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Chapter 1
Statistics
1.1 IntroductionThis lecture is a quick review of basic statistical concepts; probabilities, mean, vari-ance, covariance, correlation, linear regression, probability density functions and sig-ni�cance testing.1.2 Probabilities1.2.1 Discrete VariablesThe table below shows the probability of occurrence p(x = xi) of selected lettersxi in the English alphabet. Table 2 shows the probability of occurence of selectedxi p(xi)a 0.06e 0.09j 0.00q 0.01t 0.07z 0.00Table 1.1: Probability of letterspairs of letters xi and yj where xi is followed by yj. This is called the joint probabilityp(x = xi; y = yi). If we �x x to, say xi then the probability of y taking on a particularvalue, say yj, is given by the conditional probabilityp(y = yjjx = xi) = p(x = xi; y = yj)p(x = xi) (1.1)13



14 Signal Processing Course, W.D. Penny, April 2000.xi yj p(xi; yj)t h 0.037t s 0.000t r 0.012Table 1.2: Probability of pairs of lettersFor example, if xi = t and yj = h then the joint probability p(x = xi; y = yj) isjust the probability of occurence of the pair (which table 2 tells us is 0:037). Theconditional probability p(y = yjjx = xi), however, says that, given we've seen theletter t, what's the probability that the next letter will be h (which is, from tables 1and 2, 0:037=0:07 = 0:53). Re-arranging the above relationship givesp(x = xi; y = yj) = p(y = yjjx = xi)p(x = xi) (1.2)Now if y does not depend on x then p(y = yjjx = xi) = p(y = yj). Hence, forindependent variables, we havep(x = xi; y = yj) = p(y = yj)p(x = xi) (1.3)The marginal probability is given byp(x = xi) = Xfyjg p(y = yj; x = xi) (1.4)This is the same probability that we started with.1.2.2 Continuous VariablesThe probability of a continuous variable, x, assuming a particular value or rangeof values is de�ned by a Probability Density Funcion (PDF), p(x). Probability ismeasured by the area under the PDF; the total area under a PDF is therefore unityZ p(x)dx = 1 (1.5)The probability of x assuming a value between a and b is given byp(a � x � b) = Z ba p(x)dx (1.6)which is the area under the PDF between a and b. The probability of x taking on asingle value is therefore zero. This makes sense because we are dealing with continuousvalues; as your value becomes more precise the probability for it decreases. It onlymakes sense, therefore to talk about the probability of a value being within a certainprecision or being above or below a certain value.
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Figure 1.1: (a) The Gaussian Probability Density Function with mean � = 3 andstandard deviation � = 2, (b) The standard Gaussian density, p(z). This has zeromean and unit variance.To calculate such probabilities we need to calculate integrals like the one above. Thisprocess is simpli�ed by the use of Cumulative Density Functions (CDF) which arede�ned as CDF (a) = p(x � a) = Z a�1 p(x)dx (1.7)Hence p(a � x � b) = CDF (b)� CDF (a) (1.8)1.2.3 The Gaussian DensityThe Normal or Gaussian probability density function, for the case of a single variable,is p(x) � N(x;�; �2) = 1(2��2)1=2 exp �(x� �)22�2 ! (1.9)where � and �2 are known as the mean and variance, and � (the square root of thevariance) is called the standard deviation. The quantity in front of the exponentialensures that R p(x)dx = 1. The above formula is often abbreviated to the shorthandp(x) = N(x;�; �). The terms Normal and Gaussian are used interchangeably.If we subtract the mean from a Gaussian variable and then divide by that variablesstandard deviation the resulting variable, z = (x��)=�, will be distributed accordingthe standard normal distribution, p(z) = N(z; 0; 1) which can be writtenp(z) = 1(2�)1=2 exp �z22 ! (1.10)The probability of z being above 0:5 is given by the area to the right of 0:5. We cancalculate it as p(z) � 0:5 = Z 10:5 p(z)dz (1.11)= 1� CDFGauss(0:5)where CDFGauss is the cumulative density function for a Gaussian.



16 Signal Processing Course, W.D. Penny, April 2000.1.2.4 Probability relationsThe same probability relations hold for continuous variables as for discrete variablesie. the conditional probability is p(yjx) = p(x; y)p(x) (1.12)Re-arranging gives the joint probabilityp(x; y) = p(yjx)p(x) (1.13)which, if y does not depend on x (ie. x and y are independent) means thatp(x; y) = p(y)p(x) (1.14)1.3 Expectation and MomentsThe expected value of a function f(x) is de�ned asE[f(x)] �< f(x) >= Z p(x)f(x)dx (1.15)and E[] is referred to as the expectation operator, which is also sometimes writtenusing the angled brackets <>. The kth moment of a distribution is given byE[xk] = Z p(x)xkdx (1.16)The mean is therefore the �rst moment of a distribution.E[x] = Z p(x)xdx = � (1.17)The kth central moment of a distribution is given byE[(x� �)k] = Z p(x)(x� �)kdx (1.18)The variance is therefore the second central momentE[(x� �)2] = Z p(x)(x� �)2dx = �2 (1.19)Sometimes we will use the notationV ar(x) = E[(x� �)2] (1.20)The third central moment is skewness and the fourth central moment is kurtosis (seelater). In the appendix we give examples of various distributions and of skewness andkurtosis.



Signal Processing Course, W.D. Penny, April 2000. 171.4 Maximum Likelihood EstimationWe can learn the mean and variance of a Gaussian distribution using the MaximumLikelihood (ML) framework as follows. A Gaussian variable xn has the PDFp(xn) = 1(2��2)1=2 exp �(x� �)22�2 ! (1.21)which is also called the likelihood of the data point. Given N Independent andIdentically Distributed (IID) (it is often assumed that the data points, or errors, areindependent and come from the same distribution) samples y = [y1; y2; ::; yN ] we havep(y) = NYn=1 p(yn) (1.22)which is the likelihood of the data set. We now wish to set � and �2 so as to maximisethis likelihood. For numerical reasons (taking logs gives us bigger numbers) this ismore conveniently achieved by maximising the log-likelihood (note: the maximum isgiven by the same values of � and �)L � log p(y) = �N2 log 2� � N2 log�2 � NXn= (yn � �)22�2 (1.23)The optimal values of � and � are found by setting the derivatives dLd� and dLd� to zero.This gives � = 1N NXn=1 yn (1.24)and �2 = 1N NXn=1(yn � �)2 (1.25)We note that the last formula is di�erent to the usual formula for estimating variance�2 = 1N � 1 NXn=1(xn � �)2 (1.26)because of the di�erence in normalisation. The last estimator of variance is preferredas it is an unbiased estimator (see later section on bias and variance).If we had an input-dependent mean, �n = wxn, then the optimal value for w can befound by maximising L. As only the last term in equation 1.23 depends on w thistherefore corresponds to minimisation of the squared errors between �n and yn. Thisprovides the connection between ML estimation and Least Squares (LS) estimation;ML reduces to LS for the case of Gaussian noise.
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Figure 1.2: (a) Positive correlation, r = 0:9 and (b) Negative correlation, r = �0:7.The dotted horizontal and vertical lines mark �x and �y.1.5 Correlation and Regression1.5.1 CorrelationThe covariance between two variables x and y is measured as�xy = 1N � 1 NXn=1(xi � �x)(yi � �y) (1.27)where �x and �y are the means of each variable. Note that �yx = �xy. Sometimes wewill use the notation V ar(x; y) = �xy (1.28)If x tends to be above its mean when y is above its mean then �xy will be positive. Ifthey tend to be on opposite sides of their means �xy will be negative. The correlationor Pearson's correlation coe�cient is a normalised covariancer = �xy�x�y (1.29)such that�1 � r � 1, a value of�1 indicating perfect negative correlation and a valueof +1 indicating perfect positive correlation; see Figure 1.2. A value of 0 indicatesno correlation. The strength of a correlation is best measured by r2 which takes onvalues between 0 and 1, a value near to 1 indicating strong correlation (regardless ofthe sign) and a value near to zero indicating a very weak correlation.1.5.2 Linear regressionWe now look at modelling the relationship between two variables x and y as a linearfunction; given a collection of N data points fxi; yig, we aim to estimate yi from xiusing a linear model ŷi = axi + b (1.30)
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Figure 1.3: The linear regression line is �tted by minimising the vertical distancebetween itself and each data point. The estimated lines are (a) ŷ = 0:9003x+ 0:2901and (b) ŷ = �0:6629x+ 4:9804.where we have written ŷ to denote our estimated value. Regression with one inputvariable is often called univariate linear regression to distinguish it from multivariatelinear regression where we have lots of inputs. The goodness of �t of the model tothe data may be measured by the least squares cost functionE = NXi=1(yi � ŷi)2 (1.31)The values of a and b that minimize the above cost function can be calculated bysetting the �rst derivatives of the cost function to zero and solving the resulting si-multaneous equations (derivatives are used to �nd maxima and minima of functions).The result is derived in the Appendix. The solutions area = �xy�2x (1.32)and b = �y � a�x (1.33)where �x and �y are the mean observed values of the data and �2x and �xy are theinput variance and input-output covariance. This enables least squares �tting of aregression line to a data set as shown in Figure 1.3.The model will �t some data points better than others; those that it �ts well constitutethe signal and those that it does'nt �t well constitute the noise. The strength of thenoise is measured by the noise variance�2e = 1N � 1 NXi=1(yi � ŷi)2 (1.34)and the strenth of the signal is given by �2y��2e . The signal-to-noise ratio is therefore(�2y � �2e)=�2e .Splitting data up into signal and noise components in this manner (ie. breaking downthe variance into what the model explains and what it does not) is at the heart ofstatistical procedures such as analysis of variance (ANOVA) [32].



20 Signal Processing Course, W.D. Penny, April 2000.Relation to correlationThe correlation measure r is intimately related to the linear regression model. Indeed(by substituting �xy from equation 1.27 into equation 1.32) r may be expressed asr = �x�y a (1.35)where a is the slope of the linear regression model. Thus, for example, the sign ofthe slope of the regression line de�nes the sign of the correlation. The correlationis, however, also a function of the standard deviation of the x and y variables; forexample, if �x is very large, it is possible to have a strong correlation even thoughthe slope may be very small.The relation between r and linear regression emphasises the fact that r is only ameasure of linear correlation. It is quite possible that two variables have a strongnonlinear relationship (ie. are nonlinearly correlated) but that r = 0. Measures ofnonlinear correlation will be discussed in a later lecture.The strenth of correlation can also be expressed in terms of quantites from the linearregresssion model r2 = �2y � �2e�2y (1.36)where �2e is the noise variance and �2y is the variance of the variable we are trying topredict. Thus r2 is seen to measure the proportion of variance explained by a linearmodel, a value of 1 indicating that a linear model perfectly describes the relationshipbetween x and y.1.6 Bias and VarianceGiven any estimation process, if we repeat it many times we can look at the expected(or average) errors (the di�erence between true and estimated values). This is com-prised of a systematic error (the 'bias') and an error due to the variability of the�tting process (the 'variance'). We can show this as follows.Let w be the true value of a parameter and ŵ be an estimate from a given sample.The expected squared error of the estimate can be decomposed as followsE = E[(ŵ � w)2] (1.37)= E[(ŵ � E[ŵ] + E[ŵ]� w)2]where the expectation is wrt. the distribution over ŵ and we have introduced E[ŵ],the mean value of the estimate. Expanding the square givesE = E[(ŵ � E[ŵ])2 + (E[ŵ]� w)2 + 2(ŵ � E[ŵ])(E[ŵ]� w)] (1.38)= E[(ŵ � E[ŵ])]2 + (E[ŵ]� w)2= V +B2
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Figure 1.4: Fitting a linear regression model (dotted line) to data points (circles) whichare generated from a quadratic function (solid line) with additive noise (of variance0.01).where the third term has dropped out because E[ŵ] � E[ŵ] = 0. The error thusconsists of two terms (i) a variance term V and (ii) a bias term; the square of thebias, B2.Estimates of parameters are often chosen to be unbiased ie. to have zero bias. Thisis why we see the 1=(N � 1) term in an estimate of variance, for example.Simple models (eg. linear models) have a high bias but low variance whereas morecomplex models (eg. polynomial models) have a low bias but a high variance. Toselect the optimal model complexity, or model order, we must solve this bias-variancedilemma [20].1.7 Minimum variance estimationThere is a lower bound to the variance of any unbiased estimate which is given byV ar(�̂) � 1E[@L(D; �)=@�]2 (1.39)where L(D; �) � log p(D; �) is the log-likelihood of the data and the expectation istaken wrt. p(D; �). This is known as the Cramer-Rao bound. Any estimator thatattains this variance is called the Minimum Variance Unbiased Estimator (MVUE).The denominator, being an inverse variance, therefore measures the maximum preci-sion with which we can estimate �. It is known as the Fisher InformationI(�) = E[@L(D; �)=@�]2 (1.40)
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Figure 1.5: (a) Bias component B and (b) Variance component V . The bias representsa systematic error in our modelling procedure (ie. �tting a quadratic function witha linear function); the linear model systematically underpredicts at the edges andoverpredicts in the middle. The variance represents the variability of the model �ttingprocess; linear models lock on to the middle of a data set and then set their slopeas necessary. The variance is therefore less in the middle than at the edges; in themiddle this variance is simply the variance of the additive noise (0.01). The expectedprediction error at any point is the sum of the variance plus the bias squared.For unbiased estimates [53] it can also be expressed asI(�) = �E[@2L(D; �)=@�2] (1.41)1.8 Statistical InferenceWhen we estimate the mean and variance from small samples of data our estimatesmay not be very accurate. But as the number of samples increases our estimates getmore and more accurate and as this number approaches in�nity the sample meanapproaches the true mean or population mean. In what follows we refer to the samplemeans and variances as m and s and the population means and standard deviationsas � and �.Hypothesis Testing: Say we have a hypothesis H which is The mean value of mysignal is 32. This is often referred to as the null hypothesis or H0. We then get somedata and testH which is then either accepted or rejected with a certain probability orsigni�cance level, p. Very often we choose p = 0:05 (a value used throughout science).We can do a one-sided or a two-sided statistical test depending on exactly what thenull hypothesis is. In a one-sided test our hypothesis may be (i) our parameter is lessthan x or (ii) our parameter is greater than x. For two-sided tests our hypothesis isof the form (iii) our parameter is x. This last hypothesis can be rejected if the samplestatistic is either much smaller or much greater than it should be if the parametertruly equals x.



Signal Processing Course, W.D. Penny, April 2000. 231.8.1 MeansTo �nd out if your mean is signi�cantly di�erent from a hypothesized value � thereare basically two methods. The �rst assumes you know the population/true varianceand the second allows you to use the sample variance.Known varianceIf we estimate the mean from a sample of data, then this estimate itself has a mean anda standard deviation. The standard deviation of the sample mean is (see appendix)�m = �=pN (1.42)where � is the known true standard deviation. The probability of getting a particularsample mean from N samples is given by p(z) wherez = m� ��=pN (1.43)For example, suppose we are given 50 data points from a normal population withhypothesized mean � = 32 and standard deviation � = 2 and we get a sample meanof 32:3923, as shown in Figure 1.6. The probability of getting a sample mean at leastthis big is p(m > 32:3923) = 1� CDFGauss(z) (1.44)where z = (32:3923 � 32)=(2=p50) = 1:3869 which is (from tables or computerevaluation) 0:0827 ie. reasonably likely; we would accept the hypothesis at the p =0:05 level (because we are doing a two-sided test we would accept H0 unless theprobability was less than p = 0:025).Unknown varianceIf we don't know the true variance we can use the sample variance instead. We canthen calculate the statistic t = m� �s=pN (1.45)which is distributed according the t-distribution (see appendix). Now, the t-distributionhas a parameter v, called the degrees of freedom (DF). It is plotted in Figure 1.7 withv = 3 and v = 49 degrees of freedom; smaller v gives a wider distribution.Now, from our N = 50 data points we calculated the sample variance ie. given,originally, 50 DF we have used up one DF leaving N � 1 = 49 DF. Hence, ourt-statistic has v = 49 degrees of freedom.Assume we observed s = 2 and m = 32:3923 (as before) and our hypothesized meanis 32. We can calculate the associated probability fromp(m > 32:3923) = 1� CDFt(t) (1.46)
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Figure 1.6: N=50 data points. The hypthosized mean value of 32 is shown as a dottedline and the sample mean as a solid line.
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Figure 1.7: The t-distribution with (a) v = 3 and (b) v = 49 degrees of freedom.where t = (32:3923 � 32=(2=p50) = 1:3869. From tables this gives 0:0859 ie. rea-sonably likely (again, because we are doing a two-sided test, we would accept H0unless the probability was less than p = 0:025). Notice, however, that the probabilityis higher than when we knew the standard deviation to be 2. This shows that a t-distribution has heavier tails than a Normal distribution ie. extreme events are morelikely.1.8.2 RegressionIn a linear regression model we are often interested in whether or not the gradient issigni�cantly di�erent from zero or other value of interest.To answer the question we �rst estimate the variance of the slope and then perform



