
Appendix D
Probability Distributions
This appendix archives a number of useful results from texts by Papoulis [44], Lee [33]and Cover [12]. Table 16.1 in Cover (page 486) gives entropies of many distributionsnot listed here.D.1 Transforming PDFsBecause probabilities are de�ned as areas under PDFs when we transform a variabley = f(x) (D.1)we transform the PDF by preserving the areasp(y)jdyj = p(x)jdxj (D.2)where the absolute value is taken because the changes in x or y (dx and dy) may benegative and areas must be positive. Hencep(y) = p(x)j dydx j (D.3)where the derivative is evaluated at x = f�1(y). This means that the function f(x)must be one-to-one and invertible.If the function is many-to-one then it's inverse will have multiple solutions x1; x2; :::; xnand the PDF is transformed at each of these points (Papoulis' Fundamental Theorem[44], page 93) p(y) = p(x1)j dydx1 j + p(x2)j dydx2 j + ::: + p(xn)j dydxn j (D.4)D.1.1 Mean and VarianceFor more on the mean and variance of functions of random variables see Weisberg[64]. 161



162 Signal Processing Course, W.D. Penny, April 2000.Expectation is a linear operator. That isE[(a1x + a2x)] = a1E[x] + a2E[x] (D.5)Therefore, given the function y = ax (D.6)we can calculate the mean and variance of y as functions of the mean and varianceof x. E[y] = aE[x] (D.7)V ar(y) = a2V ar(x)If y is a function of many uncorrelated variablesy =Xi aixi (D.8)we can use the results E[y] = Xi aiE[xi] (D.9)V ar[y] = Xi a2iV ar[xi] (D.10)But if the variables are correlated thenV ar[y] =Xi a2iV ar[xi] + 2Xi Xj aiajV ar(xi; xj) (D.11)where V ar(xi; xj) denotes the covariance of the random variables xi and xj.Standard ErrorAs an example, the mean m = 1N Xi xi (D.12)of uncorrelated variables xi has a variance�2m � V ar(m) = Xi 1NV ar(xi) (D.13)= �2xNwhere we have used the substitution ai = 1=N in equation D.10. Hence�m = �xpN (D.14)
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Figure D.1: The Gaussian Probability Density Function with � = 3 and � = 2.D.2 Uniform DistributionThe uniform PDF is given by U(x; a; b) = 1b� a (D.15)for a � x � b and zero otherwise. The mean is 0:5(a+ b) and variance is (b� a)2=12.The entropy of a uniform distribution isH(x) = log(b� a) (D.16)D.3 Gaussian DistributionThe Normal or Gaussian probability density function, for the case of a single variable,is N(x;�; �2) = 1(2��2)1=2 exp �(x� �)22�2 ! (D.17)where � and �2 are the mean and variance.D.3.1 EntropyThe entropy of a Gaussian variable isH(x) = 12 log �2 + 12 log 2� + 12 (D.18)
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Figure D.2: The Gamma Density for b = 1:6 and c = 3:125.For a given variance, the Gaussian distribution has the highest entropy. For a proofof this see Bishop ([3], page 240).D.3.2 Relative EntropyFor Normal densities q(x) = N(x;�q; �2q ) and p(x) = N(x;�p; �2p) the KL-divergenceis D[qjjp] = 12 log �2p�2q + �2q + �2p + �2q � 2�q�p2�2p � 12 (D.19)D.4 The Gamma distributionThe Gamma density is de�ned as�(x; b; c) = 1�(c) xc�1bc exp��xb � (D.20)where �() is the gamma function [49]. The mean of a Gamma density is given by bcand the variance by b2c. Logs of gamma densities can be written aslog �(x; b; c) = �xb + (c� 1) logx+K (D.21)where K is a quantity which does not depend on x; the log of a gamma densitycomprises a term in x and a term in logx. The Gamma distribution is only de�nedfor positive variables.



