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Exponentials

We use the following shorthand for a time derivative

ẋ =
dx
dt

The exponential function x = exp(t) is invariant to
differentiation. Hence

ẋ = exp(t)

and
ẋ = x

Hence exp(t) is the solution of the above differential
equation.
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Initial Values and Fixed Points

An exponential increase (a > 0) or decrease (a < 0) from
initial condition x0

x = x0 exp(at)

has derivative
ẋ = ax0 exp(at)

The top equation is therefore the solution of the
differential equation

ẋ = ax

with initial condition x0.

The values of x for which ẋ = 0 are referred to as Fixed
Points (FPs). For the above the only fixed point is at
x = 0.
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Matrix Exponential

If x is a vector whose evolution is governed by a system
of linear differential equations we can write

ẋ = Ax

where A describes the linear dependencies.

The only fixed point is at x = 0.

For initial conditions x0 the above system has solution

xt = exp(At)x0

where exp(At) is the matrix exponential (written expm in
matlab) (Moler and Van Loan, 2003).
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Eigendecomposition

The equation
ẋ = Ax

can be understood by representing A with an
eigendecomposition, with eigenvalues λk and
eigenvectors qk that satisfy

Aqk = λqk
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Eigendecomposition
If we put the eigenvectors into the columns of a matrix

Q =


| | . |
| | . |
q1 q2 . qd
| | . |
| | . |


then, because, Aqk = λkqk , we have

AQ =


| | . |
| | . |
λ1q1 λ2q2 . λdqd
| | . |
| | . |


Hence

AQ = QΛ

where Λ = diag(λ).
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Eigendecomposition

Given
AQ = QΛ

we can post-multiply both sides by Q−1 to give

A = QΛQ−1

This works as long as A has a full set of eigenvectors
(Strang, p. 255).

We can then use the identity

exp(A) = Q exp(Λ)Q−1

Because Λ is diagonal, the matrix exponential simplifies
to a simple exponential function over each diagonal
element.



The Microscopic
Brain

Will Penny

Linear Dynamics
Exponentials

Matrix Exponential

Eigendecomposition

Dynamical Modes

Nodes

State Space

Saddles

Oscillations

Spirals

Centres

Offsets

Retinal Circuit

Nullclines

Stability

Spiking Neurons
Fitzhugh-Nagumo

Nonlinear Dynamics

Linearization

Nonlinear Oscillation

Excitable Systems

Hopf Bifurcation

Hodgkin-Huxley

Rose-Hindmarsh

Saddle-Node Bifurcation

Type 1 and 2 Cells

References

Dynamical Modes
This tells us that the original dynamics

ẋ = Ax

has a solution
xt = exp(At)

that can be represented as a linear sum of k independent
dynamical modes

xt =
∑

k

qk exp(λk t)

where qk and λk are the k th eigenvector and eigenvalue
of A. For λk > 0 we have an unstable mode.

For λk < 0 we have a stable mode, and the magnitude of
λk determines the time constant of decay to the fixed
point.

The eigenvalues can also be complex. This gives rise to
oscillations (see later).
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Initial Conditions

With initial conditions x0

ẋ = Ax

has the solution
xt = exp(At)x0

The initial conditions are used to find a set of values ck
(each being a scalar) that satisfy

x0 =
∑

k

ckqk exp(λk t0)

We can then write

xt =
∑

k

ckqk exp(λk t)
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Two Dimensional Node
This and the following examples are from (Wilson, 1999).
They all have initial condition[

x1(0)
x2(0)

]
=

[
1
1

]
If both eigenvalues are real and have the same sign we
have a node. This gives a stable (λ < 0) or unstable
(λ > 0) node. For example[

ẋ1
ẋ2

]
=

[
−2 4
0 −3

] [
x1
x2

]
has λ1 = −2, λ2 = −3. Combined with information from
initial conditions gives the solution

x1(t) = 5 exp(−2t)− 4 exp(−3t)
x2(t) = exp(−3t)
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Two Dimensional Node
We plot time-series solutions

x1(t) = 5 exp(−2t)− 4 exp(−3t)
x2(t) = exp(−3t)

for x1 (black) and x2 (red).



