The Microscopic Brain

Will Penny

7th April 2011

The Microscopic Brain

Will Penny

Exponentials

We use the following shorthand for a time derivative

$$\dot{x} = \frac{dx}{dt}$$

The exponential function $x = \exp(t)$ is invariant to differentiation. Hence

$$\dot{x} = \exp(t)$$

and

$$\dot{x} = x$$

Hence $\exp(t)$ is the solution of the above differential equation.

The Microscopic Brain

Will Penny

Exponentials

Initial Values and Fixed Points

An exponential increase (a>0) or decrease (a<0) from initial condition x_0

$$x = x_0 \exp(at)$$

has derivative

$$\dot{x} = ax_0 \exp(at)$$

The top equation is therefore the solution of the differential equation

$$\dot{x} = ax$$

with initial condition x_0 .

The values of x for which $\dot{x} = 0$ are referred to as Fixed Points (FPs). For the above the only fixed point is at x = 0.

The Microscopic Brain

Will Penny

Linear Dynamics

Exponentials

Matrix Exponential
Eigendecomposition
Dynamical Modes

tate Space

Saddles Oscillations

Centres

Retinal Circu Nullclines

Stability

Spiking Neuron

Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh

Offsets

Retinal Circ Nullclines

lullclines

Spiking Neurons

Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems

Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh

Type I and 2 Cell

If x is a vector whose evolution is governed by a system of linear differential equations we can write

$$\dot{x} = Ax$$

where *A* describes the linear dependencies.

The only fixed point is at x = 0.

For initial conditions x_0 the above system has solution

$$x_t = \exp(At)x_0$$

where exp(At) is the matrix exponential (written expm in matlab) (Moler and Van Loan, 2003).

Eigendecomposition

The equation

$$\dot{x} = Ax$$

can be understood by representing A with an eigendecomposition, with eigenvalues λ_k and eigenvectors q_k that satisfy

$$Aq_k = \lambda q_k$$

The Microscopic Brain

Will Penny

Eigendecomposition

Eigendecomposition

If we put the eigenvectors into the columns of a matrix

$$Q = \left[egin{array}{cccc} | & | & \cdot & | \\ | & | & \cdot & | \\ q_1 & q_2 & \cdot & q_d \\ | & | & \cdot & | \\ | & | & \cdot & | \end{array}
ight]$$

then, because, $Aq_k = \lambda_k q_k$, we have

$$AQ = \begin{bmatrix} \begin{vmatrix} & & & & & & & \\ & & & & & & & \\ & \lambda_1 q_1 & \lambda_2 q_2 & & \lambda_d q_d \\ & & & & & & \\ & & & & & & \end{bmatrix}$$

Hence

$$AQ = Q\Lambda$$

where $\Lambda = diag(\lambda)$.

Will Penny

Linear Dynamics
Exponentials

Matrix Exponential Eigendecomposition

Dynamical Modes

Nodes Node

State Space Saddles

Saddles Oscillations

Spirals

Offsets

Retinal Circ

Nullclines Stability

Spiking ineurons

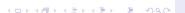
Nonlinear Dynam

Nonlinear Oscillat

Hopf Bifurcation Hodgkin-Huxley

Rose-Hindmarsh

Type 1 and 2 Cells



Eigendecomposition

Given

$$AQ = Q\Lambda$$

we can post-multiply both sides by Q^{-1} to give

$$A = Q \Lambda Q^{-1}$$

This works as long as A has a full set of eigenvectors (Strang, p. 255).

We can then use the identity

$$\exp(A) = Q \exp(\Lambda) Q^{-1}$$

Because Λ is diagonal, the matrix exponential simplifies to a simple exponential function over each diagonal element.

The Microscopic **Brain**

Will Penny

Eigendecomposition

Dynamical Modes

This tells us that the original dynamics

$$\dot{x} = Ax$$

has a solution

$$x_t = \exp(At)$$

that can be represented as a linear sum of k independent dynamical modes

$$x_t = \sum_k q_k \exp(\lambda_k t)$$

where q_k and λ_k are the kth eigenvector and eigenvalue of A. For $\lambda_k > 0$ we have an unstable mode.

For $\lambda_k < 0$ we have a stable mode, and the magnitude of λ_k determines the time constant of decay to the fixed point.