Signal Processing Course, W.D. Penny, April 2000. 165D.4.1 EntropyUsing the result for Gamma densitiesZ p(x) logx = 	(c) + log b (D.22)where 	() is the digamma function [49] the entropy can be derived asH(x) = log�(c) + c log b� (c� 1)(	(c) + log b) + c (D.23)D.4.2 Relative EntropyFor Gamma densities q(x) = �(x; bq; cq) and p(x) = �(x; bp; cp) the KL-divergence isD[qjjp] = (cq � 1)	(cq)� log bq � cq � log �(cq) (D.24)+ log �(cp) + cp log bp � (cp � 1)(	(cq) + log bq) + bqcqbpD.5 The �2-distributionIf z1; z2; :::; zN are independent normally distributed random variables with zero-meanand unit variance then x = NXi=1 z2i (D.25)has a �2-distribution with N degrees of freedom ([33], page 276). This distributionis a special case of the Gamma distribution with b = 2 and c = N=2. This gives�2(x;N) = 1�(N=2) xN=2�12N=2 exp��x2 � (D.26)The mean and variance are N and 2N . The entropy and relative entropy can befound by substituting the the values b = 2 and c = N=2 into equations D.23 andD.24. The �2 distribution is only de�ned for positive variables.If x is a �2 variable with N degrees of freedom andy = px (D.27)then y has a �-density with N degrees of freedom. For N = 3 we have a Maxwelldensity and for N = 2 a Rayleigh density ([44], page 96).
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Figure D.3: The �2 Density for N = 5 degrees of freedom.D.6 The t-distributionIf z1; z2; :::; zN are independent Normally distributed random variables with mean �and variance �2 and m is the sample mean and s is the sample standard deviationthen x = m� �s=pN (D.28)has a t-distribution with N � 1 degrees of freedom. It is writtent(x;D) = 1B(D=2; 1=2)  1 + x2D!�(D+1)=2 (D.29)where D is the number of 'degrees of freedom' andB(a; b) = �(a)�(b)�(a+ b) (D.30)is the beta function. For D = 1 the t-distribution reduces to the standard Cauchydistribution ([33], page 281).D.7 Generalised Exponential DensitiesThe `exponential power' or `generalised exponential' probability density is de�ned asp(a) = G(a;R; �) = R�1=R2�(1=R) exp(��jajR) (D.31)
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Figure D.4: The t-distribution with (a) N = 3 and (b) N = 49 degrees of freedom.
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Figure D.5: The generalised exponential distribution with (a) R = 1,w = 5 and (b)R = 6,w = 5. The parameter R �xes the weight of the tails and w �xes the widthof the distribution. For (a) we have a Laplacian which has positive kurtosis (k = 3);heavy tails. For (b) we have a light-tailed distribution with negative kurtosis (k = �1).where �() is the gamma function [49], the mean of the distribution is zero 1, thewidth of the distribution is determined by 1=� and the weight of its tails is set byR. This gives rise to a Gaussian distribution for R = 2, a Laplacian for R = 1 and auniform distribution in the limit R !1. The density is equivalently parameterisedby a variable w, which de�nes the width of the distribution, where w = ��1=R givingp(a) = R2w�(1=R) exp(�ja=wjR) (D.32)The variance is V = w2�(3=R)�(1=R) (D.33)which for R = 2 gives V = 0:5w2. The kurtosis is given by [7]K = �(5=R)�(1=R)�(3=R)2 � 3 (D.34)where we have subtracted 3 so that a Gaussian has zero kurtosis. Samples may begenerated from the density using a rejection method [59].1For non zero mean we simply replace a with a� � where � is the mean.