The Microscopic
Brain

Will Penny

Linear Dynamics
Exponentials

Matrix Exponential

Eigendecomposition

Dynamical Modes

Nodes

State Space

Saddles

Oscillations

Spirals

Centres

Offsets

Retinal Circuit

Nullclines

Stability

Spiking Neurons
Fitzhugh-Nagumo

Nonlinear Dynamics

Linearization

Nonlinear Oscillation

Excitable Systems

Hopf Bifurcation

Hodgkin-Huxley

Rose-Hindmarsh

Saddle-Node Bifurcation

Type 1 and 2 Cells

References

State Space Representation
Plotting x2 against x1 gives a state-space representation, also
known as phase space. The arrows depict the flow field ẋ .

x1
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Two Dimensional Saddle

A saddle occurs if both eigenvalues are real and have
different signs.For example[

ẋ1
ẋ2

]
=

[
2 −1
0 −3

] [
x1
x2

]
has

λ1 = 2
λ2 = −3

giving solutions

x1(t) = 0.8 exp(2t) + 0.2 exp(−3t)
x2(t) = exp(−3t)
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Two Dimensional Saddle
We plot time series solutions

x1(t) = 0.8 exp(2t) + 0.2 exp(−3t)
x2(t) = exp(−3t)

for x1 (black) and x2 (red).
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Saddle State Space
Plotting x2 against x1 gives the state-space
representation.

x1
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Oscillations
We may also find pairs of complex eigenvalues (they always
come in pairs). Each will be the conjugate of the other

λ1 = a + bi
λ2 = a− bi

where i =
√
−1. The dynamics corresponding to the sum of

these two modes is given by

ut = exp(λ1t) + exp(λ2t)
= exp(at) [exp(bit) + exp(−bit)]

From Euler’s formula we have

exp(bit) = cos bt + i sin bt
exp(−bit) = cos bt − i sin bt

Hence
ut = 2 exp(at) cos(bt)

Hence the real part defines the damping constant and the
imaginary part defines the frequency.
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Oscillations

Now consider an imaginary weighting of the two modes of
the form

ut = i exp(λ1t)− i exp(λ2t)
= exp(at) [i exp(bit)− i exp(−bit)]

From Euler’s formula we have

i exp(bit) = i cos bt + i2 sin bt
i exp(−bit) = i cos bt − i2 sin bt

Hence
ut = −2 exp(at) sin(bt)

A complex weighting with both real and imaginary parts
will give rise to both sin and cos components.
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Oscillations
The full solution is given by

xt =
∑

k

ck qk exp(λk t)

If the eigenvalues are a complex conjugate pair

λ1 = a + bi
λ2 = a− bi

then so are the eigenvectors qk . The weighting factors ck are
derived from the initial conditions

x0 =
∑

k

ck qk exp(λk t0)

and can also be complex. Thus, the weighting of each dynamic
mode

wk = ck qk

will also be complex

w1 =

[
c + di
e + fi

]
w2 =

[
c − di
e − fi

]
and conjugate.
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Oscillations

The full solution is therefore

xt = exp(at)
([

c + di
e + fi

]
exp(bit) +

[
c − di
e − fi

]
exp(−bit)

)
This complex weighting of each mode gives rise to both
cos and sin components

x1(t) = 2 exp(at) [c cos(bt)− d sin(bt)]

x2(t) = 2 exp(at) [e cos(bt)− f sin(bt)]

See also Ch5 in Strang (1988).
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Spirals

A spiral occurs when both eigenvalues are a complex
conjugate pair. For example[

ẋ1
ẋ2

]
=

[
−2 −16
4 −2

] [
x1
x2

]
has

λ1 = −2 + 8i
λ2 = −2− 8i

giving solutions

x1(t) = exp(−2t) [cos(8t)− 2 sin(8t)]

x2(t) = exp(−2t) [cos(8t) + 0.5 sin(8t)]
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Spiral
We plot time series solutions

x1(t) = exp(−2t) (cos(8t)− 2 sin(8t))

x2(t) = exp(−2t) (cos(8t) + 0.5 sin(8t))

for x1 (black) and x2 (red).
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Spiral State Space
Plotting x2 against x1 gives the state-space
representation.

x1
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Centres

A centre occurs when both eigenvalues are purely
imaginary. That is the real part is zero. For example[

ẋ1
ẋ2

]
=

[
1 −2
5 −1

] [
x1
x2

]
has

λ1 = 3i
λ2 = −3i

giving solutions

x1(t) = cos(3t)− 0.33 sin(3t)
x2(t) = cos(3t) + 1.33 sin(3t)
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Centre
We plot time-series solutions

x1(t) = cos(3t)− 0.33 sin(3t)
x2(t) = cos(3t) + 1.33 sin(3t)

for x1 (black) and x2 (red).