Signal Processing Course, W.D. Penny, April 2000. 25a t-test. In the appendix we show that the variance of the slope is given by 1�2a = �2e(N � 1)�2x (1.47)We then calculate the t-statistic t = a� ah�a (1.48)where ah is our hypothesized slope value (eg. ah may be zero) and look up p(t)with N � 2 DF (we have used up 1DF to estimate the input variance and 1DF toestimate the noise variance). In the data plotted in Figure 1.3(b) the estimatedslope is a = �0:6629. From the data we also calculate that �a = 0:077. Hence,to �nd out if the slope is signi�cantly non-zero we compute CDFt(t) where t =�0:6629=0:077 = �8:6. This has a p-value of 10�13 ie. a very signi�cant value.To �nd out if the slope is signi�cantly di�erent from �0:7 we calculate CDFt(t) fort = (�0:6629+0:7)=0:077 = 0:4747 which gives a p-value of 0:3553 ie. not signi�cantlydi�erent (again, we must bear in mind that we need to do a two-sided test; see earlier).1.8.3 CorrelationBecause of the relationship between correlation and linear regression we can �ndout if correlations are signi�cantly non-zero by using exactly the same method asin the previous section; if the slope is signi�cantly non-zero then the correspondingcorrelation is also signi�cantly non-zero.By substituting a = (�y=�x)r (this follows from equation 1.32 and equation 1.29) and�2e = (1�r2)�2y (from equation 1.36) into equation 1.47 and then �a into equation 1.48we get the test statistic 2 t = rpN � 2p1� r2 (1.49)which has N � 2 DF.For example, the two signals in Figure 1.8(a) have, over the N = 50 given samples, acorrelation of r = 0:8031 which gives t = 9:3383 and a p-value of 10�12. We thereforereject the hypothesis that the signals are not correlated; they clearly are. The signalsin Figure 1.8(b) have a correlation of r = 0:1418 over the N = 50 given samples whichgives t = 0:9921 and a p-value of p = 0:1631. We therefore accept the null hypothesisthat the signals are not correlated.1When estimating �2x we should divide by N � 1 and when estimating �2e we should divide byN � 2.2Strictly, we should use �2e = N�1N�2(1� r2)�2y to allow for using N � 2 in the denominator of �2e .
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Chapter 2
Linear Algebra
2.1 IntroductionWe discuss vectors, matrices, transposes, covariance, correlation, diagonal and inversematrices, orthogonality, subspaces and eigenanalysis. An alterntive source for muchof this material is the excellent book by Strang [58].2.2 Transposes and Inner ProductsA collection of variables may be treated as a single entity by writing them as a vector.For example, the three variables x1, x2 and x3 may be written as the vectorx = 264 x1x2x3 375 (2.1)Bold face type is often used to denote vectors (scalars - single variables - are writtenwith normal type). Vectors can be written as column vectors where the variables godown the page or as row vectors where the variables go across the page (it needs tobe made clear when using vectors whether x means a row vector or a column vector -most often it will mean a column vector and in our text it will always mean a columnvector, unless we say otherwise). To turn a column vector into a row vector we usethe transpose operator xT = [x1; x2; x3] (2.2)The transpose operator also turns row vectors into column vectors. We now de�nethe inner product of two vectorsxTy = [x1; x2; x3] 264 y1y2y3 375 (2.3)= x1y1 + x2y2 + x3y327



28 Signal Processing Course, W.D. Penny, April 2000.= 3Xi=1 xiyiwhich is seen to be a scalar. The outer product of two vectors produces a matrixxyT = 264 x1x2x3 375 [y1; y2; y3] (2.4)= 264 x1y1 x1y2 x1y3x2y1 x2y2 x2y3x3y1 x3y2 x3y3 375An N �M matrix has N rows and M columns. The ijth entry of a matrix is theentry on the jth column of the ith row. Given a matrix A (matrices are also oftenwritten in bold type) the ijth entry is written as Aij. When applying the transposeoperator to a matrix the ith row becomes the ith column. That is, ifA = 264 a11 a12 a13a21 a22 a23a31 a32 a33 375 (2.5)then AT = 264 a11 a21 a31a12 a22 a32a13 a23 a33 375 (2.6)A matrix is symmetric if Aij = Aji. Another way to say this is that, for symmetricmatrices, A = AT .Two matrices can be multiplied if the number of columns in the �rst matrix equalsthe number of rows in the second. MultiplyingA, an N�M matrix, by B, anM�Kmatrix, results in C, an N � K matrix. The ijth entry in C is the inner productbetween the ith row in A and the jth column in B. As an example" 2 3 45 6 7 # 264 1 3 7 24 3 4 15 6 4 2 375 = " 34 39 42 1564 75 87 30 # (2.7)Given two matrices A and B we note that(AB)T = BTAT (2.8)2.2.1 Properties of matrix multiplicationMatrix multiplication is associative(AB)C = A(BC) (2.9)distributive A(B +C) = AB +AC (2.10)but not commutative AB 6= BA (2.11)



Signal Processing Course, W.D. Penny, April 2000. 292.3 Types of matrices2.3.1 Covariance matricesIn the previous chapter the covariance, �xy, between two variables x and y was de-�ned. Given p variables there are p � p covariances to take account of. If we writethe covariances between variables xi and xj as �ij then all the covariances can besummarised in a covariance matrix which we write below for p = 3C = 264 �21 �12 �13�21 �22 �23�31 �32 �23 375 (2.12)The ith diagonal element is the covariance between the ith variable and itself whichis simply the variance of that variable; we therefore write �2i instead of �ii. Also, notethat because �ij = �ji covariance matrices are symmetric.We now look at computing a covariance matrix from a given data set. Suppose wehave p variables and that a single observation xi (a row vector) consists of measuringthese variables and suppose there are N such observations. We now make a matrixX by putting each xi into the ith row. The matrix X is therefore an N � p matrixwhose rows are made up of di�erent observation vectors. If all the variables have zeromean then the covariance matrix can then be evaluated asC = 1N � 1XTX (2.13)This is a multiplication of a p�N matrix,XT , by a N�p matrix,X, which results ina p� p matrix. To illustrate the use of covariance matrices for time series, �gure 2.1shows 3 time series which have the following covariance relationC1 = 264 1 0:1 1:60:1 1 0:21:6 0:2 2:0 375 (2.14)and mean vector m1 = [13; 17; 23]T (2.15)2.3.2 Diagonal matricesA diagonal matrix is a square matrix (M = N) where all the entries are zero exceptalong the diagonal. For exampleD = 264 4 0 00 1 00 0 6 375 (2.16)
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tFigure 2.1: Three time series having the covariance matrix C1 and mean vector m1shown in the text. The top and bottom series have high covariance but none of theother pairings do.There is also a more compact notation for the same matrixD = diag([4; 1; 6]) (2.17)If a covariance matrix is diagonal it means that the covariances between variables arezero, that is, the variables are all uncorrelated. Non-diagonal covariance matrices areknown as full covariance matrices. If V is a vector of variances V = [�21; �22; �23 ]T thenthe corresponding diagonal covariance matrix is V d = diag(V ).2.3.3 The correlation matrixThe correlation matrix,R, can be derived from the covariance matrix by the equationR = BCB (2.18)where B is a diagonal matrix of inverse standard deviationsB = diag([1=�1; 1=�2; 1=�3]) (2.19)2.3.4 The identity matrixThe identity matrix is a diagonal matrix with ones along the diagonal. Multiplicationof any matrix, X by the identity matrix results in X. That isIX =X (2.20)The identity matrix is the matrix equivalent of multiplying by 1 for scalars.



Signal Processing Course, W.D. Penny, April 2000. 312.4 The Matrix InverseGiven a matrix X its inverse X�1 is de�ned by the propertiesX�1X = I (2.21)XX�1 = Iwhere I is the identity matrix. The inverse of a diagonal matrix with entries dii isanother diagonal matrix with entries 1=dii. This satis�es the de�nition of an inverse,eg. 264 4 0 00 1 00 0 6 375 264 1=4 0 00 1 00 0 1=6 375 = 264 1 0 00 1 00 0 1 375 (2.22)More generally, the calculation of inverses involves a lot more computation. Beforelooking at the general case we �rst consider the problem of solving simultaneousequations. These constitute relations between a set of input or independent variablesxi and a set of output or dependent variables yi. Each input-output pair constitutesan observation. In the following example we consider just N = 3 observations andp = 3 dimensions per observation2w1 +w2 + w3 = 54w1 �6w2 = �2�2w1 +7w2 + 2w3 = 9which can be written in matrix form264 2 1 14 �6 0�2 7 2 375 264 w1w2w3 375 = 264 5�29 375 (2.23)or in matrix form Xw = y (2.24)This system of equations can be solved in a systematic way by subtracting multiplesof the �rst equation from the second and third equations and then subtracting mul-tiples of the second equation from the third. For example, subtracting twice the �rstequation from the second and �1 times the �rst from the third gives264 2 1 10 �8 �20 8 3 375 264 w1w2w3 375 = 264 5�124 375 (2.25)Then, subtracting �1 times the second from the third gives264 2 1 10 �8 �20 0 1 375 264 w1w2w3 375 = 264 5�122 375 (2.26)This process is known as forward elimination. We can then substitute the value forw3 from the third equation into the second etc. This process is back-substitution. The



32 Signal Processing Course, W.D. Penny, April 2000.two processes are together known as Gaussian elimination. Following this throughfor our example we get w = [1; 1; 2]T .When we come to invert a matrix (as opposed to solve a system of equations as inthe previous example) we start with the equationAA�1 = I (2.27)and just write down all the entries in the A and I matrices in one big matrix264 2 1 1 1 0 04 �6 0 0 1 0�2 7 2 0 0 1 375 (2.28)We then perform forward elimination 1 until the part of the matrix corresponding toA equals the identity matrix; the matrix on the right is then A�1 (this is because inequation 2.27 if A becomes I then the left hand side is A�1 and the right side mustequal the left side). We get264 1 0 0 1216 �516 �6160 1 0 48 �38 �280 0 1 �1 1 1 375 (2.29)This process is known as the Gauss-Jordan method. For more details see Strang'sexcellent book on Linear Algebra [58] where this example was taken from.Inverses can be used to solve equations of the form Xw = y. This is achieved bymultiplying both sides by X�1 givingw =X�1y (2.30)Hence, 264 w1w2w3 375 = 264 1216 �516 �61648 �38 �28�1 1 1 375 264 5�29 375 (2.31)which also gives w = [1; 1; 2]T .The inverse of a product of matrices is given by(AB)�1 = B�1A�1 (2.32)Only square matrices are invertible because, for y = Ax, if y and x are of di�erentdimension then we will not necessarily have a one-to-one mapping between them.1We do not perform back-substitution but instead continue with forward elimination until we geta diagonal matrix.



Signal Processing Course, W.D. Penny, April 2000. 332.5 OrthogonalityThe length of a d-element vector x is written as jjxjj wherejjxjj2 = dXi=1 x2i (2.33)= xTxTwo vectors x and y are orthogonal if

x

x-y

y

Figure 2.2: Two vectors x and y. These vectors will be orthogonal if they obeyPythagoras' relation ie. that the sum of the squares of the sides equals the square ofthe hypoteneuse. jjxjj2 + jjyjj2 = jjx� yjj2 (2.34)That is, if x21 + :::+ x2d + y21 + ::: + y2d = (x1 � y1)2 + :::+ (xd � yd)2 (2.35)Expanding the terms on the right and re-arranging leaves only the cross-termsx1y1 + ::::: + xdyd = 0 (2.36)xTy = 0That is, two vectors are orthogonal if their inner product is zero.2.5.1 Angles between vectorsGiven a vector b = [b1; b2]T and a vector a = [a1; a2]T we can work out that
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Figure 2.3: Working out the angle between two vectors.cos� = a1jjajj (2.37)sin� = a2jjajjcos � = b1jjbjjsin� = b2jjbjj (2.38)Now, cos� = cos(� � �) which we can expand using the trig identitycos(� � �) = cos � cos� + sin� sin� (2.39)Hence cos(�) = a1b1 + a2b2jjajjjjbjj (2.40)More generally, we have cos(�) = aTbjjajjjjbjj (2.41)Because, cos �=2 = 0, this again shows that vectors are orthogonal for aTb = 0. Also,because j cos �j � 1 where jxj denotes the absolute value of x we havejaTbj � jjajjjjbjj (2.42)which is known as the Schwarz Inequality.2.5.2 ProjectionsThe projection of a vector b onto a vector a results in a projection vector p which isthe point on the line a which is closest to the point b. Because p is a point on a it
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δ

a

b

b-p

pFigure 2.4: The projection of b onto a is the point on a which is closest to b.must be some scalar multiple of it. That isp = wa (2.43)where w is some coe�cient. Because p is the point on a closest to b this means thatthe vector b� p is orthogonal to a. ThereforeaT (b� p) = 0 (2.44)aT (b� wa) = 0Re-arranging gives w = aTbaTa (2.45)and p = aTbaTaa (2.46)We refer to p as the projection vector and to w as the projection.2.5.3 Orthogonal MatricesThe set of vectors q1::qk are orthogonal ifqTj qk = 0 j 6= kdjk j = k (2.47)If these vectors are placed in columns of the matrix Q thenQTQ = QQT = D (2.48)



36 Signal Processing Course, W.D. Penny, April 2000.2.5.4 Orthonormal MatricesThe set of vectors q1::qk are orthonormal ifqTj qk = 0 j 6= k1 j = k (2.49)If these vectors are placed in columns of the matrix Q thenQTQ = QQT = I (2.50)Hence, the transpose equals the inverseQT = Q�1 (2.51)The vectors q1::qk are said to provide an orthonormal basis. This means that anyvector can be written as a linear combination of the basis vectors. A trivial exampleis the two-dimensional cartesian coordinate system where q1 = [1; 0]T (the x-axis)and q2 = [0; 1]T (the y-axis). More generally, to represent the vector x we can writex = ~x1q1 + ~x2q2 + :::+ ~xdqd (2.52)To �nd the appropriate coe�cients ~xk(the co-ordinates in the new basis), multiplyboth sides by qTk . Due to the orthonormality property all terms on the right disappearexcept one leaving ~xk = qTkx (2.53)The new coordinates are the projections of the data onto the basis functions (re.equation 2.45, there is no denominator since qTk qk = 1). In matrix form, equation 2.52can be written as x = Q~x which therefore has the solution ~x = Q�1x. But giventhat Q�1 = QT we have ~x = QTx (2.54)Transformation to an orthonormal basis preserves lengths. This is because 2jj~xjj = jjQTxjj (2.55)= (QTx)TQTx= xTQQTx= xTx= jjxjjSimilarly, inner products and therefore angles between vectors are preserved. That is~xT ~y = (QTx)TQTy (2.56)= xTQQTy= xTyTherefore, transformation by an orthonormal matrix constitutes a rotation of theco-ordinate system.2Throughout this chapter we will make extensive use of the matrix identities (AB)T = BTATand (AB)C = A(BC). We will also use (AB)�1 = B�1A�1.



Signal Processing Course, W.D. Penny, April 2000. 372.6 SubspacesA space is, for example, a set of real numbers. A subspace S is a set of points fxgsuch that (i) if we take two vectors from S and add them we remain in S and (ii) ifwe take a vector from S and multiply by a scalar we also remain in S (S is said to beclosed under addition and multiplication). An example is a 2-D plane in a 3-D space.A subspace can be de�ned by a basis.2.7 DeterminantsThe determinant of a two-by-two matrixA = " a bc d # (2.57)is given by det(A) = ad� bc (2.58)The determinant of a three-by-three matrixA = 264 a b cd e fg h i 375 (2.59)is given bydet(A) = a det " e fh i #!� b det " d fg i #!+ c det " d eg h #! (2.60)Determinants are important because of their properties. In particular, if two rows ofa matrix are equal then the determinant is zero eg. ifA = " a ba b # (2.61)then det(A) = ab� ba = 0 (2.62)In this case the transformation from x = [x1; x2]T to y = [y1; y2]T given byAx = y (2.63)reduces two pieces of information (x1 and x2) to one piece of informationy = y1 = y2 = ax1 + bx2 (2.64)In this case it is not possible to reconstruct x from y; the transformation is notinvertible - the matrix A does not have an inverse and the value of the determinantprovides a test for this: If det(A) = 0 the matrix A is not invertible; it is singular.
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1x 2x y

Figure 2.5: A singular (non-invertible) transformation.Conversely, if det(A) 6= 0 then A is invertible. Other properties of the determinantare det(AT ) = det(A) (2.65)det(AB) = det(A) det(B)det(A�1) = 1= det(A)det(A) = Yk akkAnother important property of determinants is that they measure the `volume' of amatrix. For a 3-by-3 matrix the three rows of the matrix form the edges of a cube.The determinant is the volume of this cube. For a d-by-d matrix the rows form theedges of a `parallepiped'. Again, the determinant is the volume.2.8 EigenanalysisThe square matrix A has eigenvalues � and eigenvectors q ifAq = �q (2.66)Therefore (A� �I)q = 0 (2.67)To satisfy this equation either q = 0, which is uninteresting, or the matrix A � �Imust reduce q to the null vector (a single point). For this to happen A � �I mustbe singular. Hence det(A� �I) = 0 (2.68)Eigenanalysis therefore proceeds by (i) solving the above equation to �nd the eigen-values �i and then (ii) substituting them into equation 2.66 to �nd the eigenvectors.For example, if A = " 4 �52 �3 # (2.69)then det(A� �I) = (4� �)(�3� �)� (�5)(2) = 0 (2.70)



Signal Processing Course, W.D. Penny, April 2000. 39which can be rearranged as �2 � �� 2 = 0 (2.71)(�+ 1)(�� 2) = 0Hence the eigenvalues are � = �1 and � = 2. Substituting back into equation 2.66gives an eigenvector q1 which is any multiple of [1; 1]T . Similarly, eigenvector q2 isany multiple of [5; 2]T .We now note that the determinant of a matrix is also equal to the product of itseigenvalues det(A) =Yk �k (2.72)We also de�ne the Trace of a matrix as the sum of its diagonal elementsTr(A) =Xk akk (2.73)and note that it is also equal to the sum of the eigenvaluesTr(A) =Xk �k (2.74)Eigenanalysis applies only to square matrices.2.9 Gram-SchmidtA general class of procedures for �nding eigenvectors are the de
ation methods ofwhich QR-decomposition and Gram-Schmidt orthogonalization are examples.In Gram-Schmidt, we are given a set of vectors, say a,b and c and we wish to �nd aset of corresponding orthonormal vectors which we'll call q1,q2 and q3. To start withwe let q1 = ajjajj (2.75)We then compute b0 which is the original vector b minus the projection vector (seeequation 2.46) of b onto q1 b0 = b� qT1 bq1 (2.76)The second orthogonal vector is then a unit length version of b0q2 = b0jjb0jj (2.77)Finally, the third orthonormal vector is given byq3 = c0jjc0jj (2.78)where c0 = c� qT1 cq1 � qT2 cq2 (2.79)In QR-decomposition the Q terms are given by qi and the R terms by qTi c.



