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Introduction

We will
I Show the relation between stochastic differential

equations, Gaussian processes and Fokker-Planck
methods

I This gives us a formal way of deriving equations for
the activity of a population of neurons. These are
used to study neural coding and can form generative
models of brain imaging data.

I Stochastic processes also provides models of
decision making in the brain. These can be fitted to
behavioural data and used as regressors in
computational fMRI

I This material is essential for understanding the next
lecture on Hierarchical Dynamic Models
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Stochastic Differential Equations

We consider stochastic differential equations (SDEs)

dx(t) = a[x(t), t ]dt + b[x(t), t ]dw(t)

where dw(t) is a Wiener process and a and b are, most
generally, time varying functions of the state variable x .

An SDE can be written in integral form

x(t) = x(t0) +

∫ t

t0
a[(x(t ′), t ′]dt ′ +

∫ t

t0
b[x(t ′), t ′]dw(t ′)
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Wiener process

A Wiener process

dwt = w(t + dt)− w(t)

is a stochastic process with independent increments

w(t + δt)− w(t) ∼ N(0, δt)

and is independent of the history of the process up to
time t . N(µ, σ2) denotes a Gaussian density with mean µ
and variance σ2.
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Sample Paths
Given the SDE

dx(t) = a[x(t), t ]dt + b[x(t), t ]dw(t)

a sample path can be generated by the Euler-Maruyama
(EM) method (Higham, 2001)

xi+1 = xi + a(xi , ti)∆ti + b(xi , ti)∆wi

where

xi = x(ti)
∆ti = ti+1 − ti

and

∆wi = w(ti+1)− w(ti)
∼ N(0,∆t2

i )
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Wiener Process

Now consider the SDE

dxt = µdt + σdwt

With initial condition x0 = 0, the above equation describes
the evolution of a Gaussian density with mean µt and
variance σ2t (to be shown later - see Expectations).

That is, the solution is a Gaussian process

p(xt ) = N(µt , σ2t)

For µ = 0 and σ = 1 this reverts to the standard Wiener
process

dxt = dwt
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Wiener Process

p(xt ) = N(µt , σ2t)

For µ = 1 and σ = 0.05 we have

The grey scale indicates probability density and the
trajectories indicate 20 sample paths.
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Gaussian Process

If the SDE

dx(t) = a[x(t), t ]dt + b[x(t), t ]dw(t)

has a solution p(x , t) that can be described by a
Gaussian we have a Gaussian process.

This is the case for a[x(t), t ] and b[x(t), t ] being linear
functions of x(t).

In the next lecture we will derive expressions for the mean
and covariance functions, for the general multivariate
case.
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Ornstein-Uhlenbeck

An Ornstein-Uhlenbeck (OU) process is given by

dx(t) = a[x(t), t ]dt + b[x(t), t ]dw(t)

where

a[x(t), t ] = ax(t)
b[x(t), t ] = σ

For a Wiener process we had

a[x(t), t ] = µ

b[x(t), t ] = σ

Some sources also describe a[x(t), t ] = c + ax(t) as an
OU process. But most (eg Gardiner, 1983) do not.
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OU process

The OU process

dxt =
1
τ

xtdt + σdwt

has solution

p(xt ) = N(µt , σ
2
t )

σ2
t =

σ2

2τ
(1− exp[−2t/τ ])

µt = x0 exp[−t/τ ]

The solution can be derived as shown later (see
Expectations).
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OU process
OU process with x0 = −4, σ = 0.05 and τ = 0.5 .

σ2
t =

σ2

2τ
(1− exp[−2t/τ ])

µt = x0 exp[−t/τ ]

The grey scale indicates probability density and the trajectories
indicate 20 sample paths.
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Mean-reverting process

The mean-reverting process

dxt =
1
τ

(µ− xt )dt + σdwt

The solution of the above equation is a Gaussian density

p(xt ) = N(µt , σ
2
t )

σ2
t =

σ2

2τ
(1− exp[−2t/τ ])

µt = x0 exp[−t/τ ] + µ (1− exp[−t/τ ])

These expressions can be derived using the stochastic
chain rule, and taking expectations (see later).



Stochastic
Processes

Will Penny

Stochastic
Differential
Equations
Wiener process

Sample Paths

OU Process

Stochastic Chain
Rule
Change of variables

Time-varying functions

Multivariate SDE

Expectations
Wiener Process

OU Process

Neural Population
Fitzhugh Nagumo

Gaussian approximation

FN Population

Fokker-Planck
SIF population

Master equation

Decision Making
Drift diffusion model

Continuum Limit

RTs and error rates

References

Mean-reverting process

p(xt ) = N(µt , σ
2
t )

σ2
t =

σ2

2τ
(1− exp[−2t/τ ])

µt = x0 exp[−t/τ ] + µ (1− exp[−t/τ ])

The density at the steady-state ie. after reverting to the
mean is given by a Gaussian with mean µ and variance
σ2/2τ .