The amplitude of the oscillation is determined entirely by the
initial condition. If the initial values are twice as big so are the
oscillations.



The Microscopic
Brain

Will Penny

Linear Dynamics
Exponentials

Matrix Exponential

Eigendecomposition

Dynamical Modes

Nodes

State Space

Saddles

Oscillations

Spirals

Centres

Offsets

Retinal Circuit

Nullclines

Stability

Spiking Neurons
Fitzhugh-Nagumo

Nonlinear Dynamics

Linearization

Nonlinear Oscillation

Excitable Systems

Hopf Bifurcation

Hodgkin-Huxley

Rose-Hindmarsh

Saddle-Node Bifurcation

Type 1 and 2 Cells

References

Centre State Space
Plotting x2 against x1 gives the state-space
representation.

x1
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Offsets
For the more general linear differential equation with an
offset

ẋ = Ax + b

the fixed point is given by

xFP = −A−1b

These systems are analysed in a new coordinate system
centred around xFP . That is

x̃ = x − xFP

x̃0 = x0 − xFP

The new system
˙̃x = Ax̃

can then be analysed in the old way. The new dynamics
are then found by adding xFP onto the solution for x̃t .
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Retinal Circuit
Wilson (1999) reviews a simple feedback circuit in the retina
describing activity of cones, c, and horizontal cells, h[

τc ċ
τhḣ

]
=

[
−1 −k
1 −1

] [
c
h

]
+

[
L
0

]
They have time constants τc = 25ms and τh = 80ms.

Fixed point xFP = −A−1b can also be worked out
from intersection of nullclines. These are the
points for which

ċ = 0
ḣ = 0

This gives

h = −1
k

c +
L
k

h = c
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Nullclines
Figure shows nullcline for ċ = 0 (black) and ḣ = 0 (red). The
nullclines intersect at the fixed point c = h = L/(k + 1) which
for L = 10, k = 4 is [

c
h

]
=

[
2
2

]
Increasing input L changes the fixed point.

For linear differential equations there is only ever one fixed
point.
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Retinal State Space

Plotting h against c gives the state-space representation.

c
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Retinal solution

We plot time series solutions for cones, c, (black) and
horizontal cells, h, (red).
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High Dimensional Systems and Stability

The nature of a fixed point in a high dimensional system
is determined by all of the eigenvalues.

Some modes will decay faster than others. The
longer-term characteristics of the system will depend on
the more slowly decaying modes.

Consider a region R near a fixed point (FP) xeq.

A FP is asymptotically stable if all trajectories in R decay
to xeq exponentially as t →∞.

A FP is unstable if at least one trajectory in R leaves R
permanently.

A FP is stable if points in R remain in R, but do not
approach xeq asymptotically eg. a centre.
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Fitzhugh-Nagumo
This describes the trajectory of a voltage across the cell
membrane v which is driven by an input current I and a
recovery variable r

τv v̇ = [v − 1
3

v3 − r + I]

τr ṙ = [−r + 1.25v + 1.5]

with ms time unit.

The recovery variable may be thought of primarily as outwards
flow of K+ current that causes hyperpolarization after each
spike.

The time scales of spiking and recovery are τv = 0.1ms and
τr = 12.5ms. The nullclines are given by

r = v − 1
3

v3 + I

r = 1.25v + 1.5

Voltage variable has a cubic nonlinearity and recovery variable
is linear.
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Nonlinear Dynamics
Figure shows nullcline for v̇ = 0 (black) and ṙ = 0
(red).Intersection of nullclines defines FPs.