40 Signal Processing Course, W.D. Penny, April 2000.2.9.1 DiagonalizationIf we put the eigenvectors into the columns of a matrixQ = 26666664 j j : jj j : jq1 q2 : qdj j : jj j : j
37777775 (2.80)then, because, Aqk = �kqk, we haveAQ = 26666664 j j : jj j : j�1q1 �2q2 : �dqdj j : jj j : j

37777775 (2.81)If we put the eigenvalues into the matrix � then the above matrix can also be writtenas Q�. Therefore, AQ = Q� (2.82)Pre-multiplying both sides by Q�1 givesQ�1AQ = � (2.83)This shows that any square matrix can be converted into a diagonal form (providedit has distinct eigenvalues; see eg. [58] p. 255). Sometimes there won't be d distincteigenvalues and sometimes they'll be complex.2.9.2 Spectral TheoremFor any real symmetric matrix all the eigenvalues will be real and there will be d dis-tinct eigenvalues and eigenvectors. The eigenvectors will be orthogonal (if the matrixis not symmetric the eigenvectors won't be orthogonal). They can be normalised andplaced into the matrix Q. Since Q is now orthonormal we have Q�1 = QT . HenceQTAQ = � (2.84)Pre-multiplying by Q and post-multiplying by QT givesA = Q�QT (2.85)which is known as the spectral theorem. It says that any real, symmetric matrix canbe represented as above where the columns of Q contain the eigenvectors and � is adiagonal matrix containing the eigenvalues, �i. Equivalently,A = 26666664 j j : jj j : jq1 q2 : qdj j : jj j : j
37777775 26666664 �1 �2 �d

37777775 26664 � � q1 � �� � q2 � �: : : :� � qd � � 37775 (2.86)



Signal Processing Course, W.D. Penny, April 2000. 41This can also be written as a summationA = dXk=1�kqkqTk (2.87)2.10 Complex MatricesIf A = " 3 + 2i 4 6 + 3i�2 + i 3 + 2i 7 + 4i # (2.88)then the complex transpose or Hermitian transpose is given byAH = 264 3� 2i �2� i4 3� 2i6� 3i 7� 4i 375 (2.89)ie. each entry changes into its complex conjugate (see appendix) and we then trans-pose the result. Just as A�T denotes the transpose of the inverse so A�H denotesthe Hermitian transpose of the inverse.If AHA is a diagonal matrix then A is said to be a unitary matrix. It is the complexequivalent of an orthogonal matrix.2.11 Quadratic FormsThe quadratic functionf(x) = a11x21 + a12x1x2 + a21x2x1 + ::: + addx2d (2.90)can be written in matrix form asf(x) = [x1; x2; :::; xd] 26666664 a11 a12 a1da21 a22 a2dad1 ad2 add
37777775 26664 x1x2:xd 37775 (2.91)which is written compactly as f(x) = xTAx (2.92)If f(x) > 0 for any non-zero x then A is said to be positive-de�nite. Similarly, iff(x) � 0 then A is positive-semi-de�nite.If we substitute A = Q�QT and x = Qy where y are the projections onto theeigenvectors, then we can write f(x) = yT�y (2.93)= Xi y2i �i



42 Signal Processing Course, W.D. Penny, April 2000.Hence, for positive-de�niteness we must therefore have �i > 0 for all i (ie. positiveeigenvalues).2.11.1 EllipsesFor 2-by-2 matrices if A = I then we havef = x21 + x22 (2.94)which is the equation of a circle with radius pf . If A = kI we havefk = x21 + x22 (2.95)The radius is now qf=k. If A = diag([k1; k2]) we havef = k1x21 + k2x22 (2.96)which is the equation of an ellipse. For k1 > k2 the major axis has length qf=k2 andthe minor axis has length qf=k1.For a non-diagonal A we can diagonalise it using A = Q�QT . This givesf = �1~x21 + �2~x22 (2.97)where the ellipse now lives in a new co-ordinate system given by the rotation ~x =xTQ. The major and minor axes have lengths qf=�2 and qf=�1.



Chapter 3
Multivariate Statistics
3.1 IntroductionWe discuss covariance matrices, multivariate linear regression, feature selection, prin-cipal component analysis and singular value decomposition. See Chat�eld's book onmultivariate analysis for more details [10]. Also, a good practical introduction to thematerial on regression is presented by Kleinbaum et al. [32]. More details of matrixmanipulations are available in Weisberg [64] and Strang has a great in-depth intro tolinear algebra [58]. See also relevant material in Numerical Recipes [49].
3.2 Multivariate Linear RegressionFor a multivariate linear data set, the dependent variable yi is modelled as a linearcombination of the input variables xi and an error term 1yi = xiw + ei (3.1)where xi is a row vector, w is a column vector and ei is an error. The overall goodnessof �t can be assessed by the least squares cost functionE = NXi=1(yi � ŷi)2 (3.2)where ŷ = xiw.1The error term is introduced because, very often, given a particular data set it will not bepossible to �nd an exact linear relationship between xi and yi for every i. We therefore cannotdirectly estimate the weights as X�1y. 43



44 Signal Processing Course, W.D. Penny, April 2000.3.2.1 Estimating the weightsThe least squares cost function can be written in matrix notation asE = (y �Xw)T (y �Xw) (3.3)where X is an N-by-p matrix whose rows are made up of di�erent input vectors andy is a vector of targets. The weight vector that minimises this cost function can becalculated by setting the �rst derivative of the cost function to zero and solving theresulting equation.By expanding the brackets and collecting terms (using the matrix identity (AB)T =BTAT we get E = yTy � 2wXTy �wTXTXw (3.4)The derivative with respect to w is 2@E@w = �2XTy � 2XTXw (3.5)Equating this derivative to zero gives(XTX)w =XTy (3.6)which, in regression analysis, is known as the 'normal equation'. Hence,ŵ = (XTX)�1XTy (3.7)This is the general solution for multivariate linear regression 3. It is a unique minimumof the least squares error function (ie. this is the only solution).Once the weights have been estimated we can then estimate the error or noise variancefrom �2e = 1N � 1 NXi=1(yi � ŷi)2 (3.8)3.2.2 Understanding the solutionIf the inputs are zero mean then the input covariance matrix multiplied by N-1 isCx =XTX (3.9)The weights can therefore be written asŵ = C�1x XTy (3.10)ie. the inverse covariance matrix times the inner products of the inputs with theoutput (the ith weight will involve the inner product of the ith input with the output).2From matrix calculus [37] we know that the derivative of cTBc with respect to c is (BT +B)c.Also we note that XTX is symmetric.3In practice we can use the equivalent expression ŵ = X+1y where X+1 is the pseudo-inverse[58]. This method is related to Singular Value Decomposition and is discussed later.



Signal Processing Course, W.D. Penny, April 2000. 45Single inputFor a single input C�1x = 1=(N � 1)�2x1 and XTy = (N � 1)�x1y. Henceŵ1 = �x1y�2x1 (3.11)This is exactly the same as the estimate for the slope in linear regression (�rst lecture).This is re-assuring.Uncorrelated inputsFor two uncorrelated inputsC�1x = 24 1(N�1)�2x1 00 1(N�1)�2x2 35 (3.12)We also have XTy = " (N � 1)�x1;y(N � 1)�x2;y # (3.13)The two weights are therefore ŵ1 = �x1y�2x1 (3.14)ŵ2 = �x2y�2x2Again, these solutions are the same as for the univariate linear regression case.General caseIf the inputs are correlated then a coupling is introduced in the estimates of theweights; weight 1 becomes a function of �x2y as well as �x1yŵ = " �2x1 �x1x2�x1x2 �2x2 #�1 " �x1;y�x2;y # (3.15)3.2.3 Feature selectionSome of the inputs in a linear regression model may be very useful in predicting theoutput. Others, not so. So how do we �nd which inputs or features are useful ? Thisproblem is known as feature selection.



46 Signal Processing Course, W.D. Penny, April 2000.The problem is tackled by looking at the coe�cients of each input (ie. the weights) andseeing if they are signi�cantly non-zero. The procedure is identical to that describedfor univariate linear regression.The only added di�culty is that we have more inputs and more weights, but theprocedure is basically the same. Firstly, we have to estimate the variance on eachweight. This is done in the next section. We then compare each weight to zero usinga t-test.The weight covariance matrixDi�erent instantiations of target noise will generate di�erent estimated weight vectorsaccording to equation 3.7. For the case of Gaussian noise we do not actually haveto compute the weights on many instantiations of the target noise and then computethe sample covariance 4; the corresponding weight covariance matrix is given by theequation � = V ar((XTX)�1XTy) (3.16)In the appendix we show that this can be evaluated as� = �2e(XTX)�1 (3.17)The correlation in the inputs introduces a correlation in the weights; for uncorrelatedinputs the weights will be uncorrelated. The variance of the jth weight, wj, is thengiven by the jth diagonal entry in the covariance matrix�2wj = �jj (3.18)To see if a weight is signi�cantly non-zero we then compute CDFt(t) (the cumula-tive density function; see earlier lecture) where t = wj=�wj and if it is above somethreshold, say p = 0:05, the corresponding feature is removed.Note that this procedure, which is based on a t-test, is exactly equivalent to a similarprocedure based on a partial F-test (see, for example, [32] page 128).If we do remove a weight then we must recompute all the other weights (and variances)before deciding whether or not the other weights are signi�cantly non-zero. Thisusually proceeds in a stepwise manner where we start with a large number of featuresand reduce them as necessary (stepwise backward selection) or gradually build up thenumber of features (stepwise forward selection) [32].Note that, if the weights were uncorrelated we could do feature selection in a singlestep; we would not have to recompute weight values after each weight removal. Thisprovides one motivation for the use of orthogonal transforms in which the weights areuncorrelated. Such transforms include Fourier and Wavelet transforms as we shallsee in later lectures.4But this type of procedure is the basis of bootstrap estimates of parameter variances. See [17].



Signal Processing Course, W.D. Penny, April 2000. 473.2.4 ExampleSuppose we wish to predict a time series x3 from two other time series x1 and x2. Wecan do this with the following regression model 5x3 = w0 + w1x1 + w2x2 (3.19)and the weights can be found using the previous formulae. To cope with the constant,w0, we augment the X vector with an additional column of 1's.We analyse data having covariance matrixC1 and mean vectorm1 (see equations 2.15and 2.14 in an earlier lecture). N = 50 data points were generated and are shown inFigure 3.1. The weights were then estimated from equation 3.7 asŵ = [w1; w2; w0]T (3.20)= [1:7906;�0:0554; 0:6293]TNote that w1 is much bigger than w2. The weight covariance matrix was estimatedfrom equation B.27 as� = 264 0:0267 0:0041 �0:41970:0041 0:0506 �0:9174�0:4197 �0:9174 21:2066 375 (3.21)giving �w1 = 0:1634 and �w2 = 0:2249. The corresponding t-statistics are t1 = 10:96and t2 = �0:2464 giving p-values of 10�15 and 0:4032. This indicates that the �rstweight is signi�cantly di�erent from zero but the second weight is not ie. x1 is a goodpredictor of x3 but x2 is not. We can therefore remove x2 from our regression model.Question: But what does linear regression tell us about the data that the correla-tion/covariance matrix does'nt ? Answer: Partial correlations.3.2.5 Partial CorrelationRemember (see eg. equation 1.36 from lecture 1), the square of the correlation coef-�cient between two variables x1 and y is given byr2x1y = �2y � �2e(x1)�2y (3.22)where �2e(x1) is the variance of the errors from using a linear regression model basedon x1 to predict y. Writing �2y = �2e(0), ie. the error with no predictive variablesr2x1y = �2e(0)� �2e(x1)�2e(0) (3.23)5Strictly, we can only apply this model if the samples within each time series are independent (seelater). To make them independent we can randomize the time index thus removing any correlationbetween lagged samples. We therefore end up with a random variables rather than time series.
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tFigure 3.1: Three time series having the correlation matrix C1 and mean vector m1shown in the text. The dotted line shows the value of the third time series as predictedfrom the other two using a regression model.When we have a second predictive variable x2, the square of the partial correlationbetween x2 and y is de�ned asr2x2yjx1 = �2e(x1)� �2e(x1; x2)�2e(x1) (3.24)where �2e(x1; x2) is the variance of the errors from the regression model based on x1and x2. It's the extra proportion of variance in y explained by x2. It's di�erent tor2x2y because x2 may be correlated to x1 which itself explains some of the variance iny. After controlling for this, the resulting proportionate reduction in variance is givenby r2x2yjx1. More generally, we can de�ne pth order partial correlations which are thecorrelations between two variables after controlling for p variables.The sign of the partial correlation is given by the sign of the corresponding regressioncoe�cient.
Relation to regression coe�cientsPartial correlations are to regression coe�cients what the correlation is to the slopein univariate linear regression. If the partial correlation is signi�cantly non-zero thenthe corresponding regression coe�cient will also be. And vice-versa.



Signal Processing Course, W.D. Penny, April 2000. 493.3 Principal Component AnalysisGiven a set of data vectors fxng we can construct a covariance matrixC = 1N Xn (xn � �x)(xn � �x)T (3.25)or, if we construct a matrix X with rows equal to xn � �x thenC = 1NXTX (3.26)Because covariance matrices are real and symmetric we can apply the spectral theoremC = Q�QT (3.27)If the eigenvectors (columns of Q) are normalised to unit length, they constitutean orthonormal basis. If the eigenvalues are then ordered in magnitude such that�1 � �2 � ::: � �d then the decomposition is known as Principal Component Analysis(PCA). The projection of a data point xn onto the principal components isyn = QTxn (3.28)The mean projection is �y = QT �x (3.29)The covariance of the projections is given by the matrixCy = 1N Xn (yn � �y)(yn � �y)T (3.30)Substituting in the previous two expressions givesCy = 1N Xn QT (xn � �x)(xn � �x)TQ (3.31)= QTCQ= �where � is the diagonal eigenvalue matrix with entries �k (�2k = �k). This showsthat the variance of the kth projection is given by the kth eigenvalue. Moreover, itsays that the projections are uncorrelated. PCA may therefore be viewed as a lineartransform y = QTx (3.32)which produces uncorrelated data.3.3.1 The Multivariate Gaussian DensityIn d dimensions the general multivariate normal probability density can be writtenp(x) = 1(2�)d=2jCj1=2 exp��12(x� �x)TC�1(x� �x)� (3.33)



50 Signal Processing Course, W.D. Penny, April 2000.where the mean �x is a d-dimensional vector, C is a d� d covariance matrix, and jCjdenotes the determinant of C. Because the determinant of a matrix is the productof its eigenvalues then for covariance matrices, where the eigenvalues correspond tovariances, the determinant is a single number which represents the total volume ofvariance. The quantity M(x) = (x� �x)TC�1(x� �x) (3.34)which appears in the exponent is called the Mahalanobis distance from x to �x. Thisis the equation for an ellipse (see earlier). The directions of the axes are given by theprincipal components and the lengths are given by �iM(x) where �i is the standarddeviation of the data in the ith direction (see earlier section on quadratic forms andnote that �i = �2i ). We can therefore map a given probability p(x) to a Mahalanobisdistance (using equation E.9) and from that plot the ellipse axes. See the �gure inthe appendix.3.3.2 Dimensionality ReductionGiven that the eigenvalues in PCA are ordered and that they correspond to the vari-ance of the data in orthogonal directions then it would seem plausible that a reason-able data reconstruction could be obtained from just a few of the larger componentsand this is indeed the case.If we retain only a subset M < d of the basis vectors then a data point can bereconstructed as x̂n = MXk=1wnkqk + dXk=M+1 bkqk (3.35)where the bk are constants (they don't depend on n) and, as we have seen, wnk = qTkxn.If we keep only the projections wnk and the associated eigenvectors qk we have reducedthe dimension of our data set from d to M . Now, given that the actual data pointcan be written as xn = dXk=1wnkqk (3.36)where the sum is over all d components (not just M) then the reconstruction error isxn � x̂n = dXk=M+1(wnk � bk)qk (3.37)It is the cost of replacing the variable wnk by a constant bk. The reconstruction erroraveraged over the whole data set isEM = 1N NXn=1 jjxn � x̂njj (3.38)= 1N NXn=1 dXk=M+1(wnk � bk)2



Signal Processing Course, W.D. Penny, April 2000. 51where the qk's disappear because qTk qk = 1. We can minimise EM by settingbk = 1N NXn=1wnk (3.39)= qTk �xwhich is the mean projection in direction qk. The error is thereforeEM = 1N NXn=1 dXk=M+1 hqTk (xn � �x)i2 (3.40)= NN dXk=M+1qTkCqk= dXk=M+1�kThe reconstruction error is therefore minimised, for a given M , by throwing away thed �M smallest components, as you would expect. The corresponding error is justthe sum of the corresponding eigenvalues.3.3.3 Singular Value DecompositionThe eigenvalue-eigenvector factorisation (see equation 2.85)A = Q�QT (3.41)applies to square symmetric matrices only. There is an equivalent factorisation forrectangular matrices, having N rows and d columns, called Singular Value Decompo-sition (SVD) A = Q1DQT2 (3.42)where Q1 is an orthonormal N -by-N matrix, Q2 is an orthonormal d-by-d matrix,Dis a diagonal matrix of dimension N -by-d and the kth diagonal entry in D is knownas the kth singular value, �k.If we substitute the SVD of A into ATA, after some rearranging, we getATA = Q2DTDQT2 (3.43)which is of the form A = Q�QT where Q = Q2 and � = DTD. This shows thatthe columns of Q2 contain the eigenvectors of ATA and that D contains the squareroots of the corresponding eigenvalues. Similarly, by substituting the SVD of A intoAAT we can show that the columns of Q1 are the eigenvectors of AAT .



