Chapter 7

Multiple Time Series

7.1 Introduction

We now consider the situation where we have a number of time series and wish to
explore the relations between them. We first look at the relation between cross-
correlation and multivariate autoregressive models and then at the cross-spectral
density and coherence.

7.2 Cross-correlation

Given two time series x; and y; we can delay z; by T samples and then calculate the
cross-covariance between the pair of signals. That is

1 N

owy(T) = 51 D (@t = ) (Yo — py) (7.1)

t=1

where p, and p, are the means of each time series and there are N samples in
each. The function o4, (7") is the cross-covariance function. The cross-correlation is
a normalised version

02y (T)
oy (T) = L (7.2)
045(0)0yy(0)
where we note that 0,,(0) = o2 and 0,,(0) = o7 are the variances of each signal.
Note that
O.x
ey (0) = . ay (7.3)
20y

which is the correlation between the two variables. Therefore unlike the autocorre-
lation, 7, is not, generally, equal to 1. Figure 7.1 shows two time series and their
cross-correlation.
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7.2.1 Cross-correlation is asymmetric

First, we re-cap as to why the auto-correlation is a symmetric function. The autoco-
variance, for a zero mean signal, is given by

1 N
O'a;a;(T) = N7— E Tt—TTt (74)
t=1

This can be written in the shorthand notation

0pa(T) =< my_pxy > (7.5)
where the angled brackets denote the average value or expectation. Now, for negative
lags

O'a;a;(—T) =< X417t > (76)
Subtracting 7" from the time index (this will make no difference to the expectation)
gives

Opz(—T) =< mpwy_p > (7.7)

which is identical to 0,,(T), as the ordering of variables makes no difference to the
expected value. Hence, the autocorrelation is a symmetric function.

The cross-correlation is a normalised cross-covariance which, assuming zero mean
signals, is given by

Ouy(T') =< o7y > (7.8)
and for negative lags

Ouy(=T) =< Terys > (7.9)

Subtracting 7" from the time index now gives
Ouy(=T1) =< zyyyp > (7.10)

which is different to o,,(7"). To see this more clearly we can subtract 7" once more
from the time index to give

O'Iy(—T) =< T¢_7Yg_oT > (711)

Hence, the cross-covariance, and therefore the cross-correlation, is an asymmetric
function.

To summarise: moving signal A right (forward in time) and multiplying with signal
B is not the same as moving signal A left and multiplying with signal B; unless signal
A equals signal B.

7.2.2 Windowing

When calculating cross-correlations there are fewer data points at larger lags than
at shorter lags. The resulting estimates are commensurately less accurate. To take
account of this the estimates at long lags can be smoothed using various window
operators. See lecture 5.
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Figure 7.1: Signals x; (top) and y; (bottom).
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Figure 7.2: Cross-correlation function r.,(T) for the data in Figure 7.1. A lag of
T denotes the top series, x, lagging the bottom series, y. Notice the big positive
correlation at a lag of 25. Can you see from Figure 7.1 why this should occur ?



7.2.3 Time-Delay Estimation

If we suspect that one signal is a, possibly noisy, time-delayed version of another signal
then the peak in the cross-correlation will identify the delay. For example, figure 7.1
suggests that the top signal lags the bottom by a delay of 25 samples. Given that the
sample rate is 125Hz this corresponds to a delay of 0.2 seconds.

7.3 Multivariate Autoregressive models

A multivariate autoregressive (MAR) model is a linear predictor used for modelling
multiple time series. An MAR(p) model predicts the next vector value in a d-
dimensional time series, x; (a row vector) as a linear combination of the p previous
vector values of the time series

a(t) = i z(t — k)a(k) + e (7.12)

k=1

where each ay is a d — by — d matrix of AR coefficients and e; is an IID Gaussian
noise vector with zero mean and covariance C. There are a total of n, =p x d x d
AR coefficients and the noise covariance matrix has d x d elements. If we write the
lagged vectors as a single augmented row vector

Z(t)=[x(t—1),2(t—2),..,z(t —p)] (7.13)
and the AR coefficients as a single augmented matrix
A =[a(1),a(2),...,a(p)]" (7.14)
then we can write the MAR model as
x(t) =2(t)A + e(t) (7.15)
The above equation shows the model at a single time point .

The equation for the model over all time steps can be written in terms of the embed-
ding matrix, M, whose tth row is &(t), the error matrix E having rows e(t +p + 1)
and the target matrix X having rows x(¢ + p + 1). This gives

X =MA+E (7.16)

which is now in the standard form of a multivariate linear regression problem. The
AR coefficients can therefore be calculated from

~ ~ ~ 7]‘ —~
A= <MTM> M'X (7.17)
and the AR predictions are then given by

&(t) = &()A (7.18)



The predicion errors are

e(t) =x(t) — &(t) (7.19)
and the noise covariance matrix is estimated as
1
C = T(te(t 7.20
e (el (7.20)

The denominator N — n, arises because n, degrees of freedom have been used up to
calculate the AR coefficients (and we want the estimates of covariance to be unbiased).

