)

s(x) =
1

1 + exp(−rx)
− 1

2

Negative firing rates here allow systems to have a stable fixed
point at x = 0. All firing rates are therefore considered as
deviation from steady state values. But earlier Jansen-Rit does
not have 1/2.
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Alpha Function Synapses

Firing rates cause postsynaptic potentials via convolutions with
alpha function synaptic kernels

vout (t) = he(t)⊗ s(vin)

where
he(t) =

He

τe
t exp(−t/τe)

Similarly for inhibitory synapses with hi (t), Hi , τi .



The Macroscopic
Brain

Will Penny

Cortical Unit
Neural Mass Model

Cell Populations

Differential Equations

Intrinsic Connectivity

Spectral
Responses
Alpha Activity

Spike Activity

Bifurcations

Macroscopic
Models
Extrinsic Connectivity

Delays

Auditory Oddball

Gain

Priors

Likelihood

Steady-State
Responses
Frequency Response

Cortical Unit

Synaptic Physiology

Cross-Spectra

References

Inhibitory Interneurons

The inhibitory interneurons receive excitatory input from
the pyramidal cells

vi = γ3s(vp)⊗ he
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Stellate Cells

The stellate cells receive external input from thalamus or
other cortical regions and excitatory feedback from
pyramidal cells

vs = (s(u) + γ1s(vp))⊗ he
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Pyramidal Cells
The pyramidal cells receive excitatory input from stellate
cells and inhibitory input from interneurons. This
produces both excitatory vpe and inhibitory vpi
postsynaptic potentials. This formulation is due to David
et al (2006).

vpe = γ2s(vs)⊗ he

vpi = γ4s(vi)⊗ hi

vp = vpe − vpi
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Alpha Function Synapses

Each synapse

vout (t) = he(t)⊗ s(vin(t))

he(t) =
He

τe
t exp(−t/τe)

can be implemented with a second order DE or two first order
DEs (Grimbert and Faugeras, 2006)

v̇out = cout

ċout =
He

τe
s(vin(t))− 2

τe
cout −

1
τ2

e
vout

where cout is the current flowing through the synapse. Hence
each synapse gives rise to two DEs.
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Differential Equations
The integral equations become

vi = γ3s(vp) ⊗ he

vs =
(
s(u) + γ1s(vp)

)
⊗ he

vpe = γ2s(vs) ⊗ he

vpi = γ4s(vi ) ⊗ hi

vp = vpe − vpi

the differential equations

v̇i = ci

ċi =
He

τe
γ3s(vp(t)) −

2

τe
ci −

1

τ2
e

vi

v̇s = cs

ċs =
He

τe
γ3(s(u(t)) + γ1s(vp(t)) −

2

τe
cs −

1

τ2
e

vs

v̇pe = cpe

ċpe =
He

τe
γ2s(vs(t)) −

2

τe
cpe −

1

τ2
e

vpe

v̇pi = cpi

ċpi =
Hi

τi
γ4s(vi (t)) −

2

τi
cpi −

1

τ2
i

vpi

v̇p = cpe − cpi



The Macroscopic
Brain

Will Penny

Cortical Unit
Neural Mass Model

Cell Populations

Differential Equations

Intrinsic Connectivity

Spectral
Responses
Alpha Activity

Spike Activity

Bifurcations

Macroscopic
Models
Extrinsic Connectivity

Delays

Auditory Oddball

Gain

Priors

Likelihood

Steady-State
Responses
Frequency Response

Cortical Unit

Synaptic Physiology

Cross-Spectra

References

Intrinsic Connectivity
Based on the relative counts of numbers of synapses in
cat and mouse visual and somato-sensory cortex Jansen
and Rit (1995) determined the following connectivity
values.

γ1 = C
γ2 = 0.8C
γ3 = 0.25C
γ4 = 0.25C
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Alpha Activity
Original Jansen-Rit Model with 6 state variables produces
alpha activity with C = 135. Input noise u was uniformly
distributed between 120 and 320Hz.
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Spike Activity
Wendling et al (2000) elicited seizure-lie spikes with lower
levels of input u (gaussian noise with mean 90 and
standard deviation 30 Hz).

The frequency of spike activity increases as He/Hi is
changed.
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Spike Activity

This figure from Wendling et al. (2000) shows spike
activity from mid-temporal gyrus (MTG) of epileptic
patients before (f,g) and during a seizure (h,i).
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Bifurcation Analysis
Grimbert and Faugeras (2006) provide a bifurcation
analysis of the standard Jansen-Rit model.

The figure shows pyramidal cell PSP, y (previously vp) as
a function of input to the cortical unit, p (previously u),
with stable fixed points marked as solid lines and
unstable FPs as dashed lines.
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Bifurcation Analysis
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Bifurcation Analysis
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Macroscopic Models
Cortex is organised hierarchically with higher level
regions processing more abstract features and lower
levels more concrete ones (Felleman and Van Essen,
1991).
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Macroscopic Models

Cortex is organised hierarchically with higher level
regions processing more abstract features and lower
levels more concrete ones.