The steady-state density is also known as the Sojourn
density.

dxt =
1
τ

(µ− xt )dt + σdwt

The parameter τ therefore determines the time scale at
which the Sojourn density is reached.
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Mean-reverting process

Mean-reverting process with x0 = −4, µ = 1 , σ = 0.05
and τ = 0.5 . The grey scale indicates probability density
and the trajectories indicate 20 sample paths.
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Change of variables

Given the deterministic dynamical system

dx(t)
dt

= a[x(t), t ]

For a new variable
y = f [x(t)]

We have from the chain rule

dy
dt

=
dy
dx

dx
dt

= f ′[x ]a[x(t), t ]

where f ′[x ] is the derivative with respect to x . Hence

df [x ] = f ′[x ]a[x(t), t ]dt
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Change of variables
For the univariate SDE

dx(t) = a[x(t), t ]dt + b[x(t), t ]dw(t)

the dynamical equation for a new variable

y = f [x(t)]

can be written as follows. First, we note that expanding f
in a Taylor series to second order gives

f [x(t) + dx(t)] = f [x(t)] + f ′[x(t)]dx(t) +
1
2

f ′′[x(t)]dx(t)2

Hence

df [x(t)] = f ′[x(t)]dx(t) +
1
2

f ′′[x(t)]dx(t)2
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Ito’s formula
Hence

df [x(t)] = f ′[x(t)]dx(t) +
1
2

f ′′[x(t)]dx(t)2

Substituting dx(t) and only keeping terms linear in dt
gives

df [x(t)] = f ′[x(t)] (a[x(t), t ]dt + b[x(t), t ]dw(t))

+
1
2

f ′′[x(t)]b[x(t), t ]2[dw(t)]2

Now use [dw(t)]2 = dt (see later) to obtain

df [x(t)] =

(
a[x(t), t ]f ′[x(t)] +

1
2

b[x(t), t ]2f ′′[x(t)]

)
dt

+ b[x(t), t ]f ′[x(t)]dw(t)

This is known as Ito’s formula or the stochastic chain rule
(Higham, 2001).
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Stochastic versus deterministic chain rule

For DEs we have

df [x ] = f ′[x ]a[x(t), t ]dt

For SDEs we have

df [x(t)] =

(
a[x(t), t ]f ′[x(t)] +

1
2

b[x(t), t ]2f ′′[x(t)]

)
dt

+ b[x(t), t ]f ′[x(t)]dw(t)

For linear flows the curvature f ′′ is zero.
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Time-varying functions

Given the univariate SDE

dx(t) = a[x(t), t ]dt + b[x(t), t ]dw(t)

For a new variable which is a time-varying function of the
state

y = f [x(t), t ]

Ito’s rule has an extra term

df [x(t)] =

(
a[x(t), t ]f ′[x(t)] +

df
dt

+
1
2

b[x(t), t ]2f ′′[x(t)]

)
dt

+ b[x(t), t ]f ′[x(t)]dw(t)
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Multivariate SDE
For the multivariate SDE

dx = A(x , t)dt + B(x , t)dw(t)

the stochastic chain rule is

df (x) =

∑
i

Ai [x , t ]ji (x) +
1
2

∑
i,j

[B(x , t)B(x , t)T ]ijHij (x)

dt

+
∑
i,j

Bij (x , t)ji (x)dwj (t)

where

ji (x) =
dfi (x)

dx

Hij (x) =
d2fi (x)

dxj

are the gradient and curvature. These formula are useful,
for example, for computing moments.
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Wiener Process

A Wiener process is defined by the SDE

dxt = µdt + σdwt

with initial condition x0. The integral form is

xt = x0 +

∫ t

0
µdt +

∫ t

0
σdwt

Hence
xt = x0 + µt + σ[wt − w0]
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Wiener Process

The solution is

xt = x0 + µt + σ[wt − w0]

where

E [wt − w0] = 0
Var [wt − w0] = t

The mean and variance of xt are therefore

E [xt ] = x0 + µt
Var [xt ] = σ2t
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OU Process
An OU process is defined by the SDE

dxt = −axtdt + σdwt

with initial condition x0. We can transform this equation
so that xt does not appear on the right hand side. This
can be achieved with the transformation

y = f (x)

= x exp(at)

where y is a time-varying function of x . We have

df
dx

= exp(at)

d2f
dx2 = 0

df
dt

= ax exp(at)
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OU Process

We have

df
dx

= exp(at)

d2f
dx2 = 0

df
dt

= ax exp(at)

