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Synchronization

Both fMRI and MEG are based on synchronization
phenomena (Strogatz, 2003).

We would’nt have anything to measure unless neurons
were also able to synchronize (their post-synaptic or
membrane potentials).

Neurons are most sensitive to incoming signals if the
incoming spikes are synchronised (Wang, 2010).

Hence spike-to-spike synchrony and field synchrony are
important.
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Synchronization

Whether two or more neurons will synchronize depends
on at least two characteristics

I Membrane Dynamics. How sensitive spiking is to
perturbations in the membrane potential. This is
described by the Phase Response Curve (PRC).

I Synaptic Dynamics. What perturbation is delivered to
the membrane potential by an incoming spike. This
is quantified by the perturbation function.

Both of these criteria are taken into account by the theory
of Weakly Coupled Oscillators (WCOs).
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Neuronal Phase Response Curves
Stimulus at time t , or equivalently phase φ, induces an earlier
or later spike.

Vm is the membrane potential. The change in phase is

z =
t0 − t1

t0

As a function of stimulus phase we have z(φ) the Phase
Response Curve (PRC).

Can be found experimentally using a perturbation method, from models using analytical or numerical

method, or analytically for oscillations arising from certain classes of dynamical bifurcations.
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Hodgkin Huxley PRC

If an HH cell receives a spike just after firing, this will delay the
emission of the next spike. This is because recovery processes
are delayed (negative lobe).

If it receives a spike later on, this will advance the firing of the
next spike (positive lobe). Plot from Hansel et al (1995).
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Connor-Stevens PRC

Conner and Stevens have added a slow K current, the
so-called A-current, to the Hodgkin Huxley model so that
it better reproduces the range of firing rates of human
cortical neurons.

A reduced version of this model, the Hindmarsh-Rose
model, was presented in the last lecture.

The Connor-Stevens PRC (Hansel et al 1995)
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Type 1 and 2 PRCs

Type 1 PRCs are strictly positive.

Type 2 PRCs are positive and negative.
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Hopf PRC
Oscillations produced by Hopf bifurcations

have z(φ) = a cosφ+ b sinφ (Ermentrout and Terman, 2010)
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Saddle Node PRC

Oscillations produced by Saddle Node bifurcations

have z(φ) = 1 − cosφ (Ermentrout and Terman, 2010)
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Integrate and Fire

The Integrate and Fire (IF) model neuron avoids a
biophysical description of action potential generation. It
models only subthreshold membrane dynamics. In its
simplest form we have

Cmv̇ = −gL(v − EL) + Ie

where gL is a leak conductance and EL is the leak
equilibrium potential. Ie is applied current.

When the potential, v reaches a threshold, vT , a
supplementary rule resets it to resting potential, vr , and a
spike (delta function) is emitted at that time point.

Later on, we will add synapses

Cmv̇ = −gL(v − EL) − gs(v − Es) + Ie
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Integrate and Fire
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Synapses
Synapses can be incorporated into conductance based
models with additional terms

Cmv̇ = −gL(v − EL) − gs(v − Es)

where gs is the conductivity of a particular synaptic type
and Es is the equilibrium potential. If Es is above spiking
threshold the synapse is excitatory.

Differential equations for gs can describe the presynaptic
release of neurotransmitter, and opening of postsynaptic
channels, up to various levels of detail.
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Synapses

Glutamate and GABA are the major excitatory and
inhibitory neurotransmitters.

The principal receptors for glutamate are AMPA and
NMDA.

The principal receptors for GABA are GABA-A and
GABA-B.

See eg. Dayan and Abbott (2001) for more.
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Integrate and Fire Synapses

In the Integrate and Fire framework one can add
conductance-based synapses as previously

Cmv̇ = −gL(v − EL) − gs(v − Es)

and add differential equations for gs.

Or one can work with synaptic kernels

Cmv̇ = −gL(v − EL) − amax

∑
i

s(t − ti )

where amax is the maximum response, ti indexes the time of
the i th received spike, and s(t) describes the synaptic kernel
that produces the postsynaptic response. These are
excitatory/inhibitory for positive/negative amax .
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Difference of Exponentials Kernel
A common choice for the synaptic kernel, s(t), is the difference
of exponentials function

s(t) = a (exp(−t/τ1) − exp(−t/τ2))

with rise and fall times

τrise =
τ1τ2

τ1 − τ2
τfall = τ1

The parameter a = 1/5 here will ensure a normalised
response.
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Alpha Function Kernel
An alpha function synapse

s(t) =
t
τs

exp[1 − (t/τs)]

reaches its peak at τs and decays with time constant τs.

Alpha functions correspond to synaptic dynamics
described by second order differential equations. See eg
Grimbert and Faugeras (2006) in the context of Neural
Mass Models.
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Exponential Kernel
An exponential synapse

s(t) = exp(−t/τs)

has time constant τs.