7.3.1 Model order selection

Given that an MAR model can be expressed as a multivariate linear regression prob-
lem all the usual model order selection criteria can be employed such as stepwise
forwards and backwards selection. Other criteria also exist. Neumaier and Schneider
[42] and Lutkepohl [34] investigate a number of methods including the Final Predic-

tion Error
N +n,

FPE(p) = logo?® + log N, (7.21)
where .
0? = 55 ldet((N ~ n,)C)]"* (7.22)
but they prefer the Minimum Description Length (MDL) criterion'
N
MDL(p) = 5 logo® + % log N (7.23)

7.3.2 Example

Given two time series and a MAR(3) model, for example, the MAR predictions are

2t =z()A (7.24)
a(l)
&) =[xt —1),z(t—2),z(—3)]| a2
a(3)
[ a1(t) @2(t) | = [ @0(t = Daa(t — Das(t = 2)za(t — 2)a(t - 3)za(t — 3) | (7.25)
[ ain (1) aiz(1) ]
dgl(l) dgg(l)
d11(2) d12(2)
a21(2) G92(2)
d11(3) d12(3)
L ax1(3) az(3) |

!The MDL criterion is identical to the negative value of the Bayesian Information Criterion (BIC)
ie. MDL(p) = —BIC(p), and Neumaier and Schneider refer to this measure as BIC.
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Figure 7.3: Signals x(t) (top) and xs(t) (bottom) and predictions from MAR(3)
model.

Applying an MAR(3) model to our data set gave the following estimates for the AR
coefficients, a,, and noise covariance C', which were estimated from equations 7.17
and 7.20

[ -1.2813 —0.2394
@1 =1 _0.0018 —1.0816

0 — | 07453 0.2822
27| —0.0974 0.6044

0 — | —0-3259 —0.0576
371 —0.0764 —0.2699

C — 0.0714 0.0054
~ | 0.0054 0.0798

7.4 Cross Spectral Density

Just as the Power Spectral Density (PSD) is the Fourier transform of the auto-
covariance function we may define the Cross Spectral Density (CSD) as the Fourier
transform of the cross-covariance function

Py(w) = i Oya, (1) €Xp(—iwn) (7.26)

n=—0oo



Note that if ; = x4, the CSD reduces to the PSD. Now, the cross-covariance of a
signal is given by

o0

Opizn(n) = > z1(D)z2(l — n) (7.27)

l=—00

Substituting this into the earlier expression gives

Py(w) = i li x1(D)zo(l — n) exp(—iwn) (7.28)
By noting that
exp(—iwn) = exp(—iwl) exp(iwk) (7.29)

where £k = [ — n we can see that the CSD splits into the product of two integrals

Piy(w) = Xy (w) Xo(—w) (7.30)
where
Xi(w) = li x1(1) exp(—iwl) (7.31)
Xo(—w) = k:z.j: zo(k) exp(+iwk)

For real signals Xj(w) = Xy(—w) where * denotes the complex conjugate. Hence,
the cross spectral density is given by

Pro(w) = X, (w) X3 (w) (7.32)

This means that the CSD can be evaluated in one of two ways (i) by first estimating
the cross-covariance and Fourier transforming or (ii) by taking the Fourier transforms
of each signal and multiplying (after taking the conjugate of one of them). A number
of algorithms exist which enhance the spectral estimation ability of each method.
These algorithms are basically extensions of the algorithms for PSD estimation, for
example, for type (i) methods we can perform Blackman-Tukey windowing of the
cross-covariance function and for type (ii) methods we can employ Welch'’s algorithm
for averaging modified periodograms before multiplying the transforms. See Carter
[8] for more details.

The CSD is complex

The CSD is complex because the cross-covariance is asymmetric (the PSD is real
because the auto-covariance is symmetric; in this special case the Fourier transorm
reduces to a cosine transform).



7.4.1 More than two time series

The frequency domain characteristics of a multivariate time-series may be summarised
by the power spectral density matriz (Marple, 1987[39]; page 387). For d time series

where the diagonal elements contain the spectra of individual channels and the off-
diagonal elements contain the cross-spectra. The matrix is called a Hermitian matriz
because the elements are complex numbers.