The eigenvalues can also be complex. This gives rise to oscillations (see later). 4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9 The Microscopic **Brain**

Will Penny

Dynamical Modes

Initial Conditions

With initial conditions x_0

$$\dot{x} = Ax$$

has the solution

$$x_t = \exp(At)x_0$$

The initial conditions are used to find a set of values c_k (each being a scalar) that satisfy

$$x_0 = \sum_k c_k q_k \exp(\lambda_k t_0)$$

We can then write

$$x_t = \sum_k c_k q_k \exp(\lambda_k t)$$

The Microscopic **Brain**

Will Penny

Dynamical Modes

$$\left[\begin{array}{c} x_1(0) \\ x_2(0) \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$$

If both eigenvalues are real and have the same sign we have a node. This gives a stable ($\lambda < 0$) or unstable ($\lambda > 0$) node. For example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

has $\lambda_1=-2$, $\lambda_2=-3$. Combined with information from initial conditions gives the solution

$$x_1(t) = 5 \exp(-2t) - 4 \exp(-3t)$$

 $x_2(t) = \exp(-3t)$

The Microscopic Brain

Will Penny

Exponentials

Matrix Exponential

Eigendecomposition

Nodes State Space Saddles

Centres
Offsets

Retinal Circui Nullclines Stability

Spiking Neurons

inchigher Aguino Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcation

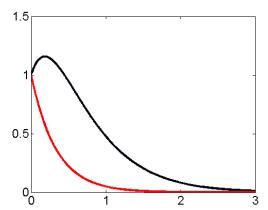
Two Dimensional Node

We plot time-series solutions

$$x_1(t) = 5 \exp(-2t) - 4 \exp(-3t)$$

 $x_2(t) = \exp(-3t)$

for x_1 (black) and x_2 (red).



The Microscopic Brain

Will Penny

Exponentials

Matrix Exponential

Nodes

State Space Saddles Oscillations Spirals Centres

Retinal Circ

Nullclines Stability

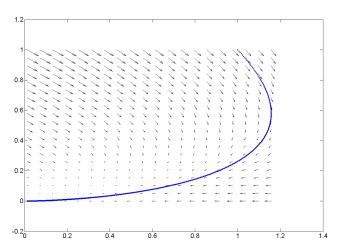
Spiking ineurons

Fitzhugh-Nagumo
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Elfurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurcatio

Deferences

State Space Representation

Plotting x_2 against x_1 gives a state-space representation, also known as phase space. The arrows depict the flow field \dot{x} .



The Microscopic Brain

Will Penny

Linear Dynami Exponentials Matrix Exponential Eigendecomposition

State Space Saddles

> oirals entres ffsets

etinal Circui ullclines

Spiking Neurons

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcatio

Deferences

 X_1

Two Dimensional Saddle

A saddle occurs if both eigenvalues are real and have different signs. For example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

has

$$\lambda_1 = 2$$
 $\lambda_2 = -3$

giving solutions

$$x_1(t) = 0.8 \exp(2t) + 0.2 \exp(-3t)$$

 $x_2(t) = \exp(-3t)$

The Microscopic Brain

Will Penny

Linear Dynamics
Exponentials

Eigendecompositio

lynamical Modes

State Space

Saddles

Oscillation:

Centres

Retinal Circ

Nullclines Stability

Spiking Neuron

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcation

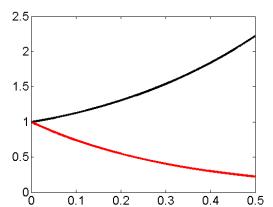
Two Dimensional Saddle

We plot time series solutions

$$x_1(t) = 0.8 \exp(2t) + 0.2 \exp(-3t)$$

 $x_2(t) = \exp(-3t)$

for x_1 (black) and x_2 (red).



The Microscopic Brain

Will Penny

Linear Dynamical
Exponentials
Matrix Exponential
Eigendecomposition

State Space

Saddles

Oscillations Spirals Centres

Retinal Circ

Nullclines Stability

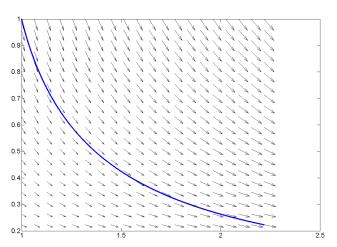
Spiking Neuron

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcatio

Deferences

Saddle State Space

Plotting x_2 against x_1 gives the state-space representation.



The Microscopic Brain

Will Penny

Saddles

$$\lambda_1 = a + bi$$

 $\lambda_2 = a - bi$

where $i = \sqrt{-1}$. The dynamics corresponding to the sum of these two modes is given by

$$u_t = \exp(\lambda_1 t) + \exp(\lambda_2 t)$$

= $\exp(at) [\exp(bit) + \exp(-bit)]$

From Euler's formula we have

$$\exp(bit) = \cos bt + i \sin bt$$

 $\exp(-bit) = \cos bt - i \sin bt$

Hence

$$u_t = 2 \exp(at) \cos(bt)$$

Hence the real part defines the damping constant and the imaginary part defines the frequency.

Will Penny

Linear Dynamics
Exponentials
Matrix Exponential

tate Space

Oscillations

Spirals

Retinal Circu Nullclines

Nullclines Stability

Spiking Neuron

Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh

Oscillations

Now consider an imaginary weighting of the two modes of the form

$$u_t = i \exp(\lambda_1 t) - i \exp(\lambda_2 t)$$

= $\exp(at) [i \exp(bit) - i \exp(-bit)]$

From Fuler's formula we have

$$i \exp(bit) = i \cos bt + i^2 \sin bt$$

 $i \exp(-bit) = i \cos bt - i^2 \sin bt$

Hence

$$u_t = -2 \exp(at) \sin(bt)$$

A complex weighting with both real and imaginary parts will give rise to both sin and cos components.

