Appendix D

Probability Distributions

This appendix archives a number of useful results from texts by Papoulis [44], Lee [33]
and Cover [12]. Table 16.1 in Cover (page 486) gives entropies of many distributions
not listed here.

D.1 Transforming PDFs

Because probabilities are defined as areas under PDFs when we transform a variable

y=[(z) (D.1)
we transform the PDF by preserving the areas
p(y)ldy| = p(x)|dz| (D.2)

where the absolute value is taken because the changes in x or y (dr and dy) may be
negative and areas must be positive. Hence

/\

i

(D.3)

ply) = T

where the derivative is evaluated at x =
must be one-to-one and invertible.

)
]
dx

~!(y). This means that the function f(z)

If the function is many-to-one then it’s inverse will have multiple solutions x, xs, ..., T,
and the PDF is transformed at each of these points (Papoulis’ Fundamental Theorem
[44], page 93)

p\T p\T P\Tn
ply) = |(d_y1|) + |£|) + ...+ |(d_y|) (D.4)
dxy dxo dzn

D.1.1 Mean and Variance

For more on the mean and variance of functions of random variables see Weisberg
[64].
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Expectation is a linear operator. That is
El(a1z + agx)] = a1 E[x] + as E[z] (D.5)

Therefore, given the function
Yy =ax (D.6)

we can calculate the mean and variance of y as functions of the mean and variance
of x.

Ely] = aBla] (D.7)
Var(y) = a*Var(x)

If y is a function of many uncorrelated variables
Y= ai; (D.8)
i
we can use the results

Elyl = > a;Bl] (D.9)

Varly] = Za?‘/ar[azi] (D.10)

But if the variables are correlated then

Varly| = Z aZVar([z;] + 2 Z Z a;a;Var(z;, ;) (D.11)

J

where Var(z;, z;) denotes the covariance of the random variables z; and ;.

Standard Error

As an example, the mean
1

of uncorrelated variables x; has a variance
2
m

g

=Var(m) = Z%Var(xi) (D.13)

where we have used the substitution a; = 1/N in equation D.10. Hence

Ox

(D.14)
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Figure D.1: The Gaussian Probability Density Function with p = 3 and o = 2.

D.2 Uniform Distribution
The uniform PDF is given by

Ul(x;a,b) =

D.15
p— (D.15)
for a < z < b and zero otherwise. The mean is 0.5(a + b) and variance is (b — a)?/12.

The entropy of a uniform distribution is

H(z) =log(b—a) (D.16)

D.3 Gaussian Distribution

The Normal or Gaussian probability density function, for the case of a single variable,
is

1 (z — p)?
. 2y
N(W’”)—Wexp(—ﬁ

(D.17)
where ;1 and 02 are the mean and variance.

D.3.1 Entropy

The entropy of a Gaussian variable is

1 1 1
H(z) = ilogo2+—log27r—|- =

5 s (D.18)
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Figure D.2: The Gamma Density for b =1.6 and ¢ = 3.125.

For a given variance, the Gaussian distribution has the highest entropy. For a proof
of this see Bishop ([3], page 240).

D.3.2 Relative Entropy

2

7) and p(z) = N(x; p1p, 05) the KL-divergence

For Normal densities ¢(x) = N(x; p1g, 0
is

1. o2 p+pd4o—2p4p, 1
D — Zlog -2 q p q @’ - D.1
lallp] = 5 log o2 + 207 5 (D.19)
D.4 The Gamma distribution
The Gamma density is defined as
Db o) = —— & <_x> (D.20)
T;b,c) = —— exp [ — .
DT e TP

where I'() is the gamma function [49]. The mean of a Gamma density is given by be
and the variance by b%c. Logs of gamma densities can be written as

logI'(z;0,¢) = —Tx +(c—1)logz + K (D.21)
where K is a quantity which does not depend on z; the log of a gamma density

comprises a term in x and a term in logx. The Gamma distribution is only defined
for positive variables.