7.4.2 Coherence and Phase

The complex coherence function is given by (Marple 1987; p. 390)

__ Py()
NEONET

The coherence, or mean squared coherence (MSC), between two channels is given by

rij(f) =l rii(F) I (7.35)

The phase spectrum, between two channels is given by

Im(ri;(f))
Re(mj(f))] (7.36)

The MSC measures the linear correlation between two time series at each frequency
and is directly analagous to the squared correlation coefficient in linear regression.
As such the MSC is intimately related to linear filtering, where one signal is viewed
as a filtered version of the other. This can be interpreted as a linear regression at
each frequency. The optimal regression coefficient, or linear filter, is given by

Py (f)

This is analagous to the expression for the regression coefficient a = 0,,/0,, (see first
lecture). The MSC is related to the optimal filter as follows

) = PR

which is analagous to the equivalent expression in linear regression r

rij(f) (7.34)

0;(f) = tan™" [

H(f) = (7.37)

(7.38)

?=a (Ua:a:/ayy)-



At a given frequency, if the phase of one signal is fized relative to the other, then the
signals can have a high coherence at that frequency. This holds even if one signal is
entirely out of phase with the other (note that this is different from adding up signals
which are out of phase; the signals cancel out. We are talking about the coherence
between the signals).

At a given frequency, if the phase of one signal changes relative to the other then
the signals will not be coherent at that frequency. The time over which the phase
relationship is constant is known as the coherence time. See [46], for an example.

7.4.3 Welch’s method for estimating coherence

Algorithms based on Welch’s method (such as the cohere function in the matlab
system identification toolbox) are widely used [8] [55]. The signal is split up into a
number of segments, N, each of length 7" and the segments may be overlapping. The
complex coherence estimate is then given as

Sone 1X”(f)(X”(f))*

VI X2 E X

where n sums over the data segments. This equation is exactly the same form as for
estimating correlation coefficients (see chapter 1). Note that if we have only N =1
data segment then the estimate of coherence will be 1 regardless of what the true
value is (this would be like regression with a single data point). Therefore, we need
a number of segments.

Fii(f) =

(7.39)

Note that this only applies to Welch-type algorithms which compute the CSD from a
product of Fourier transforms. We can trade-off good spectral resolution (requiring
large T') with low-variance estimates of coherence (requiring large N and therefore
small 7). To an extent, by increasing the overlap between segments (and therefore
the amount of computation, ie. number of FFTs computed) we can have the best of
both worlds.

7.4.4 MAR models

Just as the PSD can be calculated from AR coefficients so the PSD’s and CSD’s can
be calculated from MAR coefficients. First we compute

A(f)=TI+ zp: a exp(—ik2n fT) (7.40)

where I is the identity matrix, f is the frequency of interest and 7" is the sampling
period. A(f) will be complex. This is analagous to the denominator in the equivalent
AR expression (1 + >7_; ar exp(—ik2mft)). Then we calculate the PSD matrix as
follows (Marple 1987 [39]; page 408)

Puar(f) =TIA(H] ClAN (7.41)
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Figure 7.4: Coherence estimates from (a) Welch’s periodogram method and (b) Mul-
tivariate Autoregressive model.

where C' is the residual covariance matrix and H denotes the Hermitian transpose.
This is formed by taking the complex conjugate of each matrix element and then
applying the usual transpose operator.

Just as AT denotes the transpose of the inverse so A denotes the Hermitian
transpose of the inverse. Once the PSD matrix has been calculated, we can calculate
the coherences of interest using equation 7.35.

7.5 Example

To illustrate the estimation of coherence we generated two signals. The first, x, being
a 10Hz sine wave with additive Gaussian noise of standard deviation 0.3 and the
second y being equal to the first but with more additive noise of the same standard
deviation. Five seconds of data were generated at a sample rate of 128Hz. We
then calculated the coherence using (a) Welch’s modified periodogram method with
N = 128 samples per segment and a 50% overlap between segments and smoothing
via a Hanning window and (b) an MAR(8) model. Ideally, we should see a coherence
near to 1 at 10Hz and zero elsewhere. However, the coherence is highly non-zero at
other frequencies. This is because due to the noise component of the signal there
is power (and some cross-power) at all frequencies. As coherence is a ratio of cross-
power to power it will have a high variance unless the number of data samples is
large.

You should therefore be careful when interpreting coherence values. Preferably you
should perform a significance test, either based on an assumption of Gaussian signals
[8] or using a Monte-Carlo method [38]. See also the text by Bloomfield [4].



7.6 Partial Coherence

There is a direct analogy to partial correlation. Given a target signal y and other
signals x1, x9, ..., T, we can calculate the ‘error’ at a given frequency after including
k = 1..m variables E,,(f). The partial coherence is

Em—l(f) — Em(f)
Byt () (7.42)

km(f) =

See Carter [8] for more details.