Oscillations

The full solution is given by

$$x_t = \sum_k c_k q_k \exp(\lambda_k t)$$

If the eigenvalues are a complex conjugate pair

$$\lambda_1 = a + bi$$

 $\lambda_2 = a - bi$

then so are the eigenvectors q_k . The weighting factors c_k are derived from the initial conditions

$$x_0 = \sum_k c_k q_k \exp(\lambda_k t_0)$$

and can also be complex. Thus, the weighting of each dynamic mode

$$w_k = c_k q_k$$

will also be complex

$$w_1 = \left[egin{array}{c} c+di \ e+fi \end{array}
ight] \qquad \qquad w_2 = \left[egin{array}{c} c-di \ e-fi \end{array}
ight]$$
 and conjugate.

Time 4 and 0

The Microscopic Brain

Will Penny

Linear Dynamics

Exponentials

Eigendecomposit

Nodes State Space

Saddles

Oscillations

Spirais

Offsets

Retinal Circu Nullclines

Stability

Spiking Neurons

itzhugh-Nagumo Ionlinear Dynamics

arization

nlinear Oscillatio

opf Bifurcation odgkin-Huxley

Rose-Hindmarsh Saddle-Node Bif

Type 1 and 2 Cells

The full solution is therefore

$$x_t = \exp(at) \left(\left[egin{array}{c} c + di \ e + fi \end{array}
ight] \exp(bit) + \left[egin{array}{c} c - di \ e - fi \end{array}
ight] \exp(-bit)
ight)$$

This complex weighting of each mode gives rise to both cos and sin components

$$x_1(t) = 2 \exp(at) [c \cos(bt) - d \sin(bt)]$$

$$x_2(t) = 2 \exp(at) [e \cos(bt) - f \sin(bt)]$$

See also Ch5 in Strang (1988).

inear Dynamics

Exponentials

Matrix Exponential
Eigendecomposition
Dynamical Modes

ate Space addles

Oscillations

Centres

Retinal Circu Nullclines Stability

Spiking Neuron

Fitzhugh-Nagumo
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurcation

Spirals

A spiral occurs when both eigenvalues are a complex conjugate pair. For example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & -16 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

has

$$\lambda_1 = -2 + 8i$$
$$\lambda_2 = -2 - 8i$$

giving solutions

$$x_1(t) = \exp(-2t) [\cos(8t) - 2\sin(8t)]$$

 $x_2(t) = \exp(-2t) [\cos(8t) + 0.5\sin(8t)]$

The Microscopic Brain

Will Penny

Linear Dynamics
Exponentials

Eigendecomposition

Dynamical Modes

State Space Saddles

Spirals

Offsets

Nullclines

Stability

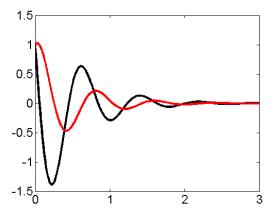
Spiking Neuron

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcatio

$$x_1(t) = \exp(-2t)(\cos(8t) - 2\sin(8t))$$

 $x_2(t) = \exp(-2t)(\cos(8t) + 0.5\sin(8t))$

for x_1 (black) and x_2 (red).



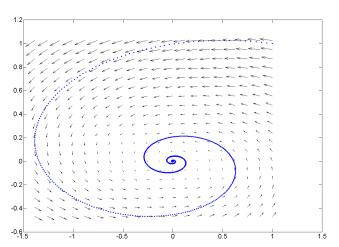
The Microscopic Brain

Will Penny

Spirals

Spiral State Space

Plotting x_2 against x_1 gives the state-space representation.



The Microscopic Brain

Will Penny

Exponentials
Matrix Exponential
Eigendecomposition
Dynamical Modes

ate Space ddles

Spirals Centres

> Offsets Retinal Circu Nullclines

Spiking Neurons

Fitzhugh-Nagumo
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurcation

Deferences

Centres

A centre occurs when both eigenvalues are purely imaginary. That is the real part is zero. For example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

has

$$\lambda_1 = 3i$$
$$\lambda_2 = -3i$$

giving solutions

$$x_1(t) = \cos(3t) - 0.33\sin(3t)$$

$$x_2(t) = \cos(3t) + 1.33\sin(3t)$$

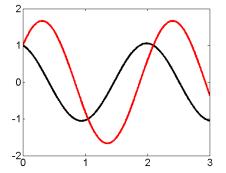
Centre

We plot time-series solutions

$$x_1(t) = \cos(3t) - 0.33\sin(3t)$$

$$x_2(t) = \cos(3t) + 1.33\sin(3t)$$

for x_1 (black) and x_2 (red).



The amplitude of the oscillation is determined entirely by the initial condition. If the initial values are twice as big so are the oscillations.