D.4.1 Entropy
Using the result for Gamma densities
/p(x) logx = U(c) + logb (D.22)

where U() is the digamma function [49] the entropy can be derived as

H(z) = logl'(c) + clogb — (¢ — 1)(¥(c) + logb) + ¢ (D.23)

D.4.2 Relative Entropy

For Gamma densities ¢(x) = I'(x; by, ¢,) and p(x) = ['(x; b, ¢,) the KL-divergence is

Dlgllp] = (cq=1)¥(cy) —logby — c; —log['(cy) (D.24)

b
+ logI'(cy) + cplogb, — (¢, — 1)(¥(cy) + logb,) + lq)_cq
p

D.5 The Y’-distribution

If 21, 29, ..., zy are independent normally distributed random variables with zero-mean

and unit variance then
N

x=> 2z (D.25)
i=1

has a y?-distribution with N degrees of freedom ([33], page 276). This distribution
is a special case of the Gamma distribution with b = 2 and ¢ = N/2. This gives

. 1 Ve —T
X“(z;N) = T(N2) 27 exp (7> (D.26)

The mean and variance are N and 2N. The entropy and relative entropy can be
found by substituting the the values b = 2 and ¢ = N/2 into equations D.23 and
D.24. The x? distribution is only defined for positive variables.

If « is a x? variable with N degrees of freedom and

Y=z (D.27)

then y has a y-density with N degrees of freedom. For N = 3 we have a Mazwell
density and for N = 2 a Rayleigh density ([44], page 96).
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Figure D.3: The x* Density for N =5 degrees of freedom.

D.6 The t-distribution

If z1, 29, ..., 2y are independent Normally distributed random variables with mean p
and variance o2 and m is the sample mean and s is the sample standard deviation
then
m—p
=

=

has a t-distribution with N — 1 degrees of freedom. It is written

(D.28)

1 T
WD) = Bo2179) (1 D

where D is the number of ’degrees of freedom’ and

2\ —(D+1)/2
> (D.29)

B(a,b) = (7 (D.30)
is the beta function. For D = 1 the t-distribution reduces to the standard Cauchy

distribution ([33], page 281).

D.7 Generalised Exponential Densities

The ‘exponential power’ or ‘generalised exponential’ probability density is defined as

1/R

p(a) = G(a; R, B) = % exp(—lal®) (D31)
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Figure D.4: The t-distribution with (a) N =3 and (b) N =49 degrees of freedom.
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Figure D.5: The generalised exponential distribution with (a) R = 1,w =5 and (b)
R = 6,w = 5. The parameter R fizes the weight of the tails and w fizes the width
of the distribution. For (a) we have a Laplacian which has positive kurtosis (k = 3);
heavy tails. For (b) we have a light-tailed distribution with negative kurtosis (k = —1).

where I'() is the gamma function [49], the mean of the distribution is zero !, the
width of the distribution is determined by 1/ and the weight of its tails is set by
R. This gives rise to a Gaussian distribution for R = 2, a Laplacian for R =1 and a
uniform distribution in the limit R — oo. The density is equivalently parameterised

by a variable w, which defines the width of the distribution, where w = g~ Y% giving
(0) = gt expl(— o/l ) (.32
p(a _QwF(l/R)eXp a/w .
The variance is r(3/R)
V=uw’ D.33
TR (D39
which for R = 2 gives V = 0.5w?. The kurtosis is given by [7]
I'(5/R)I'(1/R)
K = -3 D.34
[(3/E) (D31

where we have subtracted 3 so that a Gaussian has zero kurtosis. Samples may be
generated from the density using a rejection method [59].

!For non zero mean we simply replace a with a — p where y is the mean.



D.8 PDFs for Time Series

Given a signal a = f(t) which is sampled uniformly over a time period 7', its PDF,
p(a) can be calculated as follows. Because the signal is uniformly sampled we have
p(t) = 1/T. The function f(¢) acts to transform this density from one over ¢ to to
one over a. Hence, using the method for transforming PDFs, we get

pla) = fﬁff (D.35)

dt

where || denotes the absolute value and the derivative is evaluated at t = f~*(z).

D.8.1 Sampling

When we convert an analogue signal into a digital one the sampling process can
have a crucial effect on the resulting density. If, for example, we attempt to sample
uniformly but the sampling frequency is a multiple of the signal frequency we are,
in effect, sampling non-uniformly. For true uniform sampling it is necessary that the
ratio of the sampling and signal frequencies be irrational.