52 Signal Processing Course, W.D. Penny, April 2000.Relation to PCAGiven a data matrix X constructed as before (see PCA section), except that thematrix is scaled by a normalisation factor q1=N , then XTX is equivalent to thecovariance matrix C. If we therefore decompose X using SVD, the principal com-ponents will apear in Q2 and the square roots of the corresponding eigenvalues willappear in D.Therefore we can implement PCA in one of two ways (i) compute the covariance ma-trix and perform an eigendecomposition or (ii) use SVD directly on the (normalised)data matrix.The Pseudo-InverseGiven the SVD of a matrix A = Q1DQT2 (3.44)the Pseudo-Inverse of A is de�ned asA+ = Q2D+QT1 (3.45)where D+ is a d-by-N matrix with diagonal entries 1=�1; 1=�2; :::; 1=�d. The matrixD+ can be computed as D+ = (DTD)�1DT (3.46)The Pseudo-Inverse is used in the solution of the multivariate linear regression prob-lem (see equation 3.7) ŵ = (XTX)�1XTy (3.47)We can substitute the SVD for X into the above expression in a series of steps togive XTX = Q2DTDQT2 (3.48)The inverse is (XTX)�1 = Q2(DTD)�1QT2 (3.49)Hence (XTX)�1XT = Q2(DTD)�1DTQT1 (3.50)Substituting for D+ gives (XTX)�1XT = Q2D+QT1 (3.51)= X+Therefore, the linear regression weights can be computed by projecting the targetsonto the Pseudo-Inverse of the input data matrixŵ =X+y (3.52)



Chapter 4
Information Theory
4.1 IntroductionThis lecture covers entropy, joint entropy, mutual information and minimum descrip-tion length. See the texts by Cover [12] and Mackay [36] for a more comprehensivetreatment.
4.2 Measures of InformationInformation on a computer is represented by binary bit strings. Decimal numberscan be represented using the following encoding. The position of the binary digitBit 1 (23 = 8) Bit 2 (22 = 4) Bit 3 (21 = 2) Bit 4 (20 = 1) Decimal0 0 0 0 00 0 0 1 10 0 1 0 20 0 1 1 30 1 0 0 4. . . . .. . . . .0 1 1 1 141 1 1 1 15Table 4.1: Binary encodingindicates its decimal equivalent such that if there are N bits the ith bit representsthe decimal number 2N�i. Bit 1 is referred to as the most signi�cant bit and bit Nas the least signi�cant bit. To encode M di�erent messages requires log2M bits.53



54 Signal Processing Course, W.D. Penny, April 2000.4.3 EntropyThe table below shows the probability of occurrence p(xi) (to two decimal places) ofselected letters xi in the English alphabet. These statistics were taken from Mackay'sbook on Information Theory [36]. The table also shows the information content of axi p(xi) h(xi)a 0.06 4.1e 0.09 3.5j 0.00 10.7q 0.01 10.3t 0.07 3.8z 0.00 10.4Table 4.2: Probability and Information content of lettersletter h(xi) = log 1p(xi) (4.1)which is a measure of surprise; if we had to guess what a randomly chosen letter ofthe English alphabet was going to be, we'd say it was an A, E, T or other frequentlyoccuring letter. If it turned out to be a Z we'd be surprised. The letter E is socommon that it is unusual to �nd a sentence without one. An exception is the 267page novel `Gadsby' by Ernest Vincent Wright in which the author deliberately makesno use of the letter E (from Cover's book on Information Theory [12]). The entropyis the average information contentH(x) = MXi=1 p(xi)h(xi) (4.2)where M is the number of discrete values that xi can take. It is usually written asH(x) = � MXi=1 p(xi) log p(xi) (4.3)with the convention that 0 log 1=0 = 0. Entropy measures uncertainty.Entropy is maximised for a uniform distribution p(xi) = 1=M . The resulting entropyis H(x) = log2M which is the number of binary bits required to represent M di�erentmessages (�rst section). For M = 2, for example, the maximum entropy distributionis given by p(x1) = p(x2) = 0:5 (eg. an unbiased coin; biased coins have lowerentropy).The entropy of letters in the English language is 4.11 bits [12] (which is less thanlog226 = 4:7 bits). This is however, the information content due to considering justthe probability of occurence of letters. But, in language, our expectation of whatthe next letter will be is determined by what the previous letters have been. Tomeasure this we need the concept of joint entropy. Because H(x) is the entropy ofa 1-dimensional variable it is sometimes called the scalar entropy, to di�erentiate itfrom the joint entropy.



Signal Processing Course, W.D. Penny, April 2000. 554.4 Joint EntropyTable 2 shows the probability of occurence (to three decimal places) of selected pairsof letters xi and yi where xi is followed by yi. This is called the joint probabilityp(xi; yi). The table also shows the joint information contentxi yj p(xi; yj) h(xi; yj)t h 0.037 4.76t s 0.000 13.29t r 0.012 6.38Table 4.3: Probability and Information content of pairs of lettersh(xi; yj) = log 1p(xi; yj) (4.4)The average joint information content is given by the joint entropyH(x; y) = � MXi=1 MXj=1 p(xi; yj) log p(xi; yj) (4.5)If we �x x to, say xi then the probability of y taking on a particular value, say yj, isgiven by the conditional probabilityp(y = yjjx = xi) = p(x = xi; y = yj)p(x = xi) (4.6)For example, if xi = t and yj = h then the joint probability p(xi; yj) is just theprobability of occurrence of the pair (which from table 2 is 0:037). The conditionalprobability p(yjjxi), however, says that, given we've seen the letter t, what's theprobability that the next letter will be h (which from tables 1 and 2 is 0:037=0:07 =0:53). Re-arranging the above relationship (and dropping the y = yj notation) givesp(x; y) = p(yjx)p(x) (4.7)Now if y does not depend on x then p(yjx) = p(y). Hence, for independent variables,we have p(x; y) = p(y)p(x) (4.8)This means that, for independent variables, the joint entropy is the sum of the indi-vidual (or scalar entropies) H(x; y) = H(x) +H(y) (4.9)Consecutive letters in the English language are not independent (except either after orduring a bout of serious drinking). If we take into account the statistical dependenceon the previous letter, the entropy of English reduces to 3.67 bits per letter (from4.11). If we look at the statistics of not just pairs, but triplets and quadruplets ofletters or at the statistics of words then it is possible to calculate the entropy moreaccurately; as more and more contextual structure is taken into account the estimatesof entropy reduce. See Cover's book ([12] page 133) for more details.



56 Signal Processing Course, W.D. Penny, April 2000.4.5 Relative EntropyThe relative entropy or Kullback-Liebler Divergence between a distribution q(x) anda distribution p(x) is de�ned asD[qjjp] =Xx q(x) log q(x)p(x) (4.10)Jensen's inequality states that for any convex function 1 f(x) and set of M positivecoe�cients f�jg which sum to onef( MXj=1�jxj) � MXj=1�jf(xj) (4.11)A sketch of a proof of this is given in Bishop ([3], page 75). Using this inequality wecan show that �D[qjjp] = Xx q(x) log p(x)q(x) (4.12)� logXx p(x)� log 1Hence D[qjjp] � 0 (4.13)The KL-divergence will appear again in the discussion of the EM algorithm andVariational Bayesian learning (see later lectures).4.6 Mutual InformationThe mutual information is de�ned [12] as the relative entropy between the jointdistribution and the product of individual distributionsI(x; y) = D[p(X; Y )jjp(X)p(Y )] (4.14)Substuting these distributions into 4.10 allows us to express the mutual informationas the di�erence between the sum of the individual entropies and the joint entropyI(x; y) = H(x) +H(y)�H(x; y) (4.15)Therefore if x and y are independent the mutual information is zero. More generally,I(x; y) is a measure of the dependence between variables and this dependence will becaptured if the underlying relationship is linear or nonlinear. This is to be contrastedwith Pearsons correlation coe�cient, which measures only linear correlation (see �rstlecture).1A convex function has a negative second derivative.



Signal Processing Course, W.D. Penny, April 2000. 574.7 Minimum Description LengthGiven that a variable has a determinisitic component and a random component thecomplexity of that variable can be de�ned as the length of a concise description ofthat variables regularities [19].This de�nition has the merit that both random data and highly regular data willhave a low complexity and so we have a correspondence with our everyday notion ofcomplexity 2The length of a description can be measured by the number of binary bits requiredto encode it. If the probability of a set of measurements D is given by p(Dj�) where� are the parameters of a probabilistic model then the minimum length of a code forrepresenting D is, from Shannon's coding theorem [12], the same as the informationcontent of that data under the model (see eg. equation 4.1)L = � log p(Dj�) (4.16)However, for the recevier to decode the message they will need to know the parameters� which, being real numbers are encoded by truncating each to a �nite precision ��.We need a total of �k log�� bits to encode the This givesLtx = � log p(Dj�)� k log�� (4.17)The optimal precision can be found as follows. First, we expand the negative log-likelihood (ie. the error) using a Taylor series about the Maximum Likelihood (ML)solution �̂. This givesLtx = � log p(Dj�̂) + 12��TH�� � k log�� (4.18)where �� = �� �̂ and H is the Hessian of the error which is identical to the inversecovariance matrix (the �rst order term in the Taylor series disappears as the errorgradient is zero at the ML solution). The derivative is@Ltx@�� = H�� � k�� (4.19)If the covariance matrix is diagonal (and therefore the Hessian is diagonal) then, forthe case of linear regression (see equation 1.47) the diagonal elements arehi = N�2xi�2e (4.20)where �2e is the variance of the errors and �2xi is the variance of the ith input. Moregenerally, eg. nonlinear regression, this last variance will be replaced with the variance2This is not the case, however, with measures such as the Algorithm Information Content (AIC)or Entropy as these will be high even for purely random data.



58 Signal Processing Course, W.D. Penny, April 2000.of the derivative of the output wrt. the ith parameter. But the dependence on Nremains. Setting the above derivative to zero therefore gives us(��)2 = 1N � constant (4.21)where the constant depends on the variance terms (when we come to take logs of ��this constant becomes an additive term that does'nt scale with either the number ofdata points or the number of parameters in the model; we can therefore ignore it).The Minimum Description Length (MDL) is therefore given byMDL(k) = � log p(Dj�) + k2 logN (4.22)This may be minimised over the number of parameters k to get the optimal modelcomplexity.For a linear regression model � log p(Dj�) = N2 log �2e (4.23)Therefore MDLLinear(k) = N2 log �2e + k2 logN (4.24)which is seen to consist of an accuracy term and a complexity term. This criterion canbe used to select the optimal number of input variables and therefore o�ers a solutionto the bias-variance dilemma (see lecture 1). In later lectures the MDL criterion willbe used in autoregressive and wavelet models.The MDL complexity measure can be further re�ned by integrating out the depen-dence on � altogether. The resulting measure is known as the stochastic complexity[54] I(k) = � log p(Djk) (4.25)where p(Djk) = Z p(Dj�; k)p(�)d� (4.26)In Bayesian statistics this quantity is known as the `marginal likelihood' or `evidence'.The stochastic complexity measure is thus equivalent (after taking negative logs) tothe Bayesian model order selection criterion (see later). See Bishop ([3], page 429)for a further discussion of this relationship.



Chapter 5
Fourier methods
5.1 IntroductionOf the many books on Fourier methods those by Chat�eld [11], Proakis and Manolakis[51] and Bloom�eld [4] are particularly good.5.2 Sinewaves and SamplesSines and cosines can be understood in terms of the vertical and horizontal displace-ment of a �xed point on a rotating wheel; the wheel has unit length and rotatesanti-clockwise. The angle round the wheel is measured in degrees or radians (0� 2�;for unit radius circles the circumference is 2�, radians tell us how much of the circum-ference we've got). If we go round the wheel a whole number of times we end up inthe same place, eg.cos 4� = cos 2� = cos 0 = 1. Frequency, f , is the number of timesround the wheel per second. Therefore, given x = cos(2�ft), x = 1 at t = 1=f; 2=fetc. For x = cos(2�ft + �) we get a head start (lead) of � radians. Negativefrequencies may be viewed as a wheel rotating clockwise instead of anti-clockwise.If we assume we have samples of the signal every Ts seconds and in total we haveN such samples then Ts is known as the sampling period and Fs = 1=Ts is thesampling frequency in Hertz (Hz) (samples per second). The nth sample occurs attime t[n] = nTs = n=Fs. The cosine of sampled data can be writtenx[n] = cos(2�ft[n]) (5.1)When dealing with sampled signals it is important to note that some frequenciesbecome indistinguishable from others; at a sampling frequency Fs the only uniquefrequencies are in the range 0 to (Fs=2)Hz. Any frequencies outside this range becomealiases of one of the unique frequencies.For example, if we sample at 8Hz then a -6Hz signal becomes indistinguishable from59
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Figure 5.1: Aliases The �gure shows a 2Hz cosine wave and a -6Hz cosine waveas solid curves. At sampling times given by the dotted lines, which correspond to asampling frequency of 8Hz, the �6Hz signal is an alias of the 2Hz signal. Otheraliases are given by equation 5.2.a 2Hz signal. This is shown in �gure 5.1. More generally, if f0 is a unique frequencythen its aliases have frequencies given byf = f0 + kFs (5.2)where k is any positive or negative integer, eg. for f0 = 2 and Fs = 8 the two lowestfrequency aliases, given by k = �1 and k = 1, are �6Hz and 10Hz.Because of aliasing we must be careful when we interpret the results of spectralanalysis. This is discussed more at the end of the lecture.5.3 Sinusoidal modelsIf our time series has a periodic component in it we might think about modelling itwith the equation x[n] = R0 +Rcos(2�ft[n] + �) + e[n] (5.3)where R0 is the o�set (eg. mean value of x[n]), R is the amplitude of the sine wave, fis the frequency and � is the phase. What our model does'nt explain will be soakedup in the error term e[n]. Because of the trig identitycos(A+B) = cosA cosB � sinA sinB (5.4)the model can be written in an alternative formx[n] = R0 + a cos(2�ft[n]) + b sin(2�ft[n]) + e[n] (5.5)



Signal Processing Course, W.D. Penny, April 2000. 61where a = R cos(�) and b = �R sin(�). This is the form we consider for subsequentanalysis.This type of model is similar to a class of models in statistics called Generalised LinearModels (GLIMS). They perform nonlinear regression by, �rst, taking �xed nonlinearfunctions of the inputs, these functions being called basis functions, and second, forman output by taking a linear combination of the basis function outputs. In sinusoidalmodels the basis functions are sines and cosines. In statistics a much broader classof functions is considered. However, sinewaves have some nice properties as we shallsee.5.3.1 Fitting the modelIf we let x = [x(1); x(2); :::; x(N)]T , w = [R0; a; b]T , e = [e1; e2; :::; eN ]T andA = 26666664 1 cos2�ft[1] sin2�ft[1]1 cos2�ft[2] sin2�ft[2]1 cos2�ft[3] sin2�ft[3]:: :: ::1 cos2�ft[N ] sin2�ft[N ]
37777775 (5.6)then the model can be written in the matrix formx = Aw + e (5.7)which is in the standard form of a multivariate linear regression problem. The solutionis therefore w = (ATA)�1ATx (5.8)5.3.2 But sinewaves are orthogonalBecause we are dealing with sinewaves it turns out that the above solution simpli-�es. We restrict ourselves to a frequency fp which is an integer multiple of the basefrequency fp = pFb (5.9)where p = 1::N=2 and fb = FsN (5.10)eg. for Fs = 100 and N = 100 (1 seconds worth of data), fb = 1Hz and we can havefp from 1Hz up to 50Hz1. The orthogonality of sinewaves is expressed in the followingequations NXn=1 cos 2�fkt[n] = NXn=1 sin 2�fkt[n] = 0 (5.11)1To keep things simple we don't allow fp where p = N=2; if we did allow it we'd get N and 0 inequations 5.14 and 5.15 for the case k = l. Also we must have N even.
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Figure 5.2: Orthogonality of sinewaves Figure (a) shows cos 2�3fbt[n] andcos 2�4fbt[n], cosines which are 3 and 4 times the base frequency fb = 1Hz. Forany two integer multiples k; l we get PNn=1 cos2�fkt[n]cos2�flt[n] = 0. This can beseen from Figure (b) which shows the product cos2�3fbt[n]cos2�4fbt[n]: Because ofthe trig identity cosAcosB = 0:5cos(A + B) + 0:5cos(A � B) this looks like a 7Hzsignal superimposed on a 1Hz signal. The sum of this signal over a whole number ofcycles can be seen to be zero; because each cos term sums to zero. If, however, k or lare not integers the product does not sum to zero and the orthogonality breaks down.NXn=1 cos 2�fkt[n] sin 2�flt[n] = 0 (5.12)NXn=1 cos 2�fkt[n] sin 2�flt[n] = 0 (5.13)NXn=1 cos 2�fkt[n] cos 2�flt[n] = 0 k 6= lN=2 k = l (5.14)NXn=1 sin 2�fkt[n] sin 2�flt[n] = 0 k 6= lN=2 k = l (5.15)These results can be proved by various trig. identities or, more simply, by convertingto complex exponentials (see [5] or later in this chapter). The results depend on thefact that all frequencies that appear in the above sums are integer multiples of thebase frequency; see �gure 5.2.This property of sinewaves leads to the resultATA =D (5.16)where D is a diagonal matrix. The �rst entry is N (from the inner product of twocolumns of 1's of length N ; the 1's are the coe�cients of the constant term R0) andall the other entries are N=2. A matrix Q for whichQTQ =D (5.17)is said to be orthogonal. Therefore ourAmatrix is orthogonal. This greatly simpli�esthe �tting of the model which now reduces tow = D�1ATx (5.18)
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Figure 5.3: Sunspot index (solid line) and prediction of it from a simple sinusoidalmodel (dotted line).which is simply a projection of the signal onto the basis matrix, with some pre-factor(D�1; remember the inverse of a diagonal matrix is simply the inverse of each ofthe diagonal terms, so this is easy to compute). Given that w = [a; b; R0]T we cansee that, for example, a is computed by simply projecting the data onto the secondcolumn of the matrix A, eg. a = 2N NXn=1 cos(2�ft)xt (5.19)Similarly, b = 2N NXn=1 sin(2�ft)xt (5.20)
R0 = 1N NXn=1xt (5.21)We applied the simple sinusoidal model to a `sunspot data set' as follows. We chose60 samples between the years 1731 and 1790 (because there was a fairly steady meanlevel in this period). The sampling rate Fs = 1Year. This gives a base frequency offb = 1=60. We chose our frequency f = pfb with p=6; giving a complete cycle onceevery ten years. This gave rise to the following estimates; R0 = 53:64, a = 39:69 andb = �2:36. The data and predictions are shown in Figure 5.3.



64 Signal Processing Course, W.D. Penny, April 2000.5.4 Fourier SeriesWe might consider that our signal consists of lots of periodic components in whichcase the multiple sinusoidal model would be more appropriatex(t) = R0 + pXk=1Rk cos(2�fkt+ �k) + et (5.22)where there are p sinusoids with di�erent frequencies and phases. In a discrete Fourierseries there are p = N=2 such sinusoids having frequenciesfk = kFsN (5.23)where k = 1::N=2 and Fs is the sampling frequency. Thus the frequencies range fromFs=N up to Fs=2. The Fourier series expansion of the signal x(t) isx(t) = R0 + N=2Xk=1Rk cos(2�fkt + �k) (5.24)Notice that there is no noise term. Because of the trig identitycos(A+B) = cosA cosB � sinA sinB (5.25)this can be written in the formx(t) = a0 + N=2Xk=1 ak cos(2�fkt) + bk sin(2�fkt) (5.26)where ak = Rk cos(�k) and bk = �Rk sin(�k). Alternatively, we have R2k = a2k + b2kand � = tan�1(bk=ak). The signal at frequency fk is known as the kth harmonic.Equivalently, we can write the nth sample asx[n] = a0 + N=2Xk=1 ak cos(2�fkt[n]) + bk sin(2�fkt[n]) (5.27)where t[n] = nTs.The important things to note about the sinusoids in a Fourier series are (i) thefrequencies are equally spread out, (ii) there are N=2 of them where N is the numberof samples, (iii) Given Fs and N the frequencies are �xed. Also, note that in theFourier series `model' there is no noise. The Fourier series aims to represent the dataperfectly (which it can do due to the excessive number of basis functions)2.The Fourier coe�cients can be computed by a generalisation of the process used tocompute the coe�cients in the simple sinusoidal model.ak = 2N NXn=1 cos(2�fkt[n])x[n] (5.28)2Statisticians would frown on �tting a model with N coe�cients toN data points as the estimateswill be very noisy; the Fourier series is a low bias (actually zero), high variance model. This underlinesthe fact that the Fourier methods are transforms rather than statistical models.