This figure shows regions 2 and 3 at a higher level and
region 1 at a lower level. Regions at the same level are
connected via lateral connections (blue).

Forward connections (red) and backward connections
(black) connect between levels.
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Macroscopic Model
This hierarchical organisation is also reflected in how different
cortical laminae are connected (Felleman and Van Essen,

1991).
Here stellate cells are located in layer 4 or the granular layer.
Pyramidal cells are located in agranular layers, either in
superficial or deep layers. Inhibitory interneurons are also
located in agranular layers.



The Macroscopic
Brain

Will Penny

Cortical Unit
Neural Mass Model

Cell Populations

Differential Equations

Intrinsic Connectivity

Spectral
Responses
Alpha Activity

Spike Activity

Bifurcations

Macroscopic
Models
Extrinsic Connectivity

Delays

Auditory Oddball

Gain

Priors

Likelihood

Steady-State
Responses
Frequency Response

Cortical Unit

Synaptic Physiology

Cross-Spectra

References

Macroscopic Model
All connections between regions originate from pyramidal cells.
The colours depict forward connections (red), backward
connections (black) and lateral connections (blue).

This knowledge is made use of in DCM-ERP (David et al.
2006). Connections between subpopulations within a region, γ,
are referred to as ‘intrinsic’. Connections between regions, Cij ,
are ‘extrinsic’.
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Extrinsic Connectivity
So, for example,

v2
s =

(
C21s(v1

p − τ21) + γ1s(v2
p − τ22)

)
⊗ he

v3
s =

(
C31s(v1

p − τ31) + C32s(v2
p − τ32) + γ2s(v3

p − τ33)
)
⊗ he

v1
i =

(
C13s(v3

p − τ31) + γ3s(v1
p − τ11)

)
⊗ he

where Cij is the connection strength from region j to region i ,
and τij is the delay from region j to region i .



The Macroscopic
Brain

Will Penny

Cortical Unit
Neural Mass Model

Cell Populations

Differential Equations

Intrinsic Connectivity

Spectral
Responses
Alpha Activity

Spike Activity

Bifurcations

Macroscopic
Models
Extrinsic Connectivity

Delays

Auditory Oddball

Gain

Priors

Likelihood

Steady-State
Responses
Frequency Response

Cortical Unit

Synaptic Physiology

Cross-Spectra

References

Differential Equations

Single Cortical Unit. Delays not shown.
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Delays
Delays within a region are typically 2ms. Between regions
they are typically 8-32ms depending on distance and
myelination.

Delay differential equations can be transformed to
standard DEs using a first order Taylor series expansion
about the delay

ẋi(t) = fi(x1(t − τi1), x2(t − τi2), .., xn(t − τin))

= fi(x(t))−
n∑

j=1

τij
dfi(xj)

dτij

= fi(x(t))−
∑

j

τij
dfi(xj)

dxj

dxj

dτij

= fi(x(t))−
∑

j

τijJij ẋj(t)
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Delays

In vector form

ẋ(t) = f (x(t))− (τ × J)ẋ(t)

where τ is a matrix with entries τij , J is the Jacobian and
× denotes the Hadamard (element by element) product.

Rearraging gives

ẋ(t) = D−1f (x(t))

where
D = I + (τ × J)

is a delay matrix.
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Auditory Oddball

We illustrate DCM-ERP (David et al. 2006) using ERP
data from an auditory processing experiment.

Subjects listened to auditory tones of two different
frequencies, 1kHz and 2kHz, with the lower frequency
occuring 80% of the time, and the higher (the ‘oddball’)
20% of the time.

Late ERP components, 250-350ms, which are
characteristic of rare events were seen in most frontal
electrodes. Early components (eg the N100) were almost
identical for rare and frequent stimuli.

Data from 64 electrodes were projected onto three spatial
modes found from Singular Value Decomposition (SVD)
of sensor space data.
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Modes

Early components
project mainly onto
mode 1 and late
components onto mode
2.

Data are shown as thick
lines and model fit as
thin lines.
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Network Model
Auditory input is modelled as driving activity in bilateral primary
auditory cortex (A1), which in turn connect to orbitofrontal
cortex (OF) and posterior cingulate (PC) with a right
hemisphere pathway via superior temporal gyrus (STG) (David
et al 2006).

These regions were
selected based on
source reconstruction of
ERPs, previous
literature on auditory
oddballs and known
anatomical connectivity.
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Context-dependent gain
Extrinsic parameters are allowed to vary as a function of
experimental context k eg. standard or oddball (k = 1).

Cijk = CijGijk

This allows one to test if connections depend on
experimental context.
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Priors
Priors on positively valued parameters are expressed as
exponential functions of associated Gaussian latent variables.
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Priors
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Likelihood
The differential equations of the macroscopic model

ẋ(t) = D−1f (x(t),u(t), k)

are integrated to produce time series of activity for each
cell population in each region. Pyramidal cell PSPs, vp(t)
then produce EEG modes

y(t) = Lvp(t) + e

where L is a lead field operator, and e is additive
Gaussian noise.