The Microscopic Brain

Will Penny

Linear Dynamics

Matrix Exponential

ynamical Modes

tate Space addles scillations

Centres

Offsets

Retinal Circu Nullclines

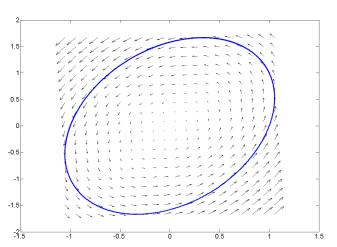
Stability

Spiking Neuron

Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley

Centre State Space

Plotting x_2 against x_1 gives the state-space representation.



The Microscopic Brain

Will Penny

Linear Dynamic Exponentials Matrix Exponential Eigendecomposition Dynamical Modes

tate Space addles

Centres

sets

Retinal Circu Nullclines

Spiking Neuron

Fitzhugh-Nagumo
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurcation

Linearization
Nonlinear Oscilla

Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley

lodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurd

References

For the more general linear differential equation with an offset

$$\dot{x} = Ax + b$$

the fixed point is given by

$$x_{FP} = -A^{-1}b$$

These systems are analysed in a new coordinate system centred around x_{FP} . That is

$$\tilde{X} = X - X_{FP}$$
 $\tilde{X}_0 = X_0 - X_{FP}$

 $\lambda_0 = \lambda_0 - \lambda_{FI}$

The new system

$$\dot{\tilde{x}} = A\tilde{x}$$

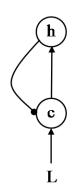
can then be analysed in the old way. The new dynamics are then found by adding x_{FP} onto the solution for \tilde{x}_t .

Retinal Circuit

Wilson (1999) reviews a simple feedback circuit in the retina describing activity of cones, c, and horizontal cells, h

$$\begin{bmatrix} \tau_c \dot{c} \\ \tau_h \dot{h} \end{bmatrix} = \begin{bmatrix} -1 & -k \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c \\ h \end{bmatrix} + \begin{bmatrix} L \\ 0 \end{bmatrix}$$

They have time constants $\tau_c = 25 \text{ms}$ and $\tau_h = 80 \text{ms}$.



Fixed point $x_{FP} = -A^{-1}b$ can also be worked out from intersection of nullclines. These are the points for which

This gives

$$h = -\frac{1}{k}c + \frac{L}{k}$$

$$h = c$$

The Microscopic Brain

Will Penny

Linear Dynamics

Matrix Exponential
Eigendecomposition
Dynamical Modes

State Space Saddles

Spirals Centres

Offsets Retinal Circuit

Nullclines

Nullclines Stability

Spiking Neurons

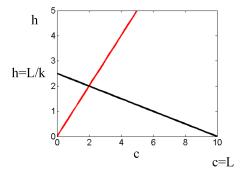
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh

Nullclines

Figure shows nullcline for $\dot{c}=0$ (black) and $\dot{h}=0$ (red). The nullclines intersect at the fixed point c=h=L/(k+1) which for $L=10,\,k=4$ is

$$\left[\begin{array}{c}c\\h\end{array}\right]=\left[\begin{array}{c}2\\2\end{array}\right]$$

Increasing input *L* changes the fixed point.



For linear differential equations there is only ever one fixed point.

The Microscopic Brain

Will Penny

Linear Dynamic
Exponentials
Matrix Exponential
Eigendecomposition
Dynamical Modes

ate Space addles scillations

Centres Offsets

Retinal Circ

Stobility

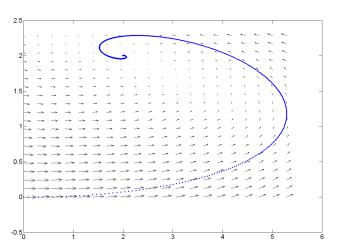
....

Spiking Neurons

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Elfurcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcatio

Retinal State Space

Plotting *h* against *c* gives the state-space representation.



The Microscopic Brain

Will Penny

inear Dynamics
Exponentials
Matrix Exponential

namical Mode

tate Space addles scillations

ipirals Centres

Offsets

Nullclines

.....

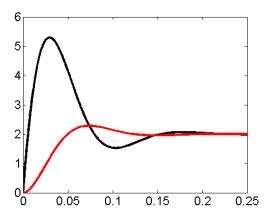
Spiking Neurons

Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh

Deferences

Retinal solution

We plot time series solutions for cones, c, (black) and horizontal cells, h, (red).



The Microscopic Brain

Will Penny

Linear Dynamics
Exponentials
Matrix Exponential

latrix Exponential igendecomposition lynamical Modes

State Space Saddles Oscillations

Centres Offsets

Retinal Circu

Auliclines Stability

Spiking Neurons

Fitzhugh-Nagumo
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurcation

Deferences

Stability

The nature of a fixed point in a high dimensional system is determined by all of the eigenvalues.

Some modes will decay faster than others. The longer-term characteristics of the system will depend on the more slowly decaying modes.

Consider a region R near a fixed point (FP) x_{eq} .