Signal Processing Course, W.D. Penny, April 2000. 65Similarly, bk = 2N NXn=1 sin(2�fkt[n])x[n] (5.29)a0 = 1N NXn=1x[n] (5.30)These equations can be derived as follows. To �nd, for example, ak, multiply bothsides of equation 5.27 by cos(2�fkt[n]) and sum over n. Due to the orthogonalityproperty of sinusoids (which still holds as all frequencies are integer multiples of abase frequency) all terms on the right go to zero except for the one involving ak. Thisjust leaves ak(N=2) on the right giving rise to the above formula.5.4.1 ExampleThe plots on the right of Figure 5.4 show four components in a Fourier series expan-sion. The components have been ordered by amplitude. The plots on the left of theFigure show the corresponding Fourier approximation.5.5 Fourier TransformsFourier series are representations of a signal by combinations of sinewaves of di�erentmagnitudes, frequencies and o�sets (or phases). The magnitudes are given by theFourier coe�cients. These sinewaves can also be represented in terms of complexexponentials (see the appendix for a quick review of complex numbers); a representa-tion which ultimately leads to algorithms for computing the Fourier coe�cients; theDiscrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT).5.5.1 Discrete Fourier TransformFourier series can be expressed in terms of complex exponentials. This representationleads to an e�cient method for computing the coe�cients. We can write the cosineterms as complex exponentialsak cos(2�fkt[n]) = ak exp(i2�fkt[n]) + exp(�i2�fkt[n])2 (5.31)where i2 = �1. Picture this as the addition of two vectors; one above the real axisand one below. Together they make a vector on the real axis which is then halved.We can also write the sine terms asbk sin(2�fkt[n]) = bk exp(i2�fkt[n])� exp(�i2�fkt[n])2i (5.32)
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Figure 5.4: Signal (solid line) and components of the Fourier series approximationPpk=1Rkcos(2�fk+�k) (dotted lines) with (a) p = 1, (b) p = 2, (c) p = 3 and (d) p =11 where we have ordered the components according to amplitude. The correspondingindividual terms are (e) R2 = 0:205,f = 3:75 and � = 0:437, (f) R2 = 0:151, f = 2:5and � = 0:743, (g) R2 = 0:069, f = 11:25 and � = 0:751 and (h) R2 = 0:016,f = 7:5 and � = �0:350.



Signal Processing Course, W.D. Penny, April 2000. 67Picture this as one vector above the real axis minus another vector below the realaxis. This results in a purely imaginary (and positive) vector. The result is halvedand then multiplied by the vector exp(3�=2) (�i, from multplying top and bottomby i) which provides a rotation to the real axis.Adding them (and moving i to the numerator by multiplying bk top and bottom byi) gives 12(ak � bki) exp(i2�fkt[n]) + 12(ak + bki) exp(�i2�fkt[n]) (5.33)Note that a single term at frequency k has split into a complex combination (the co-e�cients are complex numbers) of a positive frequency term and a negative frequencyterm. Substituting the above result into equation 5.27 and noting that fkt[n] = kn=Nwe getx[n] = a0 + 12 N=2Xk=1(ak � bki) exp(i2�kn=N) + 12 N=2Xk=1(ak + bki) exp(�i2�kn=N) (5.34)If we now let ~X(k) = N2 (ak � bki) (5.35)and note that for real signals ~X(�k) = ~X�(k) (negative frequencies are re
ectionsacross the real plane, ie. conjugates) then the (ak + bki) terms are equivalent to~X(�k). Hencex[n] = a0 + 12N N=2Xk=1 ~X(k) exp(i2�kn=N) + 12N N=2Xk=1 ~X(k) exp(�i2�kn=N) (5.36)Now, because ~X(N � k) = ~X(�k) (this can be shown by considering the Fouriertransform of a signal x[n] and using the decomposition exp(�i2�(N � k)n=N) =exp(�i2�N=N) exp(i2�kn=N) where the �rst term on the right is unity) we can writethe second summation asx[n] = a0 + 12N N=2Xk=1 ~X(k) exp(i2�kn=N) + 12N N�1Xk=N=2 ~X(k) exp(�i2�(N � k)n=N)(5.37)Using the same exponential decomposition allows us to writex[n] = a0 + 1N N�1Xk=1 ~X(k) exp(i2�kn=N) (5.38)If we now let X(k + 1) = ~X(k) then we can absorb the constant a0 into the sumgiving x[n] = 1N NXk=1X(k) exp(i2�(k � 1)n=N) (5.39)which is known as the Inverse Discrete Fourier Transform (IDFT). The terms X(k)are the complex valued Fourier coe�cients. We have the relationsa0 = RefX(1)g (5.40)



68 Signal Processing Course, W.D. Penny, April 2000.ak = 2NRefX(k + 1)gbk = �2N ImfX(k + 1)gThe complex valued Fourier coe�cients can be computed by �rst noting the orthog-onality relationsNXn=1 exp(i2�(k � 1)n=N) = N k = 1;�(N + 1);�(N + 2)0 otherwise (5.41)If we now multiply equation 5.39 by exp(�i2�ln=N), sum from 1 to N and re-arrangewe get X(k) = NXn=1x(n) exp(�i2�(k � 1)n=N) (5.42)which is the Discrete Fourier Transform (DFT).5.5.2 The Fourier MatrixIf we write X(k) as a vector X = [X(1); X(2); :::; X(N)]T and the input signal asa vector x = [x(0); x(1); :::; x(N � 1)]T then the above equations can be written inmatrix form as follows. The Inverse Discrete Fourier Transform isx = FX (5.43)where F is the Fourier Matrix and the Discrete Fourier Transform isX = F�1x (5.44)If we let wN = exp(i2�=N) (5.45)we can write the Fourier matrix asFN = 1N 266666664 1 1 1 : 11 wN w2N : w(N�1)N1 w2N w4N : w2(N�1)N: : : : :1 w(N�1)N w2(N�1)N : w(N�1)2N
377777775 (5.46)

which has elements3 (FN)kn = w(k�1)(n�1)N (5.47)3We have re-indexed such that we now have x(0) to x(N � 1). Hence we have (n� 1) instead ofn.



Signal Processing Course, W.D. Penny, April 2000. 69Now, the inverse Fourier matrix isF�1N = 266666664 1 1 1 : 11 w�1N w�2N : w�(N�1)N1 w�2N w�4N : w�2(N�1)N: : : : :1 w�(N�1)N w�2(N�1)N : w�(N�1)2N
377777775 (5.48)where the elements are (F�1N )kn = w�(k�1)(n�1)N (5.49)In the Fast Fourier Transform (FFT) an N -dimensional matrix multiplication can bereplaced by 2 M -dimensional multiplications, where M = N=2. This is because theexponential elements in the Fourier matrix have the key propertyw2N = wM (5.50)eg. exp(i2�=64)2 = exp(i2�=32). Cooley and Tukey realised you could use thisproperty as follows. If you split the IDFTxj = N�1Xk=0 wjkNXk (5.51)into a summation of even parts and a summation of odd partsxj = M�1Xk=0 w2jkN X2k + M�1Xk=0 w(2k+1)jN X2k+1 (5.52)then we can use the identity w2N = wM to givexj = M�1Xk=0 wjkMX2k + wjN M�1Xk=0 wkjMX2k+1 (5.53)which is the summation of two IDFTs of dimension M (a similar argument appliesfor the DFT).This reduces the amount of computation by, approximately, a factor of 2. We can thenreplace each M -dimensional multiplication by an M=2-dimensional one, etc. FFTsrequire N to be a power of 2, because at the lowest level we have lots of 2-dimensionaloperations. For N = 4096 we get an overall speed-up by a factor of 680. For largerN the speed-ups are even greater; we are replacing N2 multiplications by N2 log2N .5.6 Time-Frequency relationsSignals can be operated on in the time domain or in the frequency domain. We nowexplore the relations between them.



70 Signal Processing Course, W.D. Penny, April 2000.5.6.1 Power Spectral DensityThe power in a signal is given by Px = NXn=1 jx[n]j2 (5.54)We now derive an expression for Px in terms of the Fourier coe�cients. If we notethat jx[n]j can also be written in its conjugate form (the conjugate form has the samemagnitude; the phase is di�erent but this does'nt matter as we're only interested inmagnitude) jx[n]j = 1N NXk=1X�(k) exp(�i2�(k � 1)n=N) (5.55)then we can write the power asPx = NXn=1 jx[n] 1N NXk=1X�(k) exp(�i2�(k � 1)n=N)j (5.56)If we now change the order of the summations we getPx = 1N NXk=1 jX�(k) NXn=1 x(n) exp(�i2�(k � 1)n=N)j (5.57)where the sum on the right is now equivalent to X(k). HencePx = 1N NXk=1 jX(k)j2 (5.58)We therefore have an equivalence between the power in the time domain and thepower in the frequency domain which is known as Parseval's relation. The quantityPx(k) = jX(k)j2 (5.59)is known as the Power Spectral Density (PSD).5.6.2 FilteringThe �ltering process x[n] = 1Xl=�1x1(l)x2(n� l) (5.60)is also known as convolution x[n] = x1(n) � x2(n) (5.61)We will now see how it is related to frequency domain operations. If we let w =2�(k� 1)=N , multiply both sides of the above equation by exp(�iwn) and sum overn the left hand side becomes the Fourier transformX(w) = 1Xn=�1x[n] exp(�iwn) (5.62)



Signal Processing Course, W.D. Penny, April 2000. 71and the right hand side (RHS) is1Xn=�1 1Xl=�1x1(l)x2(n� l) exp(�iwn) (5.63)Now, we can re-write the exponential term as followsexp(�iwn) = exp(�iw(n� l)) exp(�iwl) (5.64)Letting n0 = n� l, we can write the RHS as1Xl=�1x1(l) exp(�iwl) 1Xn0=�1x2(n0) exp(�iwn0) = X1(w)X2(w) (5.65)Hence, the �ltering operation is equivalent toX(w) = X1(w)X2(w) (5.66)which means that convolution in the time domain is equivalent to multiplication inthe frequency domain. This is known as the convolution theorem.5.6.3 Autocovariance and Power Spectral DensityThe autocovariance of a signal is given by�xx(n) = 1Xl=�1x(l)x(l � n) (5.67)Using the same method that we used to prove the convolution theorem, but notingthat the term on the right is x(l � n) not x(n � l) we can show that the RHS isequivalent to X(w)X(�w) = jX(w)j2 (5.68)which is the Power Spectral Density, Px(w). Combining this with what we get for theleft hand side gives Px(w) = 1Xn=�1�xx(n) exp(�iwn) (5.69)which means that the PSD is the Fourier Transform of the autocovariance. This isknown as the Wiener-Khintchine Theorem. This is an important result. It meansthat the PSD can be estimated from the autocovariance and vice-versa. It also meansthat the PSD and the autocovariance contain the same information about the signal.It is also worth noting that since both contain no information about the phase of asignal then the signal cannot be uniquely constructed from either. To do this we needto know the PSD and the Phase spectrum which is given by�(k) = tan�1( bkak ) (5.70)



72 Signal Processing Course, W.D. Penny, April 2000.where bk and ak are the real Fourier coe�cients.We also note that the Fourier transform of a symmetric function is real. This isbecause symmetric functions can be represented entirely by cosines, which are them-selves symmetric; the sinewaves, which constitute the complex component of a Fourierseries, are no longer necessary. Therefore, because the autocovariance is symmetricthe PSD is real.5.7 Spectral Estimation5.7.1 The PeriodogramThe periodogram of a signal xt is a plot of the normalised power in the kth harmonicversus the frequency, fk of the kth harmonic. It is calculated asI(fk) = N4� (a2k + b2k) (5.71)where ak and bk are the Fourier coe�cients.The periodogram is a low bias (actually unbiased) but high variance 4 estimate of thepower at a given frequency. This is therefore a problem if the number of data pointsis small; the estimated spectrum will be very spiky.To overcome this, a number of algorithms exist to smooth the periodogram ie. toreduce the variance. The Bartlett method, for example, takes an N -point sequenceand subdivides it into K nonoverlapping segments and calculates I(fk) for each. The�nal periodogram is just the average over the K estimates. This results in a reductionin variance by a factor K at the cost of reduced spectral resolution (by a factor K).The Welch method is similar but averages modi�ed periodograms, the modi�cationbeing a windowing of each segment of data. Also, the segments are allowed to overlap.For further details of this and other smoothing methods see Chapter 12 in Proakisand Manolakis [51]. This smoothing is necessary because at larger lags there are fewerdata points, so the estimates of covariance are commensurately more unreliable.5.7.2 Autocovariance methodsThe PSD can be calculated from the autocovariance. However, as the sample auto-covariance on short segments of data has a high variance then so will the resultingspectral estimates.To overcome this a number of proposals have been made. The autocovariance func-tion can �rst be smoothed and truncated by applying various smoothing windows,4It is an inconsistent estimator, because the variance does'nt reduce to zero as the number ofsamples tends to in�nity.



Signal Processing Course, W.D. Penny, April 2000. 73for example Tukey, Parzen, Hanning or Hamming windows. For further details seeChat�eld p.114 [11] or Chapter 12 in Proakis and Manolakis [51].5.7.3 AliasingBecause of aliasing if we wish to uniquely identify frequencies up to BHz then wemust sample the data at a frequency fs > 2BHz.Alternatively, given a particular sample rate fs, in order to uniquely identify frequen-cies up to fs=2Hz (and not confuse them with higher frequencies) we must ensure thatthere is no signal at frequencies higher than fs=2. This can be achieved by applyinga Low-Pass Filter (LPF).5.7.4 FilteringThere are two main classes of �lters; IIR �lters and FIR �lters. Their names derivefrom how the �lters respond to a single pulse of input, their so-called impulse response.The output of an In�nite Impulse Response (IIR) �lter is fed-back to its input. Theresponse to a single impulse is therefore a gradual decay which, though it may droprapidly towards zero (no output), will never technically reach zero; hence the nameIIR.In Finite Impulse Response (FIR) �lters the output is not fed-back to the input soif there is no subsequent input there will be no output. The output of an FIR �lter([51], page 620) is given by y[n] = p�1Xk=0 bkx[n� k] (5.72)where x[n] is the original signal and bk are the �lter coe�cients.The simplest FIR �lter is the (normalised) rectangular window which takes a movingaverage of a signal. This smooths the signal and therefore acts a low-pass �lter.Longer windows cut down the range of frequencies that are passed.Other examples of FIR �lters are the Bartlett, Blackman, Hamming and Hanningwindows shown in Figure 5.5. The curvier shape of the windows means their frequencycharacteristics are more sharply de�ned. See Chapter 8 in [51] for more details. FIR�lters are also known as Moving Average (MA) models which we will encounter inthe next lecture.The output of an IIR �lter is given byy[n] = pa�1Xk=0 aky[n� k] + pb�1Xk=0 bkx[n� k] (5.73)where the �rst term includes the feedback coe�cients and the second term is an FIR
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Figure 5.5: Filter coe�cients of (a) Bartlett (triangular), (b) Blackman, (c) Hammingand (d) Hanning windows for p = 30.
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Figure 5.6: Frequency response of a Hamming window (solid line) and a rectangularwindow (dotted line). The Hamming window cuts of the higher frequencies moresharply.



Signal Processing Course, W.D. Penny, April 2000. 75model. This type of �lter is also known as a Autoregressive Moving Average (ARMA)model (the �rst term being the Autoregressive (AR) part).IIR �lters can be designed by converting analog �lters into the above IIR digital form.See [51] (section 8.3) for details. Examples of resulting IIR implementations are theButterworth, Chebyshev, Elliptic and Bessel �lters.
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Chapter 6
Stochastic Processes
6.1 IntroductionIn Lecture 1 we discussed correlation and regression. We now discuss autocorrelationand autoregressive processes; that is, the correlation between successive values of atime series and the linear relations between them. We also show how autoregressivemodels can be used for spectral estimation. Good textbooks that cover this materialare those by Grimmett and Stirzaker [25] and Papoulis [44].
6.2 AutocorrelationGiven a time series xt we can produce a lagged version of the time series xt�T whichlags the original by T samples. We can then calculate the covariance between the twosignals �xx(T ) = 1N � 1 NXt=1(xt�T � �x)(xt � �x) (6.1)where �x is the signal mean and there are N samples. We can then plot �xx(T ) asa function of T . This is known as the autocovariance function. The autocorrelationfunction is a normalised version of the autocovariancerxx(T ) = �xx(T )�xx(0) (6.2)Note that �xx(0) = �2x. We also have rxx(0) = 1. Also, because �xy = �yx we haverxx(T ) = rxx(�T ); the autocorrelation (and autocovariance) are symmetric functionsor even functions. Figure 6.1 shows a signal and a lagged version of it and Figure 7.2shows the autocorrelation function. 77
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tFigure 6.1: Signal xt (top) and xt+5 (bottom). The bottom trace leads the top traceby 5 samples. Or we may say it lags the top by -5 samples.
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Figure 6.2: Autocorrelation function for xt. Notice the negative correlation at lag 20and positive correlation at lag 40. Can you see from Figure 6.1 why these should occur?