Can have many FPs for nonlinear systems ẋ = f (x). They are
generally found numerically from the roots of the equation
f (x) = 0.

Here, for I = 1.5 we have a single FP given by v = 0,r = 1.5.
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Linearization
The nature of FPs is determined by a local linearisation
about each FP.

ẋ = f (x)

Using a first order Taylor series we have

f (x) = f (xeq) +
df (x)

dx
(x − xeq) + ...

In local coordinates x̃ = (x − xeq) we have

˙̃x = Jx̃

where J is the Jacobian having entries

Jij =
dfi(x)

dxj

The eigenvalues of J then determine the dynamics
around the fixed point.
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Nonlinear Oscillation
Here, we have a single FP given by v = 0,r = 1.5. It is an
unstable node (not a centre). The dynamics around this node
form a nonlinear oscillation (limit cycle). This can be explored
via numerical integration of the differential equation.

A limit cycle is given by x(t + T ) = x(t) for some period T . It is
asymptotically stable if enclosed by trajectories which spiral
towards it. Otherwise its unstable. A limit cycle must surround
one or more FPs.
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Nonlinear Oscillation
The amplitude of a nonlinear oscillation is not determined by
the initial conditions. It is therefore robust to noise.

The instantaneous frequency of a nonlinear oscillation is not
constant. Here, the initial conditions were v = r = 1.
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Nonlinear Oscillation

For input I = 1.5 we have the solution for v (black) and r
(red).



The Microscopic
Brain

Will Penny

Linear Dynamics
Exponentials

Matrix Exponential

Eigendecomposition

Dynamical Modes

Nodes

State Space

Saddles

Oscillations

Spirals

Centres

Offsets

Retinal Circuit

Nullclines

Stability

Spiking Neurons
Fitzhugh-Nagumo

Nonlinear Dynamics

Linearization

Nonlinear Oscillation

Excitable Systems

Hopf Bifurcation

Hodgkin-Huxley

Rose-Hindmarsh

Saddle-Node Bifurcation

Type 1 and 2 Cells

References

Zero Input

For input I = 0 the fixed point is given by v = −1.5,
r = −3/8. It is a stable node.
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Zero Input

For input I = 0 the fixed point is given by v = −1.5,
r = −3/8. It is a stable node.
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Excitable Systems
A dynamical system such as a spiking neuron which
produces a stable node in the absence of input, and a
limit cycle with input is said to be excitable. For input
I = 0 we have the solution for v (black) and r (red).

With FN neurons, increasing input causes a Hopf
Bifurcation (Ch4, Bard Ermentrout and Terman, 2010).
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Excitable Systems
A dynamical system such as a spiking neuron which
produces a stable node in the absence of input, and a
limit cycle with input is said to be excitable. For input
I = 1.5 we have the solution for v (black) and r (red).

With FN neurons increasing input causes a Hopf
Bifurcation (Ch4, Bard Ermentrout and Terman, 2010).
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Hopf Bifurcation Theorem

In dynamical systems, a bifurcation means that the system
undergoes a qualitative change in behaviour. For an
N-dimensional dynamical system with N ≥ 2

ẋ = f (x , β)

with fixed points xFP and Jacobian J(β). A Hopf bifurcation will
occur given the following conditions. For β < α, xFP is
asymptotically stable. For β = α, J has one pair of purely
imaginary eigenvalues defining a linear oscillation (centre). For
β > α, xFP is unstable.

There are then two types of Hopf bifurcation.

I Subcritical: an unstable limit cycle for β < α.

I Supercritical: an asymptotically stable limit cycle for β > α

For β = α the oscillation will be of frequency f and will emerge
with infinitesimally small amplitude.
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Hodgkin-Huxley
The Hodgkin-Huxley equations describe the change in
membrane potential as a function of sodium, INa,
potassium, IK , leak IL and input I currents

Cv̇ = −INa − IK − IL + Iin

with membrane capacitance C where each current obeys
Ohms Law

I = g(v − E)

with conductance g and equilibrium potential E .
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Hodgkin-Huxley
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Hodgkin-Huxley

The Hodgkin-Huxley equations can be written

Cv̇ = −gNam3h(v − ENa)− gK n4(v − EK )− gL(v − EL) + Iin
τm(v)ṁ = −m + M(v)

τh(v)ḣ = −h + H(v)

τn(v)ṅ = −n + N(v)

where m is the Na activation rate and n is the K activation rate.