A FP is asymptotically stable if all trajectories in R decay to x_{eq} exponentially as $t \to \infty$.

A FP is unstable if at least one trajectory in R leaves R permanently.

A FP is stable if points in R remain in R, but do not approach x_{eq} asymptotically eg. a centre.

Fitzhugh-Nagumo

This describes the trajectory of a voltage across the cell membrane ν which is driven by an input current I and a recovery variable r

$$\tau_{\nu}\dot{\nu} = [\nu - \frac{1}{3}\nu^3 - r + I]$$

$$\tau_{r}\dot{r} = [-r + 1.25\nu + 1.5]$$

with ms time unit.

The recovery variable may be thought of primarily as outwards flow of K^+ current that causes hyperpolarization after each spike.

The time scales of spiking and recovery are $\tau_{\nu}=0.1$ ms and $\tau_{r}=12.5$ ms. The nullclines are given by

$$r = v - \frac{1}{3}v^3 + I$$

$$r = 1.25v + 1.5$$

Voltage variable has a cubic nonlinearity and recovery variable is linear.

The Microscopic Brain

Will Penny

Linear Dynamics Exponentials

Matrix Exponential
Eigendecomposition
Dynamical Modes

State Space Saddles Oscillations

Centres

Retinal Circu Nullclines

Spiking Neurons

Fitzhugh-Nagumo

inearization

Vonlinear Oscillat

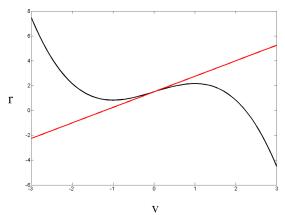
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh

Type 1 and 2 Cells

Nonlinear Dynamics

Figure shows nullcline for $\dot{v}=0$ (black) and $\dot{r}=0$ (red). Intersection of nullclines defines FPs.

Can have many FPs for nonlinear systems $\dot{x} = f(x)$. They are generally found numerically from the roots of the equation f(x) = 0.



The Microscopic Brain

Will Penny

Linear Dynamics
Exponentials
Matrix Exponential

Oynamical Mode Nodes

addles escillations pirals entres

Retinal Circui Nullclines

Spiking Neurons

Nonlinear Dynamics

Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh

Deferences

Here, for l = 1.5 we have a single FP given by v = 0, r = 1.5.

The nature of FPs is determined by a local linearisation about each FP.

$$\dot{x} = f(x)$$

Using a first order Taylor series we have

$$f(x) = f(x_{eq}) + \frac{df(x)}{dx}(x - x_{eq}) + \dots$$

In local coordinates $\tilde{x} = (x - x_{eq})$ we have

$$\dot{\tilde{x}} = J\tilde{x}$$

where J is the Jacobian having entries

$$J_{ij}=\frac{df_i(x)}{dx_j}$$

The eigenvalues of J then determine the dynamics around the fixed point. 4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9

Saddles Oscillations

Centres Offsets

Retinal Circu Nullclines

Spiking Neurons

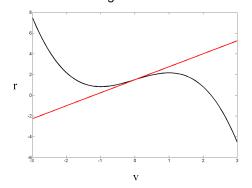
Nonlinear Dynamics Linearization

Nonlinear Oscillation

Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurcatio

References

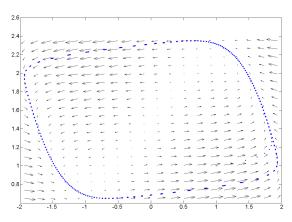
Here, we have a single FP given by v = 0, r = 1.5. It is an unstable node (not a centre). The dynamics around this node form a nonlinear oscillation (limit cycle). This can be explored via numerical integration of the differential equation.



A limit cycle is given by x(t+T) = x(t) for some period T. It is asymptotically stable if enclosed by trajectories which spiral towards it. Otherwise its unstable. A limit cycle must surround one or more FPs.

Nonlinear Oscillation

The amplitude of a nonlinear oscillation is not determined by the initial conditions. It is therefore robust to noise.



The instantaneous frequency of a nonlinear oscillation is not constant. Here, the initial conditions were v = r = 1.

The Microscopic Brain

Will Penny

Linear Dynamics

Matrix Exponential
Eigendecomposition
Dynamical Modes

tate Space addles

pirals entres

Retinal Circu

Spiking Neurons

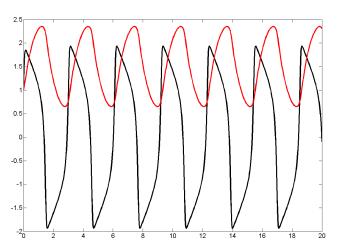
Nonlinear Dynamics

Nonlinear Oscillation

Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurcat

Nonlinear Oscillation

For input I = 1.5 we have the solution for v (black) and r (red).