D.8.2 Sine Wave

For a sine wave, a = sin(t), we get

1
~ leos(t)]

p(a) (D.36)

where cos(t) is evaluated at t = sin ' (a). The inverse sine is only defined for —7/2 <
t < m/2 and p(t) is uniform within this. Hence, p(t) = 1/m. Therefore

B 1
o)==

This density is multimodal, having peaks at +1 and —1. For a more general sine wave

(D.37)

a = Rsin(wt) (D.38)

we get p(t) = w/m ,
- (D.39)

pla) = /1 — (a/R)?

which has peaks at £R.
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Figure D.6: The PDF of a = Rsin(wt) for R = 3.






Appendix E

Multivariate Probability
Distributions

E.1 Transforming PDF's

Just as univariate Probability Density Functions (PDFs) are transformed so as to pre-
serve area so multivariate probability distributions are transformed so as to preserve
volume. If

y=f(=) (E.1)
then this can be achieved from
p(z)
= E.2
where abs() denotes the absolute value and || the determinant and
oy Oy oyr
or1 ory 0 Oxyq
Oy2  Oy2 dy2
J = Ory Ozz " Ozy (E?))
o o ow
or1 ory °°  Oxyq

is the Jacobian matrix for d-dimensional vectors & and y. The partial derivatives
are evaluated at € = f~'(y). As the determinant of J measures the volume of the
transformation, using it as a normalising term therefore preserves the volume under
the PDF as desired. See Papoulis [44] for more details.

E.1.1 Mean and Covariance

For a vector of random variables (Gaussian or otherwise), @, with mean g, and
covariance X, a linear transformation

y=Fz+C (E.4)
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Figure E.1: (a) 3D-plot and (b) contour plot of Multivariate Gaussian PDF with
p=[1,1" and 11 = X9p = 1 and X135 = oy = 0.6 ie. a positive correlation of
r =0.6.

gives rise to a random vector y with mean
and covariance

¥, =F%, F" (E.6)

If we generate another random vector, this time from a different linear transformation
of

z=Gx+ D (E.7)
then the covariance between the random vectors y and z is given by
z,.=F3.G" (E.8)

The ¢,jth entry in this matrix is the covariance between y; and z;.

E.2 The Multivariate Gaussian

The multivariate normal PDF for d variables is

N ®) = oo (<ye - WS w-w) (B9

where the mean g is a d-dimensional vector, X is a d X d covariance matrix, and |X|
denotes the determinant of X.

E.2.1 Entropy

The entropy is
1 d d
H(x) = 510g|2|+510g27r+§ (E.10)



E.2.2 Relative Entropy
For Normal densities q(x) = N(x; p,, X,) and p(x) = N(zx; p,, ;) the KL-divergence
is

35|
%]

_ B d
Dlq||p] = 0.5log (%, 'S, + 0.5(pe, — up)sz 1(p,q — ) — 3 (E.11)

where |3,| denotes the determinant of the matrix 3,,.

E.3 The Multinomial Distribution

If a random variable x can take one of one m discrete values x1, x5, ..x,, and
p(r = x4) = 75 (E.12)

then z is said to have a multinomial distribution.

E.4 The Dirichlet Distribution

If w = [my, 7o, ... are the parameters of a multinomial distribution then

71'/\5_1

q(m) = I'(Ator) f[l FS()\S) (E.13)

defines a Dirichlet distribution over these parameters where

)\tot — Z )\s (E14)

The mean value of 7 is Ag/ Ao

E.4.1 Relative Entropy

For Dirichlet densities ¢(7) = D(m; A,) and p(w) = D(m; A,) where the number of
states is m and A, = [A (1), A(2), .., A\g(m)] and A, = [A,(1), Ap(2), .., \p(m)]. the
KL-divergence is

m

Dlgllp] = T(logAgor) + D> _(Ag(s) = D(T(Ag(5)) — ¥(Aguor) — log I'(Ag(s))E.15)

— T(log Apor) + D_(Ap(8) = D(T(A($)) = T(Agror) — logT'(Ap(5))



where

)‘qtot = Z)\q(S) (E16)
s=1

)\ptot = Z)\p(S)
s=1

and V() is the digamma function.