From the stochastic chain rule we have

dy =

(
−ax

df
dx

+
df
dt

+
1
2
σ2 d2f

dx2

)
dt + σ

df
dx

dw

= (−ax exp(at) + ax exp(at)) dt + σ exp(at)dwt

Hence
dy = σ exp(at)dwt
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OU Process
Hence

dy = σ exp(at)dwt

Now integrate from 0 to t

yt − y0 = σ

∫ t

0
exp(as)dws

xt exp(at) = x0 + σ

∫ t

0
exp(as)dws

So

xt = x0 exp(−at) + σ

∫ t

0
exp(a(s − t))dws

We then have
E [xt ] = x0 exp(−at)

The variance can be computed similarly (next week we
will compute variance and covariance functions for
univariate and multivariate linear SDEs).
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FN Population

Rodriguez and Tuckwell (1996) consider the nonlinear
stochastic spiking neuron model given by the addition of a
stochastic noise term to the Fitzhugh-Nagumo equations

dv = [f (v)− r + I]dt + βdw
dr = b(v − γr)dt

where v is a voltage variable, r is a recovery variable, I is
applied current

f (v) = kv(v − a)(1− v)

and we use the following parameter values a = 0.1,
b = 0.015, γ = 0.2, I = 1.5 and β = 0.01.

The above equation defines a nonlinear SDE.
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Gaussian approximation
We consider the SDE

dxi = fi(x)dt + σidwi

where fi(x) defines the flow of the i th variable, and dwi is
a Wiener process. We have i = 1..N variables.

The corresponding noise covariance matrix V has
diagonal entries given by Vii = σ2

i , and zero off-diagonal
entries.

Let

Jij(x) =
dfi(x)

dxj

Hijk (x) =
d2fi(x)

dxjdxk

where J contains gradients (the ‘Jacobian’ matrix) and H
is the curvature.
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Gaussian approximation

The density over the state variables is approximated using a
Gaussian

p(x) ∼ N(x ;µ,C)

with mean µ and covariance C. Rodriguez and Tuckwell (1996)
show using the stochastic chain rule that the dynamical
equations for the moments can then be written

µ̇i = fi (µ) +
1
2

∑
j,k

Hijk (µ)Cjk

Ċij =
∑

k

Jik (µ)Cjk +
∑

k

Jjk (µ)Cik + Vij

In matrix notation this is

µ̇ = f (µ) +
1
2

Tr [CH(µ)]

Ċ = J(µ)C + CJ(µ)T + V
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FN Population
The blue mass indicates the trajectories of 64 EM sample
paths. The red lines show probability contours for the Gaussian
approximation for every 20 time steps (only the first eight
plotted).

Uncertainty increases during periods of greatest flow increase
(see effect of Jacobian on Ċ).
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FN Population
The figure compares the evolution of the mean and
variance of each of the states as computed using the
Gaussian approximation versus EM simulations.
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Harrison et al. (2005) consider a stochastic integrate and
fire neuron with a single excitatory synapse

ẋ = f (x) + s(t)

s(t) = h
∑

n

δ(t − tn)

where x is the membrane potential, tn is the time of the
nth incoming spike, and h is the magnitude of the post
synaptic potential.

In a small time interval we can write

s(t) = hr(t)

r(t) =
1
T

∫ T

0

∑
n

δ(τ − tn)dτ

where r(t) is the mean spike rate over that interval.
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Ensemble density

We consider an ensemble of cells that receive a common
driving current f (x) and whose synapses receive spikes
at the same average rate, but differ in the exact arrival
time and number of spikes

ẋ = f (x) + s(t)
s(t) = hr(t)

r(t) =
1
T

∫ T

0

∑
n

δ(τ − tn)dτ

This induces a probability density, p(x) over membrane
potentials.

Additionally, the membrane potential is reset once a
threshold is reached.
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Evolution of ensemble density
The top plot shows a single sample path.

The bottom plot shows five sample paths.
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Evolution of ensemble density

If we ignore the reset mechanism
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Evolution of ensemble density

ṗin = −p(x + h)f (x + h) + p(x − h)r(t)
ṗout = p(x)r(t)− p(x)f (x)

ṗ = ṗin − ṗout

Hence

ṗ = f (x)p(x)− f (x + h)p(x + h) + r(t)[p(x − h)− p(x)]

We can write the first term as

f (x)p(x)− f (x + h)p(x + h) = −d [f (x)p(x)]

dx

and for the second a Taylor series shows that

p(x − h) = p(x)− h
dp(x)

dx
+

1
2

h2 d2p(x)

dx2

Hence

ṗ = −d [f (x)p(x)]

dx
− hr

dp(x)

dx
+

1
2

h2r
d2p(x)

dx2
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Evolution of ensemble density