The Microscopic Brain

Will Penny

Linear Dynamics
Exponentials

Matrix Exponential Eigendecompositio Dynamical Modes

State Space Saddles Oscillations

Gentres Offsets Retinal Gircu

Nullclines Stability

Eitzhugh-Nagumo

Linearization
Nonlinear Oscillation

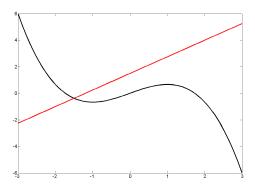
Ionlinear Oscillation

Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurca

Deferences

Zero Input

For input I = 0 the fixed point is given by v = -1.5, r = -3/8. It is a stable node.



The Microscopic Brain

Will Penny

Linear Dynamics

Exponentials

Matrix Exponentia

Dynamical Modes

tate Space addles scillations

pirals entres

Offsets Retinal Circ

Nullclines

Stability

Spiking Neuron

Fitzhugh-Nagumo Nonlinear Dynamic

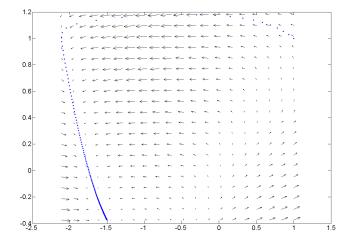
Nonlinear Oscillation

Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley
Rose-Hindmarsh
Saddle-Node Bifurca

Deferences

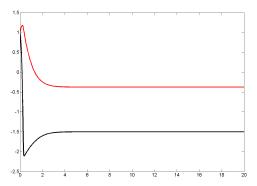
Nonlinear Oscillation

For input I = 0 the fixed point is given by v = -1.5, r = -3/8. It is a stable node.



Excitable Systems

A dynamical system such as a spiking neuron which produces a stable node in the absence of input, and a limit cycle with input is said to be excitable. For input I=0 we have the solution for ν (black) and r (red).



With FN neurons, increasing input causes a Hopf Bifurcation (Ch4, Bard Ermentrout and Terman, 2010).

The Microscopic Brain

Will Penny

Exponentials
Matrix Exponential
Eigendecomposition

tate Space addles scillations

entres Offsets

Nullclines Stability

Spiking Neurons

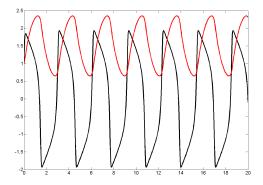
Nonlinear Dynamics Linearization Nonlinear Oscillation

Excitable Systems

Hopf Bifurcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcat

Excitable Systems

A dynamical system such as a spiking neuron which produces a stable node in the absence of input, and a limit cycle with input is said to be excitable. For input I=1.5 we have the solution for v (black) and r (red).



With FN neurons increasing input causes a Hopf Bifurcation (Ch4, Bard Ermentrout and Terman, 2010).

The Microscopic Brain

Will Penny

Linear Dynamics
Exponentials
Matrix Exponential

odes tate Space

addles scillations

Offsets Letinal Circu

Nullclines Stability

sikina Noura

Fitzhugh-Nagumo

Nonlinear Dynamics Linearization Nonlinear Oscillation

Excitable Systems

Hopf Biturcation Hodgkin-Huxley Rose-Hindmarsh Saddle-Node Bifurcat

Hopf Bifurcation

In dynamical systems, a bifurcation means that the system undergoes a qualitative change in behaviour. For an N-dimensional dynamical system with N > 2

$$\dot{x} = f(x, \beta)$$

with fixed points x_{FP} and Jacobian $J(\beta)$. A Hopf bifurcation will occur given the following conditions. For $\beta < \alpha$, x_{EP} is asymptotically stable. For $\beta = \alpha$, J has one pair of purely imaginary eigenvalues defining a linear oscillation (centre). For $\beta > \alpha$, x_{FP} is unstable.

There are then two types of Hopf bifurcation.

- Subcritical: an unstable limit cycle for $\beta < \alpha$.
- Supercritical: an asymptotically stable limit cycle for $\beta > \alpha$

For $\beta = \alpha$ the oscillation will be of frequency f and will emerge with infinitesimally small amplitude.

Hodgkin-Huxley

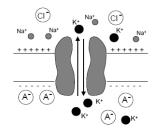
The Hodgkin-Huxley equations describe the change in membrane potential as a function of sodium, I_{Na} , potassium, I_K , leak I_L and input I currents

$$C\dot{v} = -I_{Na} - I_{K} - I_{L} + I_{in}$$

with membrane capacitance ${\it C}$ where each current obeys Ohms Law

$$I = g(v - E)$$

with conductance g and equilibrium potential E.



The Microscopic Brain

Will Penny

Linear Dynamics Exponentials

Matrix Exponential Eigendecompositior Dynamical Modes

tate Space addles

pirals entres

Offsets Retinal Circ

Nullclines Stability

Paiking Nouron

Spiking Neurons

Fitznugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillatior Excitable Systems

Hopf Bifurcation Hodgkin-Huxley

Rose-Hindmarsh Saddle-Node Bifurca Type 1 and 2 Cells

Hodgkin-Huxley

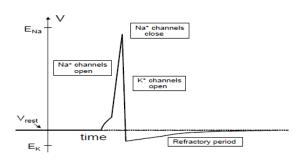


Figure 2.7. The action potential. During the upstroke, sodium channels open and the membrane potential approaches the sodium Nernst potential. During the downstroke, sodium channels are closed, potassium channels are open and the membrane potential approaches the potassium Nernst potential.