The model is fitted using the Variational Laplace
algorithm (lecture 4).

In a later version of this approach (Kiebel et al. 2006) the
lead field is parameterised, allowing one to also
estimated the locations of the sources.
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Estimated Model
The mismatch response is expressed in nearly every source
(black: oddballs, gray: standards). In all extrinsic connections,
coupling was stronger for oddballs relative to standards. These
effects are significant for the connections in bold.

For eg. left OF to A1 the oddball induced gain is
GA1,OF ,1 = 2.74.
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Linear Systems Analysis
The effect of input uk (t) on output yi (t), in a linear system, is
described completely by the kernel response function

yi (t) =

∫ t

0
hik (τ)uk (t − τ)dτ

Equivalently

hik (τ) =
dyi (t)

duk (t − τ)

Observation function

y = g(x)
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Linear Systems Analysis
The kernel response can be found via the chain rule

hik (τ) =
dyi (t)

duk (t − τ)

=
dyi (t)
dx(t)

dx(t)
dx(t − τ)

dx(t − τ)

duk (t − τ)

Past inputs, uk (t − τ), affect previous hidden states, x(t − τ)
which affect current hidden states, x(t) which affect current
outputs, y(t).
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Linear Systems Analysis
Past inputs, uk (t − τ), affect previous hidden states, x(t − τ)
which affect current hidden states, x(t) which affect current
outputs, y(t).

hik (τ) =
dyi (t)
dx(t)

dx(t)
dx(t − τ)

dx(t − τ)

duk (t − τ)

For the first term we have

dyi (t)
dx(t)

= g′
i (x)

For the second term we note that

x(t) = exp(Jτ)x(t − τ)

where the Jacobian has elements

Jij =
dfi
dxj

Hence
dx(t)

dx(t − τ)
= exp(Jτ)
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Linear Systems Analysis

To evaluate the third term as a function of f we can write

dx(t − τ)

duk (t − τ)
=

dx(t − τ)

dẋ(t − τ)

dẋ(t − τ)

duk (t − τ)

= J−1 df
duk

Putting this all together gives

hik = g′i (x) exp(Jτ)J−1 df
duk

This will provide an accurate description of input-output
relationships close to the fixed point around which the
derivatives are evaluated.
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Frequency Response

The frequency response of the transfer function from
input k to output i is given by the Fourier transform

Hik (w) = F (hik (t))

The covariance between outputs i and j at frequency w
induced by input k is

Γijk (w) = |Hik (w)Hjk (−w)|

The cross-spectral density is then

Gij(w) =
∑

k

Γijk (w)Uk (w)

where Uk (w) is the frequency content of the k th input.
The spectrum or auto-spectrum is Gii(w).
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Single cortical unit
Moran et al (2007) investigated how the steady state
spectrum of a single cortical unit, Γ111(w), depended on
various model parameters.

Increasing τe caused a slowing of the dynamics with an
excess of power at lower frequencies.
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Single cortical unit

Increasing He caused a marked increase and sharpening
of the spectral mass of the lower frequency mode.
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Single cortical unit
Increasing the gain

increased the frequency up to a point, after which
bandpass characteristics are lost.
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Synaptic Physiology

In a rat model of schizophrenia weaning rats are deprived
of social contact. This results in reduced levels of
extracellular glutamate in prefrontal cortex.

This should be compensated for by upregulation of AMPA
synapses reflected in eg. increases in He and increases
in excitatory coupling (γ1,γ2,γ3) Larger PSPs are also
associated with greater SFA so we expect an increase in
ρ2 (Moran et al. 2008).
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Spectra
These parameters can be estimated from LFP spectra
using DCM-SSR (Moran et al. 2007).
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Intrinsic Connections
The intrinsic coupling parameters were not significantly
different between control (blue) and isolated (red) groups.



The Macroscopic
Brain

Will Penny

Cortical Unit
Neural Mass Model

Cell Populations

Differential Equations

Intrinsic Connectivity

Spectral
Responses
Alpha Activity

Spike Activity

Bifurcations

Macroscopic
Models
Extrinsic Connectivity

Delays

Auditory Oddball

Gain

Priors

Likelihood

Steady-State
Responses
Frequency Response

Cortical Unit

Synaptic Physiology

Cross-Spectra

References

Synaptic Response
Isolated rats had increased PSPs and greater spike
frequency adaptation as evidenced by the f − I curve
shifting to the right (Benda and Herz, 2003).
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Cross-Spectra
LFPs were recorded from the lateral nucleus of the amygdala
(LA) and CA1 region of dorsal hippocampus in adult mice as
they responded to acoustic tones, one of which they had been
conditioned to fear (CS+, red) through foot schock, and of
which had no such association (CS-, blue).
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Cross-Spectra
Moran et al. (2009) fitted a two-region neural mass model to
the cross-spectra using DCM-SSR, with data shown as solid
lines and model fit with dotted lines.
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Cross-Spectra
CS+ is associated with increasing extrinsic connections
from CA1 to LA and decreasing extrinsic connections
from LA to CA1.
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