Signal Processing Course, W.D. Penny, April 2000. 796.3 Autoregressive modelsAn autoregressive (AR) model predicts the value of a time series from previous values.A pth order AR model is de�ned asxt = pXi=1 xt�iai + et (6.3)where ai are the AR coe�cients and et is the prediction error. These errors areassumed to be Gaussian with zero-mean and variance �2e . It is also possible to includean extra parameter a0 to soak up the mean value of the time series. Alternatively, wecan �rst subtract the mean from the data and then apply the zero-mean AR modeldescribed above. We would also subtract any trend from the data (such as a linearor exponential increase) as the AR model assumes stationarity (see later).The above expression shows the relation for a single time step. To show the relationfor all time steps we can use matrix notation.We can write the AR model in matrix form by making use of the embedding matrix,M , and by writing the signal and AR coe�cients as vectors. We now illustrate thisfor p = 4. This gives M = 26664 x4 x3 x2 x1x5 x4 x3 x2:: :: :: ::xN�1 xN�2 xN�3 xN�4 37775 (6.4)We can also write the AR coe�cients as a vector a = [a1; a2; a3; a4]T , the errors as avector e = [e5; e6; :::; eN ]T and the signal itself as a vector X = [x5; x6; :::; xN ]T . Thisgives 26664 x5x6::xN 37775 = 26664 x4 x3 x2 x1x5 x4 x3 x2:: :: :: ::xN�1 xN�2 xN�3 xN�4 37775 26664 a1a2a3a4 37775+ 26664 e5e6::eN 37775 (6.5)which can be compactly written asX =Ma+ e (6.6)The AR model is therefore a special case of the multivariate regression model (com-pare the above equation to that given in the second lecture). The AR coe�cients cantherefore be computed from the equationâ = (MTM)�1MTX (6.7)The AR predictions can then be computed as the vectorX̂ =Mâ (6.8)



80 Signal Processing Course, W.D. Penny, April 2000.and the error vector is then e =X � X̂. The variance of the noise is then calculatedas the variance of the error vector.To illustrate this process we analyse our data set using an AR(4) model. The ARcoe�cients were estimated to beâ = [1:46;�1:08; 0:60;�0:186]T (6.9)and the AR predictions are shown in Figure 6.3. The noise variance was estimated tobe �2e = 0:079 which corresponds to a standard deviation of 0:28. The variance of theoriginal time series was 0:3882 giving a signal to noise ratio of (0:3882�0:079)=0:079 =3:93.6.3.1 Random walksIf p = 1 and a1 = 1 then the AR model reduces to a random walk model, an exampleof which is shown in Figure 6.4.6.3.2 Relation to autocorrelationThe autoregressive model can be written asxt = a1xt�1 + a2xt�2 + ::: + apxt�p + et (6.10)If we multiply both sides by xt�k we getxtxt�k = a1xt�1xt�k + a2xt�2xt�k + :::+ apxt�pxt�k + etxt�k (6.11)If we now sum over t and divide by N � 1 and assume that the signal is zero mean(if it isn't we can easily make it so, just by subtracting the mean value from everysample) the above equation can be re-written in terms of covariances at di�erent lags�xx(k) = a1�xx(k � 1) + a2�xx(k � 2) + :::+ ap�xx(k � p) + �e;x (6.12)where the last term �e;x is the covariance between the noise and the signal. But as thenoise is assumed to be independent from the signal �e;x = 0. If we now divide everyterm by the signal variance we get a relation between the correlations at di�erent lagsrxx(k) = a1rxx(k � 1) + a2rxx(k � 2) + :::+ aprxx(k � p) (6.13)This holds for all lags. For an AR(p) model we can write this relation out for the�rst p lags. For p = 426664 rxx(1)rxx(2)rxx(3)rxx(4) 37775 = 26664 rxx(0) rxx(�1) rxx(�2) rxx(�3)rxx(1) rxx(0) rxx(�1) rxx(�2)rxx(2) rxx(1) rxx(0) rxx(�1)rxx(3) rxx(2) rxx(1) rxx(0) 37775 26664 a1a2a3a4 37775 (6.14)
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tFigure 6.3: (a) Original signal (solid line), X, and predictions (dotted line), X̂ , froman AR(4) model and (b) the prediction errors, e. Notice that the variance of theerrors is much less than that of the original signal.
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Figure 6.4: A random walk.which can be compactly written as r = Ra (6.15)where r is the autocorrelation vector and R is the autocorrelation matrix. The aboveequations are known, after their discoverers, as the Yule-Walker relations. Theyprovide another way to estimate AR coe�cientsa = R�1r (6.16)This leads to a more e�cient algorithm than the general method for multivariate linearregression (equation 6.7) because we can exploit the structure in the autocorrelationmatrix. By noting that rxx(k) = rxx(�k) we can rewrite the correlation matrix asR = 26664 1 rxx(1) rxx(2) rxx(3)rxx(1) 1 rxx(1) rxx(2)rxx(2) rxx(1) 1 rxx(1)rxx(3) rxx(2) rxx(1) 1 37775 (6.17)Because this matrix is both symmetric and a Toeplitz matrix (the terms along anydiagonal are the same) we can use a recursive estimation technique known as theLevinson-Durbin algorithm 1.6.3.3 Relation to partial autocorrelationThe partial correlation coe�cients (see lecture 2) in an AR model are known asre
ection coe�cients. At lag m, the partial correlation between xt�m and xt, is1This algorithm actually operates on the autocovariance matrix, although some authors, eg.Pardey et al. [45], call it the autocorrelation matrix. What we refer to as autocorrelation, they referto as normalised autocorrelation.



Signal Processing Course, W.D. Penny, April 2000. 83written as km; the mth re
ection coe�cient. It can be calculated as the relativereduction in prediction error km = Em�1 � EmEm�1 (6.18)where Em is the prediction error from an AR(m) model 2. The re
ection coe�cientsare to the AR coe�cients what the correlation is to the slope in a univariate ARmodel; if the mth re
ection coe�cient is signi�cantly non-zero then so is the mth ARcoe�cient. And vice-versa.The Levinson-Durbin algorithm computes re
ection coe�cients as part of a recursivealgorithm for computing the AR coe�cients. It �nds k1 and from it calculates the ARcoe�cient for an AR(1) model, a1. It then computes k2 and from it calculates the ARcoe�cients for an AR(2) model (a2 is computed afresh and a1 is re-estimated from a1for the AR(1) model - as it will be di�erent). The algorithm continues by calculatingkm and the coe�cients for AR(m) from AR(m � 1). For details, see Pardey et al.[45].6.3.4 Model order selectionBecause an AR model is a special case of multivariate regression we can use thesame signi�cance testing procedure (see earlier lecture) to determine the relevance orotherwise of our variables. To recap, (i) we compute our coe�cients for the AR(p)model, (ii) we estimate the standard deviation of each AR coe�cient (see secondlecture), (iii) we then perform a double-sided t-test to see if the smallest coe�cient issigni�cantly di�erent from zero. If it is, then we might try a larger model order andrepeat the process. If it isn't then we might try a smaller model order. We can eitherstart with a model order of 1 and gradually increase it (stepwise forward selection)or start with a very high model order and gradually decrease it (stepwise backwardselection), performing the signi�cance test as we increase/decrease the model order.We note that the above statistical test is identical to seeing whether or not the pthre
ection coe�cient is signi�cantly non-zero (see earlier lecture).For our data set both SFS and SBS, with a signi�cance level of 0:05, chose p = 3 asthe optimal model order. For SFS, for example, when p = 4 the smallest coe�cientis a4 = �0:186 and the corresponding standard deviation is �4 = 0:103. This givesa t-statistic of t = �1:8006 which under a double-sided test gives a probability of0:0749. We therefore cannot reject the null hypothesis that the coe�cient is zero atthe 0:05 signi�cance level; the SFS procedure therefore stops at a model order of 3.Alternatively, we could use other model selection criteria eg. the Minimum Descrip-tion Length (MDL) (see Lecture 4)MDL(p) = N2 log�2e(p) + p2 logN (6.19)2We have also written Em = �2e (m).
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pFigure 6.5: Error variance, �2e(p), (solid line) and Final Prediction Error (FPE)(dotted line) versus AR model order, p.Another example is the Final Prediction ErrorFPE(p) =  N + p+ 1N � p� 1! �2e(p) (6.20)where N is the number of samples and �2e(p) is the error variance for model order p.Applying this to our data gives the results shown in Figure 6.5 showing an optimalmoder order of 3 or 4.6.3.5 Example: Sleep EEGAs a subject falls from wakefulness into a deep sleep the EEG increases in amplitudeand decreases in the frequency of its oscillations. The optimal AR model order alsodecreases indicating a decrease in complexity. Using FPE Pardey et al. show, forexample, that wakefulness, REM sleep and deep sleep have typical optimal modelorders of 6, 5 and 3 respectively. It should be noted that these are averages and theoptimal order has a high variance. Waking EEG shows the highest variance and deepsleep the least.6.3.6 DiscussionFor a comprehensive introduction to AR modelling see Pardey at al. [45]. This paperalso contains details of other methods for estimating AR coe�cients such as theBurg algorithm, which minimises both a forwards prediction error and a backwardsprediction error.



Signal Processing Course, W.D. Penny, April 2000. 856.4 Moving Average ModelsA Moving Average (MA) model of order q is de�ned asxt = qXi=0 biet�i (6.21)where et is Gaussian random noise with zero mean and variance �2e . They are atype of FIR �lter (see last lecture). These can be combined with AR models to getAutoregressive Moving Average (ARMA) modelsxt = pXi=1 aixt�i + qXi=0 biet�i (6.22)which can be described as an ARMA(p,q) model. They are a type of IIR �lter (seelast lecture).Usually, however, FIR and IIR �lters have a set of �xed coe�cients which havebeen chosen to give the �lter particular frequency characteristics. In MA or ARMAmodelling the coe�cients are tuned to a particular time series so as to capture thespectral characteristics of the underlying process.6.5 Spectral EstimationAutoregressive models can also be used for spectral estimation. An AR(p) modelpredicts the next value in a time series as a linear combination of the p previousvalues xt = � pXk=1 akxt�k + et (6.23)where ak are the AR coe�cients and et is IID Gaussian noise with zero mean andvariance �2.The above equation can be solved by assuming that the solution is in the form of anexponential xt = zt (6.24)where z is, generally, a complex number. This form of solution has the property thatxt�i = zt�i; e�ectively z�i acts as a delay operator denoting a delay of i time steps.This allows the equation to be writtenapzt�p + ap�1zt�(p�1) + :::+ zt = et (6.25)It can then be rewritten zt = et1 +Ppk=1 akz�k (6.26)Given that any complex number can be written in exponential formz = exp(i2�fTs) (6.27)
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Figure 6.6: Power spectral estimates of two sinwaves in additive noise using (a)Welch's periodogram method and (b) Autoregressive spectral estimation.where f is frequency and Ts is the sampling period we can see that the frequencydomain characteristics of an AR model are given by (also see Pardey et al. [45])P (f) = �2eTsj1 +Ppk=1 ak exp(�ik2�fTs)j2 (6.28)An AR(p) model can provide spectral estimates with p=2 peaks; therefore if you knowhow many peaks you're looking for in the spectrum you can de�ne the ARmodel order.Alternatively, AR model order estimation methods should automatically provide theappropriate level of smoothing of the estimated spectrum.AR spectral estimation has two distinct advantages over methods based on the pe-riodogram (last lecture) (i) power can be estimated over a continuous range of fre-quencies (not just at �xed intervals) and (ii) the power estimates have less variance.



Chapter 7
Multiple Time Series
7.1 IntroductionWe now consider the situation where we have a number of time series and wish toexplore the relations between them. We �rst look at the relation between cross-correlation and multivariate autoregressive models and then at the cross-spectraldensity and coherence.7.2 Cross-correlationGiven two time series xt and yt we can delay xt by T samples and then calculate thecross-covariance between the pair of signals. That is�xy(T ) = 1N � 1 NXt=1(xt�T � �x)(yt � �y) (7.1)where �x and �y are the means of each time series and there are N samples ineach. The function �xy(T ) is the cross-covariance function. The cross-correlation isa normalised version rxy(T ) = �xy(T )q�xx(0)�yy(0) (7.2)where we note that �xx(0) = �2x and �yy(0) = �2y are the variances of each signal.Note that rxy(0) = �xy�x�y (7.3)which is the correlation between the two variables. Therefore unlike the autocorre-lation, rxy is not, generally, equal to 1. Figure 7.1 shows two time series and theircross-correlation. 87



88 Signal Processing Course, W.D. Penny, April 2000.7.2.1 Cross-correlation is asymmetricFirst, we re-cap as to why the auto-correlation is a symmetric function. The autoco-variance, for a zero mean signal, is given by�xx(T ) = 1N � 1 NXt=1 xt�Txt (7.4)This can be written in the shorthand notation�xx(T ) =< xt�Txt > (7.5)where the angled brackets denote the average value or expectation. Now, for negativelags �xx(�T ) =< xt+Txt > (7.6)Subtracting T from the time index (this will make no di�erence to the expectation)gives �xx(�T ) =< xtxt�T > (7.7)which is identical to �xx(T ), as the ordering of variables makes no di�erence to theexpected value. Hence, the autocorrelation is a symmetric function.The cross-correlation is a normalised cross-covariance which, assuming zero meansignals, is given by �xy(T ) =< xt�T yt > (7.8)and for negative lags �xy(�T ) =< xt+T yt > (7.9)Subtracting T from the time index now gives�xy(�T ) =< xtyt�T > (7.10)which is di�erent to �xy(T ). To see this more clearly we can subtract T once morefrom the time index to give �xy(�T ) =< xt�T yt�2T > (7.11)Hence, the cross-covariance, and therefore the cross-correlation, is an asymmetricfunction.To summarise: moving signal A right (forward in time) and multiplying with signalB is not the same as moving signal A left and multiplying with signal B; unless signalA equals signal B.7.2.2 WindowingWhen calculating cross-correlations there are fewer data points at larger lags thanat shorter lags. The resulting estimates are commensurately less accurate. To takeaccount of this the estimates at long lags can be smoothed using various windowoperators. See lecture 5.
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Figure 7.1: Signals xt (top) and yt (bottom).
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Figure 7.2: Cross-correlation function rxy(T ) for the data in Figure 7.1. A lag ofT denotes the top series, x, lagging the bottom series, y. Notice the big positivecorrelation at a lag of 25. Can you see from Figure 7.1 why this should occur ?



90 Signal Processing Course, W.D. Penny, April 2000.7.2.3 Time-Delay EstimationIf we suspect that one signal is a, possibly noisy, time-delayed version of another signalthen the peak in the cross-correlation will identify the delay. For example, �gure 7.1suggests that the top signal lags the bottom by a delay of 25 samples. Given that thesample rate is 125Hz this corresponds to a delay of 0.2 seconds.7.3 Multivariate Autoregressive modelsA multivariate autoregressive (MAR) model is a linear predictor used for modellingmultiple time series. An MAR(p) model predicts the next vector value in a d-dimensional time series, xt (a row vector) as a linear combination of the p previousvector values of the time seriesx(t) = pXk=1x(t� k)a(k) + et (7.12)where each ak is a d � by � d matrix of AR coe�cients and et is an IID Gaussiannoise vector with zero mean and covariance C. There are a total of np = p � d� dAR coe�cients and the noise covariance matrix has d � d elements. If we write thelagged vectors as a single augmented row vector~x(t) = [x(t� 1);x(t� 2); :::;x(t� p)] (7.13)and the AR coe�cients as a single augmented matrixA = [a(1);a(2); :::;a(p)]T (7.14)then we can write the MAR model asx(t) = ~x(t)A+ e(t) (7.15)The above equation shows the model at a single time point t.The equation for the model over all time steps can be written in terms of the embed-ding matrix, ~M , whose tth row is ~x(t), the error matrix E having rows e(t+ p+ 1)and the target matrix X having rows x(t+ p+ 1). This givesX = ~MA+E (7.16)which is now in the standard form of a multivariate linear regression problem. TheAR coe�cients can therefore be calculated fromÂ = � ~MT ~M��1 ~MTX (7.17)and the AR predictions are then given byx̂(t) = ~x(t)Â (7.18)



Signal Processing Course, W.D. Penny, April 2000. 91The predicion errors are e(t) = x(t)� x̂(t) (7.19)and the noise covariance matrix is estimated asC = 1N � npeT (t)e(t) (7.20)The denominator N � np arises because np degrees of freedom have been used up tocalculate the AR coe�cients (and we want the estimates of covariance to be unbiased).7.3.1 Model order selectionGiven that an MAR model can be expressed as a multivariate linear regression prob-lem all the usual model order selection criteria can be employed such as stepwiseforwards and backwards selection. Other criteria also exist. Neumaier and Schneider[42] and Lutkepohl [34] investigate a number of methods including the Final Predic-tion Error FPE(p) = log�2 + log N + npN � np (7.21)where �2 = 1N [det((N � np)C)]1=d (7.22)but they prefer the Minimum Description Length (MDL) criterion1MDL(p) = N2 log�2 + np2 logN (7.23)7.3.2 ExampleGiven two time series and a MAR(3) model, for example, the MAR predictions arex̂(t) = ~x(t)A (7.24)x̂(t) = [x(t� 1);x(t� 2);x(t� 3)] 264 a(1)a(2)a(3) 375h x̂1(t) x̂2(t) i = h x1(t� 1)x2(t� 1)x1(t� 2)x2(t� 2)x1(t� 3)x2(t� 3) i (7.25)2666666664 â11(1) â12(1)â21(1) â22(1)â11(2) â12(2)â21(2) â22(2)â11(3) â12(3)â21(3) â22(3)
37777777751The MDL criterion is identical to the negative value of the Bayesian Information Criterion (BIC)ie. MDL(p) = �BIC(p), and Neumaier and Schneider refer to this measure as BIC.
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tFigure 7.3: Signals x1(t) (top) and x2(t) (bottom) and predictions from MAR(3)model.Applying an MAR(3) model to our data set gave the following estimates for the ARcoe�cients, ap, and noise covariance C, which were estimated from equations 7.17and 7.20 a1 = " �1:2813 �0:2394�0:0018 �1:0816 #a2 = " 0:7453 0:2822�0:0974 0:6044 #a3 = " �0:3259 �0:0576�0:0764 �0:2699 #C = " 0:0714 0:00540:0054 0:0798 #7.4 Cross Spectral DensityJust as the Power Spectral Density (PSD) is the Fourier transform of the auto-covariance function we may de�ne the Cross Spectral Density (CSD) as the Fouriertransform of the cross-covariance functionP12(w) = 1Xn=�1�x1x2(n) exp(�iwn) (7.26)



Signal Processing Course, W.D. Penny, April 2000. 93Note that if x1 = x2, the CSD reduces to the PSD. Now, the cross-covariance of asignal is given by �x1x2(n) = 1Xl=�1x1(l)x2(l � n) (7.27)Substituting this into the earlier expression givesP12(w) = 1Xn=�1 1Xl=�1x1(l)x2(l � n) exp(�iwn) (7.28)By noting that exp(�iwn) = exp(�iwl) exp(iwk) (7.29)where k = l � n we can see that the CSD splits into the product of two integralsP12(w) = X1(w)X2(�w) (7.30)where X1(w) = 1Xl=�1x1(l) exp(�iwl) (7.31)X2(�w) = 1Xk=�1x2(k) exp(+iwk)For real signals X�2 (w) = X2(�w) where * denotes the complex conjugate. Hence,the cross spectral density is given byP12(w) = X1(w)X�2 (w) (7.32)This means that the CSD can be evaluated in one of two ways (i) by �rst estimatingthe cross-covariance and Fourier transforming or (ii) by taking the Fourier transformsof each signal and multiplying (after taking the conjugate of one of them). A numberof algorithms exist which enhance the spectral estimation ability of each method.These algorithms are basically extensions of the algorithms for PSD estimation, forexample, for type (i) methods we can perform Blackman-Tukey windowing of thecross-covariance function and for type (ii) methods we can employ Welch's algorithmfor averaging modi�ed periodograms before multiplying the transforms. See Carter[8] for more details.The CSD is complexThe CSD is complex because the cross-covariance is asymmetric (the PSD is realbecause the auto-covariance is symmetric; in this special case the Fourier transormreduces to a cosine transform).