The Microscopic Brain

Will Penny

Hodgkin-Huxley

The Hodgkin-Huxley equations can be written

$$\begin{array}{lll} C\dot{v} & = & -g_{Na}m^3h(v-E_{Na})-g_Kn^4(v-E_K)-g_L(v-E_L)+I_{in} \\ \tau_m(v)\dot{m} & = & -m+M(v) \\ \hline \tau_h(v)\dot{h} & = & -h+H(v) \\ \hline \tau_n(v)\dot{n} & = & -n+N(v) \\ \end{array}$$

where m is the Na activation rate and n is the K activation rate.

Na channels have a second process which can deactivate them. The term h captures this deactivation (Ch5, Dayan and Abbot, 2001).

The mathematical forms of the v-dependent functions were chosen to provide a good fit to data from the giant squid axon (Ch 9, Wilson 1999).

Hodgkin-Huxley

Hodgkin-Huxley

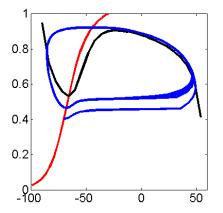
Rinzel (1985) noted that the Na activation dynamics were sufficiently fast that m = M(v) is a good approximation. This eliminates the second equation.

Second, the time series for h and n and their equilibrium values were sufficiently similar that h = 1 - n is a good approximation. This means the rate of *Na* channel closing is assumed equal and opposite to the rate of K channel opening. This eliminates the third equation.

The resulting Rinzel approximation to HH therefore has two state variables and its state space is readily visualised (Wilson, 1999).

Rinzel Approximation

Interestingly the nullcline for ν is cubic, as in the Fitzhugh-Nagumo model. But Rinzel retains an explicit description in terms of K channel.



The nullcline for r is sigmoidal but rather linear in the range of the fixed points.

The Microscopic Brain

Will Penny

ear Dynamic conentials rix Exponential endecomposition namical Modes

tate Space addles scillations

Offsets Retinal Circu

Nullclines Stability

Spiking Neurons

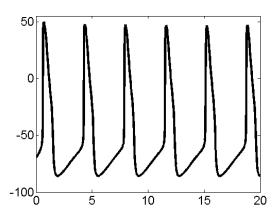
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems

Hodgkin-Huxley

Rose-Hindmarsh
Saddle-Node Bifurc

Rinzel Approximation

Rinzel Spike Dynamics, v.



The Microscopic Brain

Will Penny

Linear Dynamics

Matrix Exponential Eigendecomposition Dynamical Modes

State Space Saddles

Oscillations Spirals

Offsets

Retinal Circu Nullclines

Nullclines Stability

Spiking Neurons

Nonlinear Dynamics
Linearization
Nonlinear Oscillation

Excitable Systen

Hodgkin-Huxley

Rose-Hindmarsh Saddle-Node Bifurca

Deferences

The squid giant axon is unusual for having only one Na and one K current. As a result it cannot fire at rates below about 175Hz. Human cortical neurons, however, can fire over a much broader range of frequencies. This is because they have a rapid, transient K current (Wilson, 1999). This is referred to as the I_A current. The HH model has been augmented to include this.

Rose and Hindmarsh (1989) have shown that properties of the I_A current can be implemented by making the recovery variable quadratic.

$$\dot{v} = -(17.8 + 47.8v + 33.8v^2)(v - 0.48) - 26r(v + 0.95) + I$$

$$\dot{r} = \frac{1}{\tau_r} \left[-r + 1.29v + 0.79 + 0.33(v + 0.38)^2 \right]$$

Linear Dynamic Exponentials Matrix Exponential Eigendecomposition Dynamical Modes

State Space Saddles Oscillations

Centres Offsets

Retinal Circuit Nullclines Stability

piking Neurons

Fitzhugh-Nagumo
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation

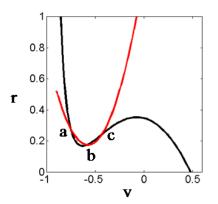
Rose-Hindmarsh

Saddle-Node Bifun Type 1 and 2 Cells

Rose-Hindmarsh

For zero input current I = 0 there are three fixed points

- (a) Stable node
- (b) Saddle point
- (c) Unstable spiral



The Microscopic Brain

Will Penny

Linear Dynamics

Matrix Exponential
Eigendecomposition
Dynamical Modes

Nodes State Space Saddles

pirals entres

Retinal Circu

Nullclines Stability

Spiking Neurons

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems

opf Bifurcation

Rose-Hindmarsh

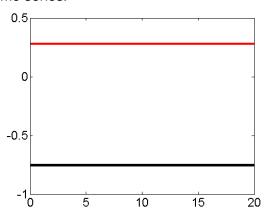
Type 1 and 2 Cel

References

Black curve shows $\dot{v}=0$, red curve $\dot{r}=0$.