Typical decay times are 2 − 3ms for AMPA, about 100ms
for NMDA, 5 − 10ms for GABA-A and about 100ms for
GABA-B.
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Weakly Coupled Oscillators

The theory of Weakly Coupled Oscillators applies to
dynamics close to limit cycles.

By assuming weak coupling leads to only small
perturbations away from these cycles, one can reduce a
high dimensional system of differential equations to one
based solely on the phases of the oscillators and pairwise
interactions between them.

Dynamics on the limit cycle are given by

ẋ0 = F (x0)

x0(t + T ) = x0(t)
φ̇(x0) = f

where f = 1/T is the oscillator frequency.
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Asymptotic Phase
Morris-Lecar model of a spiking neuron

Cmv̇ = Iapp − gL(v − EL) − gK n(v − EK ) − gCam(v)(v − Eca)

τn(v)ṅ = φ(n(v) − n)

showing membrane voltage, v , and K activation level.

Isochrons (dashed line) have the same asymptotic phase.
From Ermentrout and Terman (2010).



The Mesoscopic
Brain

Will Penny

Synchronization

Phase Response
Curves
Phase Response Curves

Hodgkin Huxley

Hopf PRC

Saddle Node PRC

Synapses
IF cells

Synapses

Synaptic Kernels

Weakly Coupled
Oscillators
Asymptotic Phase

Phase Reduction

Phase Interaction Function

Multiple Oscillators

Two Neurons
Motor Neuron

Mutual Excitation

Mutual Inhibition

Plasticity
Spike Frequency Adaptation

STDP

Transient
Synchronization

References

Phase Reduction
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Weak Coupling
Dynamics close to the limit cycle are described by

ẋ = F (x) + P(x)

where P(x) is a perturbation. If phase is defined
asymptotically then the chain rule gives

dφ(x)

dt
=

dφ(x)

dx
dx
dt

=
dφ(x)

dx
F (x) +

dφ(x)

dx
P(x)

We now make use of a weak coupling assumption which
is that the perturbations are sufficiently small that all
terms can be equivalently evaluated at x0 instead of x .
This gives

dφ(x)

dt
=

dφ(x0)

dx0
F (x0) +

dφ(x0)

dx0
P(x0)
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Perturbation function
Because x0 maps on to phase via the function φ(x0) we
can rewrite P(x0) as p(φ), known as a perturbation
function.

Second, the first term can be written simply as

dφ(x0)

dx0
F (x0) =

dφ(x0)

dx0

dx0

dt

=
dφ(x0)

dt
= f

Third, we recognize the PRC as

z(φ) =
dφ(x0)

dx0

Overall, we can now write

φ̇ = f + z(φ)p(φ)
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Pair of Oscillators

The same analysis can be applied to a pair of oscillators
where the perturbation now depends on both phases
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Phase Interaction Function
We now make a second assumption. This is that the
interaction terms are much smaller than the oscillation
frequency.

z(φ)p(φ1, φ2) << f

This implies that the phase changes due to interactions
are much slower than the speed of the oscillation itself.
This allows us to replace the interaction term with its
average over a cycle

Γij =
1

2π

∫ 2π

0
zi(ψ)pij(ψ,ψ + φ)dψ

which is known as the Phase Interaction Function (PIF).
Hence

φ̇1 = f + Γ12(φ1 − φ2)

φ̇2 = f + Γ21(φ2 − φ1)
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Multiple Oscillators
The theory applies readily to multiple oscillators

φ̇i = fi + Γij(φi − φj)

These models can be fitted to phase time series data
using an arbitrary order Fourier series representation of
the PIFs (Penny et al. 2009).

Bayesian model comparison can be used to select the
appropriate Fourier order and to find out which oscillators
are enslaved or are mutually entrained (more next
lecture).

Oscillators can only be synchronized if the frequencies
are sufficiently similar. See Kuramoto (1984) for
quantitative results in the context of stochastic WCOs.
This has been viewed as a shortcoming (Bartos, 2007)
but this selectivity may in fact be an advantage (Hopfield
and Brody, 2001).
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Motor Neuron

Ermentrout and Kleinfeld (2001) modelled a motor neuron
using a HH-type formalism. They computed the PRC.
Red dotted lines show PRC measured experimentally.
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Synaptic Perturbation

The perturbation term for a synapse is

p(φi , φj) = −gmax

Cm
S(φj)[v(φi) − Esyn]

where gmax is the maximum conductance, Cm is the
membrane conductance, Esyn is the equilibrium potential.
Synapses in this model had finite rise and fall times.