94 Signal Processing Course, W.D. Penny, April 2000.7.4.1 More than two time seriesThe frequency domain characteristics of a multivariate time-series may be summarisedby the power spectral density matrix (Marple, 1987[39]; page 387). For d time seriesP (f) = 0BBB@ P11(f) P12(f) � � � P1d(f)P12(f) P22(f) � � � P2d(f). . . . . . . . . . . . . . . . . . . . . . . . . . .P1d(f) P2d(f) � � � Pdd(f) 1CCCA (7.33)where the diagonal elements contain the spectra of individual channels and the o�-diagonal elements contain the cross-spectra. The matrix is called a Hermitian matrixbecause the elements are complex numbers.7.4.2 Coherence and PhaseThe complex coherence function is given by (Marple 1987; p. 390)rij(f) = Pij(f)qPii(f)qPjj(f) (7.34)The coherence, or mean squared coherence (MSC), between two channels is given byrij(f) =j rij(f) j2 (7.35)The phase spectrum, between two channels is given by�ij(f) = tan�1 "Im(rij(f))Re(rij(f)) # (7.36)The MSC measures the linear correlation between two time series at each frequencyand is directly analagous to the squared correlation coe�cient in linear regression.As such the MSC is intimately related to linear �ltering, where one signal is viewedas a �ltered version of the other. This can be interpreted as a linear regression ateach frequency. The optimal regression coe�cient, or linear �lter, is given byH(f) = Pxy(f)Pxx(f) (7.37)This is analagous to the expression for the regression coe�cient a = �xy=�xx (see �rstlecture). The MSC is related to the optimal �lter as followsr2xy(f) = jH(f)j2Pxx(f)Pyy(f) (7.38)which is analagous to the equivalent expression in linear regression r2 = a2(�xx=�yy).



Signal Processing Course, W.D. Penny, April 2000. 95At a given frequency, if the phase of one signal is �xed relative to the other, then thesignals can have a high coherence at that frequency. This holds even if one signal isentirely out of phase with the other (note that this is di�erent from adding up signalswhich are out of phase; the signals cancel out. We are talking about the coherencebetween the signals).At a given frequency, if the phase of one signal changes relative to the other thenthe signals will not be coherent at that frequency. The time over which the phaserelationship is constant is known as the coherence time. See [46], for an example.7.4.3 Welch's method for estimating coherenceAlgorithms based on Welch's method (such as the cohere function in the matlabsystem identi�cation toolbox) are widely used [8] [55]. The signal is split up into anumber of segments, N , each of length T and the segments may be overlapping. Thecomplex coherence estimate is then given asr̂ij(f) = PNn=1Xni (f)(Xnj (f))�qPNn=1Xni (f)2qPNn=1Xnj (f)2 (7.39)where n sums over the data segments. This equation is exactly the same form as forestimating correlation coe�cients (see chapter 1). Note that if we have only N = 1data segment then the estimate of coherence will be 1 regardless of what the truevalue is (this would be like regression with a single data point). Therefore, we needa number of segments.Note that this only applies to Welch-type algorithms which compute the CSD from aproduct of Fourier transforms. We can trade-o� good spectral resolution (requiringlarge T ) with low-variance estimates of coherence (requiring large N and thereforesmall T ). To an extent, by increasing the overlap between segments (and thereforethe amount of computation, ie. number of FFTs computed) we can have the best ofboth worlds.7.4.4 MAR modelsJust as the PSD can be calculated from AR coe�cients so the PSD's and CSD's canbe calculated from MAR coe�cients. First we computeA(f) = I + pXk ak exp(�ik2�fT ) (7.40)where I is the identity matrix, f is the frequency of interest and T is the samplingperiod. A(f) will be complex. This is analagous to the denominator in the equivalentAR expression (1 + Ppk=1 ak exp(�ik2�ft)). Then we calculate the PSD matrix asfollows (Marple 1987 [39]; page 408)PMAR(f) = T [A(f)]�1C [A(f)]�H (7.41)
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Figure 7.4: Coherence estimates from (a) Welch's periodogram method and (b) Mul-tivariate Autoregressive model.where C is the residual covariance matrix and H denotes the Hermitian transpose.This is formed by taking the complex conjugate of each matrix element and thenapplying the usual transpose operator.Just as A�T denotes the transpose of the inverse so A�H denotes the Hermitiantranspose of the inverse. Once the PSD matrix has been calculated, we can calculatethe coherences of interest using equation 7.35.
7.5 ExampleTo illustrate the estimation of coherence we generated two signals. The �rst, x, beinga 10Hz sine wave with additive Gaussian noise of standard deviation 0:3 and thesecond y being equal to the �rst but with more additive noise of the same standarddeviation. Five seconds of data were generated at a sample rate of 128Hz. Wethen calculated the coherence using (a) Welch's modi�ed periodogram method withN = 128 samples per segment and a 50% overlap between segments and smoothingvia a Hanning window and (b) an MAR(8) model. Ideally, we should see a coherencenear to 1 at 10Hz and zero elsewhere. However, the coherence is highly non-zero atother frequencies. This is because due to the noise component of the signal thereis power (and some cross-power) at all frequencies. As coherence is a ratio of cross-power to power it will have a high variance unless the number of data samples islarge.You should therefore be careful when interpreting coherence values. Preferably youshould perform a signi�cance test, either based on an assumption of Gaussian signals[8] or using a Monte-Carlo method [38]. See also the text by Bloom�eld [4].



Signal Processing Course, W.D. Penny, April 2000. 977.6 Partial CoherenceThere is a direct analogy to partial correlation. Given a target signal y and othersignals x1; x2; :::; xm we can calculate the `error' at a given frequency after includingk = 1::m variables Em(f). The partial coherence iskm(f) = Em�1(f)� Em(f)Em�1(f) (7.42)See Carter [8] for more details.
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Chapter 8
Subspace Methods
8.1 IntroductionPrincipal Component Analysis (PCA) is applied to the analysis of time series data.In this context we discuss measures of complexity and subspace methods for spectralestimation.8.2 Singular Spectrum Analysis8.2.1 EmbeddingGiven a single time series x1 to xN we can form an embedding of dimension d by takinglength d snapshots xt = [xt; xt+1; :::; xt+d] of the time series. We form an embeddingmatrix X with di�erent snapshots in di�erent rows. For d = 4 for exampleX = 1pN 26664 x1 x2 x3 x4x2 x3 x4 x5:: :: :: ::xN�3 xN�2 xN�1 xN 37775 (8.1)The normalisation factor is there to ensure thatXTX produces the covariance matrix(see PCA section). C =XTX (8.2)We note that embedding is identical to the procedure used in autoregressive modellingto generate the `input data matrix'. Similarly, we see that the covariance matrix ofembedded data is identical to the autocovariance matrixC = 26664 �xx(0) �xx(1) �xx(2) �xx(3)�xx(1) �xx(0) �xx(1) �xx(2)�xx(2) �xx(1) �xx(0) �xx(1)�xx(3) �xx(2) �xx(1) �xx(0) 37775 (8.3)99



100 Signal Processing Course, W.D. Penny, April 2000.where �xx(k) is the autocovariance at lag k.The application of PCA to embedded data (using either SVD on the embeddingmatrix or eigendecomposition on the autocovariance matrix) is known as SingularSpectrum Analysis (SSA) [18] or PCA Embedding.8.2.2 Noisy Time SeriesIf we suppose that the observed time series xn consists of a signal sn plus additivenoise en of variance �2e then xn = sn + en (8.4)If the noise is uncorrelated from sample to sample (a key assumption) then the noiseautocovariance matrix is equal to �2eI. If the signal has autocovariance matrixCs andcorresponding singular values sk then application of SVD to the observed embeddingmatrix will yield the singular values (see section 8.3 for a proof)�k = sk + �e (8.5)Thus, the biggest singular values correspond to signal plus noise and the smallest tojust noise. A plot of the singular values is known as the singular spectrum. The value�e is the noise 
oor. By reconstructing the time series from only those componentsabove the noise 
oor we can remove noise from the time series.Projections and ReconstructionsTo �nd the projection of the data onto the kth principal component we form theprojection matrix P = QTXT (8.6)where Q contains the eigenvectors of C (Q2 from SVD) and the kth row of P endsup containing the projection of the data onto the kth component. We can see thismore clearly as follows, for d = 4P = 26664 � � q1 � �� � q2 � �� � q3 � �� � q4 � � 37775 26664 x1 x2 : xN�3x2 x3 : xN�2x3 x4 : xN�1x4 x5 : xN 37775 (8.7)We can write the projection onto the kth component explicitly aspk = qTkXT (8.8)After plotting the singular spectrum and identifying the noise 
oor the signal can bereconstructed using only those components from the signal subspace. This is achievedby simply summing up the contributions from the �rst M chosen componentsx̂ = MXk=1pk (8.9)



Signal Processing Course, W.D. Penny, April 2000. 101which is a row vector whose nth element, x̂n contains the reconstruction of the originalsignal xn.From the section on dimensionality reduction (lecture 3) we know that the averagereconstruction error will be EM = dXk=M+1�k (8.10)where �k = �2k and we expect that this error is solely due to the noise, which hasbeen removed by SSA.The overall process of projection and reconstruction amounts to a �ltering or denoisingof the signal. Figure 8.1 shows the singular spectrum (embedding dimension d = 30)of a short section of EEG. Figure 8.2 shows the original EEG data and the SSA�ltered data using only the �rst 4 principal components.
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Figure 8.1: Singular spectrum of EEG data: A plot of �k versus k.
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Figure 8.2: (a) EEG data and (b) SSA-�ltered EEG data.



102 Signal Processing Course, W.D. Penny, April 2000.8.2.3 Embedding SinewavesA pure sinewaveIf we embed a pure sinewave with embedding dimension d = 2 then we can view thedata in the `embedding space'. Figure 8.3 shows two such embeddings; one for a lowfrequency sinewave and one for a high frequency sinewave. Each plot shows that thedata lie on a closed loop. There are two points to note.
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Figure 8.3: Embedding Sinewaves: Plots of xn+1 versus xn for sinewaves at frequenciesof (a) 13Hz and (b) 50Hz.Firstly, whilst a loop is intrinsically a 1-dimensional object (any point on the loopcan be described by a single number; how far round the loop from an agreed referencepoint) in terms on linear bases (straight lines and planes) we need two basis vectors.If the embedding took place in a higher dimension (d > 2) we would still need twobasis vectors. Therefore, if we embed a pure sinewave in d dimensions the number ofcorresponding singular values will be 2. The remaining singular values will be zero.Secondly, for the higher frequency signal we have fewer data points. This will becomerelevant when we talk about spectral estimation methods based on SVD.Multiple sinewaves in noiseWe now look at using SSA on data consisting of multiple sinusoids with additivenoise. As an example we generated data from four sinusoids of di�erent ampltiduesand additive Gaussian noise. The amplitudes and frequencies were a1 = 2; a2 =4; a3 = 3; a4 = 1 and f1 = 13; f2 = 29; f3 = 45; f4 = 6 and the standard deviation ofthe noise was �e = 2. We generated 3 seconds of data and sampled at 128Hz. We thenembedded the data in dimension d = 30. Application of SVD yielded the singularspectrum shown in Figure 8.4; we also show the singular spectrum obtained for a dataset containing just the �rst two sinewaves. The pairs of singular values constitutng thesignal are clearly visible. Figure 8.5 shows the Power Spectral Densities (computedusing Welch's modi�ed periodogram method; see earlier) of the projections onto the
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Figure 8.4: The singular spectrums for (a) p = 4 and (b) p = 2 sinewaves in additivenoise.�rst four pairs of principal components. They clearly pick out the correspondingsinewaves.8.3 Spectral estimationIf we assume that our signal consists of p complex sinusoidssk = exp(i2�fkn) (8.11)where k = 1::p then the signal autocovariance function, being the inverse Fouriertransform of the Power Spectral Density, is�xx(m) = pXk=1Pk exp(i2�fkm) (8.12)where m is the lag, Pk and fk are the power and frequency of the kth complex sinusoidand i = p�1. If the signal embedding dimension is d, where d > p, then we cancompute �xx(m) for m = 0::d � 1. The corresponding autocovariance matrix, ford = 4, for example is given byCxx = 26664 �xx(0) �xx(1) �xx(2) �xx(3)�xx(1) �xx(0) �xx(1) �xx(2)�xx(2) �xx(1) �xx(0) �xx(1)�xx(3) �xx(2) �xx(1) �xx(0) 37775 (8.13)The kth sinusoidal component of the signal at these d points is given by the d-dimensional vectorsk = [1; exp(i2�fk); exp(i4�fk); :::; exp(i2�(M � 1)fk)]T (8.14)The autocovariance matrix can now be written as followsCxx = pXk=1PksksHk (8.15)
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Figure 8.5: The Power Spectral Densities of the (a) �rst (b) second (c) third and (d)fourth pairs of projections. They clearly correspond to the original pure sinewaveswhich were, in order of amplitude, of frequencies 29, 45, 13 and 6Hz. The Fouriertransform of the data is the sum of the Fourier transforms of the projections.where H is the Hermitian transpose (take the conjugate and then the transpose).We now model our time series as signal plus noise. That isy[n] = x[n] + e[n] (8.16)where the noise has variance �2e . The autocovariance matrix of the observed timeseries is then given by Cyy = Cxx + �2eI (8.17)We now look at an eigenanalysis of Cyy where the eigenvalues are ordered �1 � �2 �::: � �M where M is the embedding dimension. The corresponding eigenvectors areqk (as usual, they are normalised). In the absence of noise, the eigenvalues �1; �2; ::; �pwill be non-zero while �p+1; �p+2; ::; �M will be zero (this is because there are only pdegrees of freedom in the data - from the p sinusoids).The signal autocovariance matrix can therefore be written asCxx = pXk=1�kqkqHk (8.18)



Signal Processing Course, W.D. Penny, April 2000. 105(this is the usual A = Q�QH eigendecomposition written as a summation) wherethe sum runs only over the �rst p components.In the presence of noise, �1; �2; ::; �p and �p+1; �p+2; ::; �M will be non-zero. Using theorthogonality property QQH = I we can write the noise autocovariance as�2eI = �2e MXk=1 qkqHk (8.19)where the sum runs over all M components.Combining the last two results allows us to write the observed autocovariance matrixas Cyy = pXk=1(�k + �2e)qkqHk + MXk=p+1�2eqkqHk (8.20)We have two sets of eigenvectors. The �rst p eigenvectors form a basis for the signalsubspace while the remaining eigenvectors form a basis for the noise subspace. Thislast name is slightly confusing as the noise also appears in the signal subspace; thesignal, however, does not appear in the noise subspace. In fact, the signal is orthogonalto the eigenvectors constituting the noise subspace. This last fact can be used toestimate the frequencies in the signal.Suppose, for example, that d = p+1. This means there will be a single vector in thenoise subspace and it will be the one with the smallest eigenvalue. Now, because thesignal is orthogonal to the noise we can writesHk qp+1 = 0 (8.21)If we write the elements of qp+1 as qkp+1 then we have which can be written asdXk=1 qkp+1 exp(�i2�(k � 1)fk) = 0 (8.22)Writing zk = exp(�i2�kfk) allows the above expression to be written in terms ofa polynomial in z. The roots allow us to identify the frequencies. The amplitudescan then be found by solving the usual AR-type equation. This method of spectralestimation is known as Pisarenko's harmonic decomposition method.More generally, if we have d > p+1 (ie. p is unknown) then we can use the MultipleSignal Classi�cation (MUSIC) algorithm. This is essentially the same as Pisarenko'smethod except that the noise variance is estimated as the average of the d�p smallesteigenvalues. See Proakis [51] for more details. Figure 8.6 compares spectral estimatesfor the MUSIC algorithm versus Welch's method on synthetic data containing 5 puresinusoids and additive Gaussian noise.
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Figure 8.6: Power Spectral Density estimates from (a) MUSIC and (b) Welch's mod-i�ed periodogram.8.3.1 Model Order SelectionWax and Kailath [62] suggest the Minimum Description Length (MDL) criterion forselecting p MDL(p) = �N log G(p)A(p)!+ E(p) (8.23)where G(p) = dYk=p+1�k (8.24)A(p) = 24 1d� p dXk=p+1�k35d�pE(p) = 12p(2d� p) logNwhere d is the embedding dimension, N is the number of samples and �k are theeigenvalues. The optimal value of p can be used as a measure of signal complexity.8.3.2 Comparison of methodsKay and Marple [31] provide a comprehensive tutorial on the various spectral esti-mation methods. Pardey et. al [45] show that the AR spectral estimates are typi-cally better than those obtained from periodogram or autocovariance-based methods.Proakis and Manolakis (Chapter 12) [51] tend to agree, although for data containinga small number of sinusoids in additive noise, they advocate the MUSIC algorithmand its relatives.