ṗ = −d [f (x)p(x)]

dx
− hr

dp(x)

dx
+

1
2

h2r
d2p(x)

dx2

Letting

s = hr
σ2 = h2r

we have

ṗ = −d [(f (x) + s)p(x)]

dx
+

1
2
σ2 d2p(x)

dx2

Writing the total flow as g(x) = f (x) + s gives

ṗ = −d [g(x)p(x)]

dx
+

1
2
σ2 d2p(x)

dx2

This is the Fokker-Planck equation.
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Fokker-Planck

The Fokker-Planck equation is

ṗ = −d [g(x)p(x)]

dx
+

1
2
σ2 d2p(x)

dx2

Tuckell (1998) and Gerstner (2002) derive FP equations
for populations of integrate and fire cells in a similar
manner. They also allow for multiple synapse types and
include an additional flux (flow of probability mass) for
describing the spike reset mechanism.
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Fokker-Planck

The Fokker-Planck equation can also be derived by
applying Ito’s rule and taking expectations.

We start with the SDE

dx = a(x , t)dt + b(x , t)dw

Following Ermentrout (p.292)
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2AFC tasks
In a two-alternative forced-choice (2AFC) task, in which
information is arriving discretely, the optimal decision is
implemented with a sequential likelihood ratio test
(SLRT).

Given uniform prior probabilities
p(r = L) = p(r = R) = 0.5, a decision based on the
posterior probability is identical to one based on the
likelihood, or log-likelihood ratio

It = log
(

p(Xt |r = L)

p(Xt |r = R)

)
where Xt = [x1, x2, ..., xt ] comprises all data points up to
time t . This can be accumulated sequentially as

It = It−1 + δIt

where

δIt = log
(

p(xt |r = L)

p(xt |r = R)

)
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2AFC tasks
The posterior is a sigmoid function of the accumulated
log-likelihood ratio.

p(r = L|Xt ) =
p(Xt |r = L)

p(Xt |r = L) + p(Xt |r = R)

=
1

1 + exp(−It )

A left decision is made when the posterior exceeds β. A
right decision is made if it exceeds 1− β.
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2AFC tasks

Unequal priors can be accomodated using

I0 = log
p(r = L)

p(r = R)
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Continuous Time

In continuous time this is equivalent to a drift diffusion
model (DDM) (Bogacz, 2006).

dI = adt + cdw

As we have seen this corresponds to a Wiener process.

Additionally we assume that x0 = 0 and that a
positive/negative decision (eg left/right button press) is
made if x crosses z before/after −z.

The decision time (DT) is the time at which the crossing
occurs.
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Continuous Time

The correct rate, CR, and mean decision time, DT, are
then given by analytic expressions (Bogacz et al 2006)

CR =
1

1 + exp(−2az/c2)

DT =
z
a

tanh
(az

c2

)
z = log

(
β

1− β

)
These formulae can be derived using the backward
Fokker-Planck equation (Gardiner, 1983; Moehlis et al.
2004).
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Continuum Limit
In a small time interval ∆t the mean and variance of the
Wiener process are

E [∆I] = a∆t
Var [∆I] = c2∆t

In the discrete time model we have

∆I = log
p(x |rL)

p(x |rR)

For Gaussian likelihoods with means µL for left and µR for
right, with common variance σ2

E [∆I] =
(µL − µR)2

2σ2

Var [∆I] =
(µL − µR)2

σ2

Equating moments gives
a
c2 =

1
2
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Continuous versus Discrete

Because
a
c2 =

1
2

we have

CR = β

DT =
z
a

(2β − 1)

z = log
(

β

1− β

)
This is intuitively satisfying because the correct rate is
simply equal to the probability threshold β.
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Drift-Diffusion Models

This sort of DDM behaviour has been observed among
the firing rates of various cells in 2AFC tasks.
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Decision Making Models

Can get analytic results for whole distribution of RTs (not just
mean).

DDMs can be fitted to behavioural data (quantiles of RTs and
error rates) to estimate a, σ and z. These can be used as
regressors in computational fMRI.
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Decision Making Models

Similar results can be derived for OU processes (Moehlis,
2004).

OU models better describe neuronal implementions where
evidence for left versus right decisions are accumulated in
separate populations which inhibit each other (Bogacz, 2006;
Wang 2002).
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Integration
Integration of deterministic functions is defined via the
Riemann sum∫ T

0
h(t)dt = lim

N→∞

N∑
j=1

h(tj)[tj+1 − tj ]

for tj = jT/N.

Integration of SDEs is defined by Ito’s rule∫ T

0
h(t)dwt = lim

N→∞

N∑
j=1

h(tj)[w(tj+1)− w(tj)]

where w(tj) are sample paths. This is a stochastic
equivalent of the Riemann sum. Using h([tj+1 + tj ]/2)
here leads to Stratanovich’s rule (Gardiner, 1983).

This definitition is necessary, for example, to compute
expectations of stochastic processes.
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