Na channels have a second process which can deactivate
them. The term h captures this deactivation (Ch5, Dayan and
Abbot, 2001).

The mathematical forms of the v -dependent functions were
chosen to provide a good fit to data from the giant squid axon
(Ch 9, Wilson 1999).
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Rinzel Approximation

Rinzel (1985) noted that the Na activation dynamics were
sufficiently fast that m = M(v) is a good approximation.
This eliminates the second equation.

Second, the time series for h and n and their equilibrium
values were sufficiently similar that h = 1− n is a good
approximation. This means the rate of Na channel closing
is assumed equal and opposite to the rate of K channel
opening. This eliminates the third equation.

The resulting Rinzel approximation to HH therefore has
two state variables and its state space is readily
visualised (Wilson, 1999).
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Rinzel Approximation
Interestingly the nullcline for v is cubic, as in the
Fitzhugh-Nagumo model. But Rinzel retains an explicit
description in terms of K channel.

The nullcline for r is sigmoidal but rather linear in the
range of the fixed points.
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Rinzel Approximation

Rinzel Spike Dynamics, v .
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Rose-Hindmarsh

The squid giant axon is unusual for having only one Na
and one K current. As a result it cannot fire at rates
below about 175Hz. Human cortical neurons, however,
can fire over a much broader range of frequencies. This
is because they have a rapid, transient K current (Wilson,
1999). This is referred to as the IA current. The HH model
has been augmented to include this.

Rose and Hindmarsh (1989) have shown that properties
of the IA current can be implemented by making the
recovery variable quadratic.

v̇ = −(17.8 + 47.8v + 33.8v2)(v − 0.48)− 26r(v + 0.95) + I

ṙ =
1
τr

[
−r + 1.29v + 0.79 + 0.33(v + 0.38)2]
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Rose-Hindmarsh
For zero input current I = 0 there are three fixed points

I (a) Stable node

I (b) Saddle point

I (c) Unstable spiral

Black curve shows v̇ = 0, red curve ṙ = 0.



The Microscopic
Brain

Will Penny

Linear Dynamics
Exponentials

Matrix Exponential

Eigendecomposition

Dynamical Modes

Nodes

State Space

Saddles

Oscillations

Spirals

Centres

Offsets

Retinal Circuit

Nullclines

Stability

Spiking Neurons
Fitzhugh-Nagumo

Nonlinear Dynamics

Linearization

Nonlinear Oscillation

Excitable Systems

Hopf Bifurcation

Hodgkin-Huxley

Rose-Hindmarsh

Saddle-Node Bifurcation

Type 1 and 2 Cells

References

Rose-Hindmarsh

With zero input I = 0 and initial point at (a) we get flat
time series.
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Saddle-Node Bifurcation
Increasing input to I = 0.5 makes (a) and (b) coalesce, then
disappear. This leaves only (c). A limit cycle then forms around
(c). This is known as a Saddle-Node Bifurcation.

The limit cycle that emerges has non-zero amplitude at inception (because it originates around a

pre-existing FP, unlike Hopf). This corresponds to a sharp spike threshold. Not all saddle-node

bifurcations produce limit cycles (Guckenheimer and Holmes, 2003).
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Rose-Hindmarsh

With input I = 0.5 and initial point at (a) we now get slow
spiking.
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Type 1 and 2 Cells

Hodgkin classified two types of spiking cells
I Type 1 cells have sharp thresholds and can fire at

arbitrarily low frequencies
I Type 2 cells have variable thresholds and a positive

minimal frequency
These correspond to Saddle-Node and Hopf bifurcations
(Bard Ermentrout and Terman, 2010).

Can use normal form models of each bifurcation type,
instead of ones with specific biophysical parameters
(Guckenheimer and Holmes, 1983).
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Type 1 and 2 Cells

(Tateno et al. 2004) found that regular spiking (RS)
cortical pyramidal cells have type 1 dynamics whereas
fast spiking (FS) inhibitory interneurons have type 2
dynamics.
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