Rose-Hindmarsh

With zero input I = 0 and initial point at (a) we get flat time series.



The Microscopic Brain

Will Penny

Linear Dynamics

Matrix Exponential

Dynamical Modes

tate Space

scillations pirals

entres

onsets Retinal Circu

Vullclines

Spiking Neurons

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation

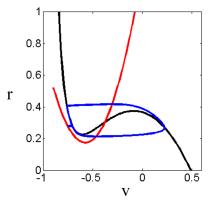
xcitable Systems opf Bifurcation

Rose-Hindmarsh

Type 1 and 2 Cells

Saddle-Node Bifurcation

Increasing input to I=0.5 makes (a) and (b) coalesce, then disappear. This leaves only (c). A limit cycle then forms around (c). This is known as a Saddle-Node Bifurcation.



The limit cycle that emerges has non-zero amplitude at inception (because it originates around a pre-existing FP, unlike Hopf). This corresponds to a sharp spike threshold. Not all saddle-node bifurcations produce limit cycles (Guckenheimer and Holmes, 2003).

The Microscopic Brain

Will Penny

Linear Dynamics
Exponentials
Matrix Exponential
Eigendecomposition

State Space Saddles

Offsets Retinal Circu

Nullclines Stability

Spiking Neuron

Fitzhugh-Nagumo Nonlinear Dynamics Linearization Nonlinear Oscillation Excitable Systems Hopf Bifurcation Hodokin-Huxley

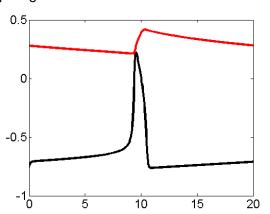
Saddle-Node Bifurcation Type 1 and 2 Cells

References

4 ロ ト 4 周 ト 4 三 ト 4 三 ・ 9 Q ()

Rose-Hindmarsh

With input I = 0.5 and initial point at (a) we now get slow spiking.



The Microscopic Brain

Will Penny

Saddle-Node Bifurcation

Type 1 and 2 Cells

Hodgkin classified two types of spiking cells

- Type 1 cells have sharp thresholds and can fire at arbitrarily low frequencies
- Type 2 cells have variable thresholds and a positive minimal frequency

These correspond to Saddle-Node and Hopf bifurcations (Bard Ermentrout and Terman, 2010).

Can use normal form models of each bifurcation type, instead of ones with specific biophysical parameters (Guckenheimer and Holmes, 1983).

Type 1 and 2 Cells

Brain Will Penny

The Microscopic

(Tateno et al. 2004) found that regular spiking (RS) cortical pyramidal cells have type 1 dynamics whereas fast spiking (FS) inhibitory interneurons have type 2 dynamics.

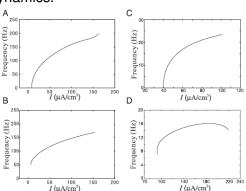


FIG. 10. E-f curves for simple models of type I and type 2 behavior. A: 6-variable Comore et al. model of molluscan neuron, incorporating A-type K* conductanes showing type I behavior (Conor et al. 1977). B: 4-variable Hodgkin-Hixdey model of the squid giant axon membrane patch, showing type 2 behavior (Hodgkin and Hixdey 1952). C: 2-variable Morris-Lecar model with type 1 parameters (Morris and Lecar 1981). D: Morris-Lecar model with type 2 parameters.

Linear Dynamics

Exponentials

Matrix Exponential Eigendecomposition

tate Space

Oscillations Spirals

entres

letinal Circuit

tability

piking Neurons

Fitzhugh-Nagumo
Nonlinear Dynamics
Linearization
Nonlinear Oscillation
Excitable Systems
Hopf Bifurcation
Hodgkin-Huxley

Type 1 and 2 Cells

Type I and 2 Oelis

References

The Microscopic **Brain**

Will Penny

- G. Bard Ermentrout and D. Terman (2010) Mathematical Foundations of Neuroscience. Springer.
- P. Dayan and L. Abbott (2001). Theoretical Neuroscience. MIT Press.
- D. Fitzhugh (1961). Impulses and phsyiological states in models of nerve membrane. Biophysics Journal 1, 445-466.
- J. Guckenheimer and P. Holmes (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer,
- C. Moler and C Van Loan (2003), Nineteen Dubious Ways to Compute the Exponential of a Matrix, SIAM Review 45(1).801-836.
- J. Rinzel (1985). Excitation dynamics: insights from simplified membrane models. Fed. Proc. 44. 2944-2946.
- G. Strang (1988). Linear Algebra and its Applications. Brooks/Cole.
- T. Tateno et al. (2004) J Neurophsviol 92, 2283-2294.
- H. Wilson (1999) Spikes, decisions and actions: the dynamical foundations of neuroscience, Oxford,