We consider excitatory synapses.
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Phase Interaction Function

The Phase Interaction Function (PIF) is then

Γij =
1

2π

∫ 2π

0
zi(ψ)pij(ψ,ψ + φ)dψ
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Synchronization Dynamics
If we have two oscillators

φ̇1 = f + Γ12(φ1 − φ2)

φ̇2 = f + Γ21(φ2 − φ1)

then the relative phase is given by

φ = φ1 − φ2

The stable fixed points of this one-dimensional system then
indicate at what phase synchronization is achieved (if at all).
We have

φ̇ = φ̇1 − φ̇2

= Γ12(φ) − Γ21(−φ)

If the PIFs are the same for each neuron we have

φ̇ = Γodd (φ)

where
Γodd (φ) = Γ(φ) − Γ(−φ)

which is the odd part of the PIF.
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Synchronization Dynamics
The fixed points φFP are the values of φ for which
Γodd (φ) = 0. A local first order Taylor expansion

Γodd (φ) = Γodd (φFP) +
dΓodd

dφ
(φ− φFP) + ...

then shows that fixed points for which the derivative is
negative, will be stable.

For the motor neuron, the two points each side of φ = 0
are stable.
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Mutual Excitation
Van Vreeswijk et al. (1994) have shown using WCO theory that
cells having synapses with fast rise times (relative to the
oscillation frequency) can be synchronized in-phase by mutual
excitation.

For slower synapses, mutual excitation leads to out-of-phase
sync. So unless oscillation is slow mutual excitation will not
produce in-phase sync. Mutual excitation can produce
in-phase sync at theta, alpha frequencies (Wang, 2010).

IF cells with alpha function synapses, where α is speed of
synapse relative to oscillation frequency. Solid line for stable,
dotted for unstable.
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Mutual Inhibition
For fast rise times (relative to the oscillation frequency) mutual
inhibition produces in-phase or out-of-phase sync. For slower
rise times (or higher frequencies) mutual inhibition produces
in-sync phase.

In practice, mutual inhibition produces in-phase sync at gamma
frequencies (Wang, 2010).

IF cells with alpha function synapses, where α is speed of
synapse relative to oscillation frequency. Solid line for stable,
dotted for unstable.
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Spike Frequency Adaptation

For constant current inputs the spike rates of neuronal
cells are known to reduce over time. This is known as
Spike Rate or Spike Frequency Adaptation (SFA).

A calcium activated potassium current, IKCa, is thought to
underlie this phenomenon. And to a lesser degree the IM
potassium current (Wang, 2010). These currents can be
modelled in detail.

Changing the IM current can change the PRC of a cell
from type 1 to type 2.
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Spike Frequency Adaptation
They can also be modelled using IF cells by including an
additional current (Ch5, Dayan and Abbott, 2001)

τ v̇ = EL − v − rmgsra(v − Ek ) + rmIe

which when activated will hyperpolarize the neuron. This
current evolves according to

τsraġsra = −gsra

and whenever the cell fires a spike gsra is incremented by ∆g.

This current will build up after repeated firing and so
cause firing rate adaptation (τsra = 100ms).
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Spike Timing Dependent Plasticity
This is a timing-based form of Hebbian learning that allows for
increases and decreases in synaptic strength.

From Sjostrom and Gerstner (2010), Scholarpedia, 5(2):1362.
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Spike Timing Dependent Plasticity
STDP can be implemented by local variables. The top trace
shows a presynaptic spike t f

j exciting activity of a variable xj

which then decays. This might be the proportion of open
NMDA channels. Synapses are increased by the value of xj at
the time of the postsynaptic spike tn.

The bottom trace
shows a postsynaptic spike tn exciting activity of a variable y
which then decays. This might be the proportion of calcium
that has entered the cell. Synapses are decreased by the value
of y at the time of the presynaptic spike.
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Transient Synchronization
Hopfield and Brody (2001) proposed a model, based on a
transient synchronization mechanism, for recognising
temporal patterns such as speech.

Each input feature (see later) is coded by a set of
neurons having a range of SFA rates.

A subset of these cells will be oscillating at a similar
frequency. This means, for a limited period of time, they
can potentially synchronize. This representation is
time-warp invariant.
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Transient Synchronization
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Transient Synchronization

The cells are in a recurrent network.

Given sufficient presentations of the temporal patterns, STDP
should strengthen synapses between those cells that are firing
at similar frequencies.

Hopfield and Brody hand-crafted these connections (using a
balance of fast excitation and slow inhibition to the relevant
ensembles).
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Transient Synchronization
A trained network then encourages synchronization of
cells that are firing at similar rates.
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Transient Synchronization
This produces transient spike-to-spike synchrony which can be
read off by downstream neurons. It will also produce a
transient gamma burst in the local field. This is what is
observed empirically in ECOG data (Canolty et al. 2007).

But this may be due to sparse syncronization where field
activity is synchronized but individual cells fire only rarely ie no
spike field coherence (Brunel and Hakim, 2008).
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