168 Signal Processing Course, W.D. Penny, April 2000.D.8 PDFs for Time SeriesGiven a signal a = f(t) which is sampled uniformly over a time period T , its PDF,p(a) can be calculated as follows. Because the signal is uniformly sampled we havep(t) = 1=T . The function f(t) acts to transform this density from one over t to toone over a. Hence, using the method for transforming PDFs, we getp(a) = p(t)jdadt j (D.35)where jj denotes the absolute value and the derivative is evaluated at t = f�1(x).D.8.1 SamplingWhen we convert an analogue signal into a digital one the sampling process canhave a crucial e�ect on the resulting density. If, for example, we attempt to sampleuniformly but the sampling frequency is a multiple of the signal frequency we are,in e�ect, sampling non-uniformly. For true uniform sampling it is necessary that theratio of the sampling and signal frequencies be irrational.D.8.2 Sine WaveFor a sine wave, a = sin(t), we get p(a) = 1jcos(t)j (D.36)where cos(t) is evaluated at t = sin�1(a). The inverse sine is only de�ned for ��=2 �t � �=2 and p(t) is uniform within this. Hence, p(t) = 1=�. Thereforep(a) = 1�p1� a2 (D.37)This density is multimodal, having peaks at +1 and �1. For a more general sine wavea = R sin(wt) (D.38)we get p(t) = w=� p(a) = 1�q1� (a=R)2 (D.39)which has peaks at �R.
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Figure D.6: The PDF of a = R sin(wt) for R = 3.
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Appendix E
Multivariate ProbabilityDistributions
E.1 Transforming PDFsJust as univariate Probability Density Functions (PDFs) are transformed so as to pre-serve area so multivariate probability distributions are transformed so as to preservevolume. If y = f(x) (E.1)then this can be achieved from p(y) = p(x)abs(jJ j) (E.2)where abs() denotes the absolute value and jj the determinant andJ = 266664 @y1@x1 @y1@x2 :: @y1@xd@y2@x1 @y2@x2 :: @y2@xd:: :: :: ::@yd@x1 @yd@x2 :: @yd@xd

377775 (E.3)is the Jacobian matrix for d-dimensional vectors x and y. The partial derivativesare evaluated at x = f�1(y). As the determinant of J measures the volume of thetransformation, using it as a normalising term therefore preserves the volume underthe PDF as desired. See Papoulis [44] for more details.E.1.1 Mean and CovarianceFor a vector of random variables (Gaussian or otherwise), x, with mean �x andcovariance �x a linear transformationy = Fx+C (E.4)171
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Figure E.1: (a) 3D-plot and (b) contour plot of Multivariate Gaussian PDF with� = [1; 1]T and �11 = �22 = 1 and �12 = �21 = 0:6 ie. a positive correlation ofr = 0:6.gives rise to a random vector y with mean�y = F�x +C (E.5)and covariance �y = F�xF T (E.6)If we generate another random vector, this time from a di�erent linear transformationof x z = Gx+D (E.7)then the covariance between the random vectors y and z is given by�y;z = F�xGT (E.8)The i,jth entry in this matrix is the covariance between yi and zj.E.2 The Multivariate GaussianThe multivariate normal PDF for d variables isN(x;�;�) = 1(2�)d=2j�j1=2 exp��12(x� �)T��1(x� �)� (E.9)where the mean � is a d-dimensional vector, � is a d� d covariance matrix, and j�jdenotes the determinant of �.E.2.1 EntropyThe entropy is H(x) = 12 log j�j+ d2 log 2� + d2 (E.10)



Signal Processing Course, W.D. Penny, April 2000. 173E.2.2 Relative EntropyFor Normal densities q(x) = N(x;�q;�q) and p(x) = N(x;�p;�p) the KL-divergenceisD[qjjp] = 0:5 log j�pjj�qj +0:5Trace(��1p �q) + 0:5(�q ��p)T��1p (�q ��p)� d2 (E.11)where j�pj denotes the determinant of the matrix �p.E.3 The Multinomial DistributionIf a random variable x can take one of one m discrete values x1; x2; ::xm andp(x = xs) = �s (E.12)then x is said to have a multinomial distribution.E.4 The Dirichlet DistributionIf � = [�1; �2; :::�m] are the parameters of a multinomial distribution thenq(�) = �(�tot) mYs=1 ��s�1s�(�s) (E.13)de�nes a Dirichlet distribution over these parameters where�tot =Xs �s (E.14)The mean value of �s is �s=�tot.E.4.1 Relative EntropyFor Dirichlet densities q(�) = D(�;�q) and p(�) = D(�;�p) where the number ofstates is m and �q = [�q(1); �q(2); ::; �q(m)] and �p = [�p(1); �p(2); ::; �p(m)]. theKL-divergence isD[qjjp] = �(log�qtot) + mXs=1(�q(s)� 1)(	(�q(s))� 	(�qtot)� log �(�q(s))(E.15)� �(log�ptot) + mXs=1(�p(s)� 1)(	(�q(s))�	(�qtot)� log �(�p(s))



174 Signal Processing Course, W.D. Penny, April 2000.where �qtot = mXs=1�q(s) (E.16)�ptot = mXs=1�p(s)and 	() is the digamma function.