Chapter 9
Nonlinear Methods
9.1 IntroductionThis chapter covers entropy, mutual information, correlation sums, source entropyand nonlinear prediction.To motivate the use of nonlinear methods we give a simple example of where othermethods fail. Our example is the logistic mapxt+1 = Rxt(1� xt) (9.1)which is nonlinear because of the x2t term. Di�erent values of R are known to producedi�erent dynamics; R=3.5 and 3.6 produce periodic dynamics and R=4 produceschaotic dynamics. A `chaotic' system is a low-dimensional nonlinear determnisticsystem which is sensitive to initial conditions. Because of the `folding' in the logistic
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Figure 9.1: A plot of xt+1 versus xt for logistic map function xt+1 = 4xt(1 � xt). Ifxt+1 = 0:7, then what was xt ? Was it 0.23 or 0.77 ?map, for example, the system quickly forgets where its been before. Also, a slightchange in the initial conditions soon leads to a big change in the subsequent state ofthe system. 107



108 Signal Processing Course, W.D. Penny, April 2000.For R = 4 the Power Spectral Density (PSD) is 
at which is reminiscent of whitenoise (the corresponding autocovariance is only sign�ciantly non-zero at zero lag).Application of autoregressive models yields prediction errors with the same variance
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Figure 9.2: (a) Time series from the logistic map (R = 4) and (b) its Power SpectralDensityas the signal itself; ie. they are unable to detect any deterministic component in thesignal. Thus, the application of linear methods would lead us to mistakenly concludethat the signal is purely stochastic when in fact it is purely deterministic.If we apply nonlinear methods, however, then the underlying determinism can bediscovered. This holds the promise of short-term predictability when, under thehypothesis of linear dynamics the system was considered to be unpredictable.Also most early claims that physiological systems were chaotic have since been dis-credited. What is a more plausible working hypothesis, however, is that whilst thesesystems may not be nonlinear and deterministic they may very well be nonlinear andstochastic, and there is much evidence for this [23].We look at methods for detecting nonlinear dependencies such as the mutual informa-tion and marginal mutual information and methods for exploiting these dependenciesfor purposes of prediction, such as local-linear methods and neural networks.9.2 Lyapunov ExponentsA de�ning characteristic of a chaotic system is sensitivity to initial conditions. Pointswhich are near at time 0 become exponentially far apart at time t. This can becaptured in the relation dt = d0e�t (9.2)where d0 is the initial distance, dt is the distance at time t and � is the Lyapunovexponent. Re-arranging the above equation gives� = limt!1 log dtd0 (9.3)



Signal Processing Course, W.D. Penny, April 2000. 109�1 �2 �3 Attractor- - - Fixed Point0 - - Cycle0 0 - Torus+ 0 - ChaoticTable 9.1: Relation of sign of Lyaponov exponents to type of attractor.Negative �'s indicate convergence (damping) and positive �'s indicate divergence.Exponents equal to zero indicate cycles.If the points are in a d-dimensional embedding space then neighboring points willinitially be contained in a small multidimensional sphere. As time progresses thissphere will be stretched to form an ellipsoid with the length of the ith principal axisat time t given by di(t). There is a corresponding spectrum of Lyapunov exponents;one for each axis. If we consider a 3-dimensional system, for example, then therelation between the signs of the Lyapunov exponents and the type of attractors isshown in Table 9.2. See [41] for more details.The exponents can be calculate from a data set using the relation�i = limt!1 log di(t)d0 (9.4)Lyapunov exponents can be calculated from box-counting algorithms or from pre-dictive models. In the last approach, for example, we can �t a neural network tothe data, calculate the networks Jacobian matrix J (the derivative of the network'soutput with respect to its inputs - see Bishop [3] for details) and �nd �i from aneigendecomposition of J ([30] page 174). See also [13].9.3 Measures of InformationSee earlier lecture on Information Theory.9.3.1 Continuous variablesIn order to apply information theory to continuous variables we can partition con-tinuous space into a number of discrete bins 1. If we use M bins and observe nioccurences in the ith bin then the probability of the value xi occuring isp(xi) = niN (9.5)1An alternative is to use a parametric model to estimate the probability density p(x) from whichH(x) can be calculated. The entropy of such a continuous variable is known as the di�erentialentropy [12].



110 Signal Processing Course, W.D. Penny, April 2000.where N is the total number of samples.As we increase the number of bins, so the entropy increases.If we have two continuous variables x and y and partition the two-dimensional spaceinto bins where the number of levels in each dimension is M then the probability ofa vector is given by p(xi; yi) = nijN (9.6)where there are nij samples in the i; jth bin and a total of N samples. The totalnumber of bins will beM2. The entropy of the above distribution is the joint entropy(see equation 4.5) and the mutual information can be calculated from 4.15. In general,these discretization procedures can be applied to d variables. But because the numberof bins is Md we need a lot of data to estimate the probabilities. As an alternativeto box-counting algorithms we could use tree search algorithms or correlation summethods (see later). See Pineda and Sommerer [48] for a review.9.3.2 Measures of Information for Time SeriesIf our d continuous variables have come from a d-dimensional embedding of a timeseries eg. xi = [xi; xi�1; :::; xi�d+1] (9.7)and we partition the d-dimensional space into bins where the number of levels in eachdimension is M then the probability of a vector is given bypd(xi) = niN � d+ 1 (9.8)where there are ni samples in the ith bin and a total of N � d + 1 samples. Thetotal number of bins will be Md so we need long time series to get good probabilityestimates.Given a signal that has a range V the bin width will be r = V=M . The entropy ofthe above distribution is the joint entropyHd(�; r) = � MdXi=1 pd(xi) log pd(xi) (9.9)where � is the lag between samples. The mutual information, de�ned for d = 2, isI(�; r) = 2H1(�; r)�H2(�; r) (9.10)It tells us about the nonlinear (or linear) correlation between xt�� and xt and byvaring � we can plot an autocorrelation function. Figure 9.3 shows a plot of thisfor the logistic map time series. The entropies were calculated using a correlationsum method (see later) rather than a box-counting method. The mutual informationreduces from about 4 at a lag of zero to nearly zero after 5 time steps. This makessense as with the logistic map we lose about 1 bit of information per iteration. The
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Figure 9.3: Mutual Information, I(�; r) versus lag � for Logistic Map data. A reso-lution r = 0:1�x was used where �x is the standard deviation of the datafolding of the attractor acts like a switch and we lose about 1 bit of information perswitch press.For general d we can de�ne the joint mutual information as the di�erence betweenthe scalar entropies and the joint entropyId(�; r) = dH1(�; r)�Hd(�; r) (9.11)The joint mutual information measures the amount of information about xt containedindependently in the previous d samples ie. if we were to build a predictor, each ofthe previous d samples could be used but no interaction terms would be allowed.9.3.3 Marginal Mutual InformationThe joint mutual information measures the di�erence between the measured jointentropy of d variables and their joint entropy as if they were independent. For thespecial case d = 2 it therefore measures the amount of information about xt containedin the previous sample xt�� . For d = 3 and above, however, the correspondingmeasure is the marginal mutual information (or incremental mutual information orredundancy) Rd(�; r) = Id(�; r)� Id�1(�; r) (9.12)We can re-write this in terms of joint entropiesRd(�; r) = H1(�; r) +Hd�1(�; r)�Hd(�; r) (9.13)Here the e�ect of the d � 1 previous variables is considered jointly (in the secondterm) whereas in the joint mutual information they were considered independently.The marginal mutual information, Rd(�; r) measures the amount of information aboutxt contained in the previous d samples. For d = 2 the marginal mutual informationreduces to the mutual information.



112 Signal Processing Course, W.D. Penny, April 2000.9.3.4 Source EntropyThe Approximate Source Entropy statistics [47] are de�ned asApEn(d; r; N) = Hd(�; r)�Hd�1(�; r) (9.14)and ApEn(d; r) = limN!1[Hd(�; r)�Hd�1(�; r)] (9.15)They are approximations to the source entropy or KS-entropy (from Mr. Kolmogorovand Mr Sinai) which is de�ned ashKS(�) = limr!0 limd!1ApEn(d; r) (9.16)Now, because of the limits, the KS�Entropy can never be estimated experimentally(and, besides, it is only really of interest for purely deterministic sytems). But ApEncan, and as long as the embedding dimension is large enough and the resolution �neenough it will provide a good approximation. That is,hKS(�) � ApEn(d; r) (9.17)Moreover, we can relate it to the marginal mutual information. If we substitute theabove relation into equation 9.13 we getRd(�; r) = H1(�; r)� hKS(�) (9.18)Given that (see Weigend [63] page 50, or equation 9.42 later on)hKS(�) = �hKS (9.19)then we have Rd(�; r) = H1(�; r)� �hKS (9.20)Thus hKS is the gradient of a plot of Rd(�; r) versus � . The d previous samplescontain an amount of information Rd(�; r) about the present sample which decreasesas the time lag � is increased. The rate of decrease is governed by the source entropy.So, at a time lag of zero, the second term on the right is zero. The marginal mutualinformation is equal to the scalar entropy of the signal and the signal is completelypredictable.At each additional time step our predictive accuracy (which is governed by themarginal mutual information) loses hKS bits. After a certain number of time steps,pt, the marginal mutual information will fall to zero and all prediction accuracy willbe lost.In practice, zero prediction accuracy occurs when the the variance of the predictionerror equals the variance of the signal �2x. Given a prediction accuracy at zero lag ofe0 (equal to the resolution of the signal) after pt time steps the accuracy will be�x = e02pthKS (9.21)



Signal Processing Course, W.D. Penny, April 2000. 113Taking logs (to the base 2) gives pt = log(�x=e0)hKS (9.22)Therefore we must know the initial conditions exponentially more accurately (ex-ponential decrease in e0) to get a linear increase of the prediction horizon pt. Bymeasuring hKS we can estimate the prediction horizon. Conversely, by measuring theprediction horizon, from a predictive model (see later), we can estimate hKS.9.3.5 Correlation SumsAs an alternative to box-counting algorithms we can use correlation sums to estimatethe joint entropy (and therefore the mutual information and the source entropy). Ifwe embed a time series in d-dimensional lag space such thatxi = [xi; xi�1; :::; xi�d+1] (9.23)then we can measure the maximum distance between two points asjxi � xjj = maxk fxi�k+1 � xj�k+1g (9.24)ie. look along the k out of d dimensions and pick the biggest distance. If we de�nethe step function (or Heaviside function) as h(x) = 1 for x � 0 and h(x) = 0 forx < 0 then the indicator functionIr(xi;xj) = h(r � jxi � xjj) (9.25)is 1 if the maximum distance between two points is less than r, and zero otherwise.We can now de�ne the pointwise correlation sum asCdi (r) = 1N � d+ 1 N�d+1Xj=1 Ir(xi;xj) (9.26)which is the proportion of points within distance r of the point xi. As such thisprovides a good estimate for the probability density at point ipd(xi) = Cdi (r) (9.27)The joint entropy can be approximated as the average log of this inverse probability[16] Hd(r) = �1N � d+ 1 N�d+1Xi=1 log pd(xi) (9.28)Note that the sum is now over i whereas before it was over j. This method wasused to calculate the mutual information in the earlier example. Now the probabilitypd(xi) can be decomposed aspd(xi) = p(x1i ; x2i ; ::; xdi ) (9.29)= p(xdi jx1i ; x2i ; ::; xd�1i )p(x1i ; x2i ; ::; xd�1i )= p(xdi jx1i ; x2i ; ::; xd�1i )pd�1(xi)



114 Signal Processing Course, W.D. Penny, April 2000.Substituting this into the de�nitions for the joint entropies gives an expression forthe approximate source entropyApEn(d; r; N) = �1N � d+ 1 N�d+1Xi=1 log p(xdi jx1i ; x2i ; ::; xd�1i ) (9.30)Therefore, the approximate source entropy can be interpreted as the average log of aconditional probability; the probability that points are within distance r in embed-ding dimension d given that they were within this distance in embedding dimensiond�1. Application of ApEn to the logistic map shows that it is able to detect the dif-ference between the `simpler' periodic regime and the more complex `chaotic' regime.Application of ApEn to physiological signals is discussed in [23, 52, 47]. See PincusR ApEn3.5 0.03.6 0.2293.8 0.425Table 9.2: Approximate entropy of the logistic map time series with d = 3, N = 300,r = 0:1�x. Increasing R increases the complexity of the time series which is re
ectedin higher values of ApEn.[47] for a discussion on how to select r.9.4 Nonlinear PredictionGiven a time series xn where n = 1::N we wish to predict future values of the seriesie xN+1; xN+2 etc. If we view the time series up to time N as a �xed data set D thenthis can be achieved by inferring a statistical model from the data and using thismodel to predict future values of the signal.This could, for example, be achieved by an autoregressive model which predicts thenext value in the time series eg xN+1 as a linear combination of the p previous valuesx̂N+1 = w1xN + w2xN�1 + :::+ wkxN�k+1 (9.31)where wk are the autoregressive coe�cients (see earlier lecture). These can be `learnt'by tuning the model to the data set D.This same process can be repeated but with a more powerful class of predictivemodels; nonlinear predictors. These replace the linear function in the above equationwith a nonlinear functionx̂N+1 = f(w; xN ; xN�1; ::; xN�k+1) (9.32)having parameters w. Nonlinear predictors may be categorized into two broad classes(i) Local methods and (ii) Global methods.



Signal Processing Course, W.D. Penny, April 2000. 1159.4.1 Local methodsGiven a data set of N embedded points D = fxng we can make a nonlinear predictionof a future time series value xp+T from the embedded data point xp as follows. Firstly,we �nd the k-nearest neighbours amongst D. That is, the k points in D whichminimise the distance jjxn � xpjj (9.33)Put these points, ~xn, in rows of a matrixX and put the corresponding 'future' values~xn+T into the vector Y . We now �t a linear modelY = wX (9.34)in the usual manner w = (XTX)�1XTY (9.35)and we can then use it to make the predictionx̂p+T = wxp (9.36)This constitutes a local autoregressive model since only points in the neighbourhoodof the predicting region have been used. As k ! N we get the usual (global) autore-gresive model.A plot of prediction error versus k shows whether a local linear model (which isglobally nonlinear) or a global linear model is appropriate. These plots are knownas Deterministic versus Stochastic (DVS) plots [9]. For stochastic linear dynamicsk ! N gives the smallest error and for deterministic nonlinear dynamics k ! 2d+1,where d is the dimension of the attractor, gives the smallest error. Physiological data,such as heart rate or EEG, is in-between; it varies from nonlinear-stochastic to linearstochastic.A cautionary note in the interpretation of these plots is due to the issue of stationarity.This is because a nonstationary linear system may be viewed as a stationary nonlinearsystem. The two viewpoints are both valid descriptions of the same dynamics.
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Figure 9.4: (a) Intensity pulsations of a laser and (b) heart rate.
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Figure 9.5: Plots of (log) prediction error, E, versus (log) neighbourhood size, k, for(a) laser data and (b) heart-rate data. The minimum error points are at (a) logk = 3,k = 21 and (b) logk = 4:5, k = 91. These indicate that (a) the laser data is nonlinearand deterministic and (b) the heart-rate data is nonlinear and stochastic.DenoisingNot only can local methods be used for nonlinear prediction but also for nonlineardenoising. If, for example, the above linear prediction step is replaced by an SVDstep we have a local-SVD denoising algorithm. This can also be used in combinationwith local prediction methods - see Sauer et. al in [63].9.4.2 Global methodsProbably the most powerful nonlinear predictor is a Neural Network and the mostcommonly used network is the Multi-Layer Perceptron (MLP). This consists of anumber of layers of processing elements (usually only two). The �rst layer consists ofa number of linear transforms which are then operated on by a nonlinearity. Thereare j = 1::p such functions each called a hidden unithj = f( dXi=1wijxn�i) (9.37)where i sums over the embedding and f is usually a sigmoidal nonlinearityf(a) = 11 + e�a (9.38)The output of the second layer gives the networks prediction which is a linear com-bination of hidden unit responses x̂n+T = dXj=p vjhj (9.39)Given a data set of of embedded vectors xn and corresponding future values xn+T(often T = 1) the parameters of the model can be set so as to minimise the prediction



Signal Processing Course, W.D. Penny, April 2000. 117error E = NXn=1(xn+T � x̂n+T )2 (9.40)This can be achieved by various non-linear optimisation algorithms. The number ofhidden units can be chosen according to various model order selection criterion. SeeBishop [3] for details.Application of neural nets to some time series, eg. the laser data, shows them to bebetter predictors than linear methods by several orders of magnitude [63].Other global nonlinear methods involve the use of polynomial functions or Volterraseries. Predictions are formed from linear combinations of quadratic and higher orderterms eg. x̂n+T = w1xn + w2x2n + w3xnxn�1 + w4xn�1 + ::: (9.41)The number and order of such functions can be found empirically or from priorknowledge of the possible interactions.9.5 DiscusionA nonlinear dynamical system, with or without added stochastic noise, can thus becharacterised by a number of measures: (i) source entropy, (ii) prediction error and(iii) Lyapunov exponents and there are relations between them. There are also manymore measures that we have'nt discussed. Most of these are relevant to nonlineardeterministic systems rather than nonlinear stochastic ones. (the most prominentbeing correlation dimension [24]).To use them to, say, di�erentiate between di�erent physiological states or experimen-tal conditions requires not just estimating the measures themselves but also providingerror bars so we can apply signi�cance tests.For these `nonlinear' statistics, these most often take the form of Monte-Carlo esti-mates. Given a particular time series we compute our measure of interest, say ApEn.We then shu�e the data and recompute the statistic. If we do this for a number ofshu�es then where on the resulting PDF our original value falls is the signi�cancevalue.The sum of the positive Lyapunov exponents is equal to the source entropyhKS = X�i>0�i (9.42)This is known as Pesin's Identity 2. This completes the circle: Source Entropy !Nonlinear Prediction ! Lyapunov Exponents ! Source Entropy etc.2In fact, it is an upper bound on the source entropy [30]
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Chapter 10
Bayesian Methods
10.1 IntroductionSee [33] or Box and Tiao [6] for a general introduction to Bayesian statistics and [43]for applications of Bayesian methods in signal processing.
10.2 Bayes RuleThe distribution of a variable x conditioned on a variable y isp(x j y) = p(x; y)p(y) (10.1)Given that p(y j x) can be expressed similarly we can writep(x j y) = p(y j x)p(x)p(y) (10.2)which is Baye's rule. The density p(x) is known as the prior, p(y j x) as the likelihoodand p(y) as the evidence or marginal likelihood. Baye's rule shows how a prior distri-bution can be turned into a posterior distribution ie. how we update our distributionin the light of new information. To do this it is necessary to calculate the normalisingterm; the evidence p(y) = Z p(y j x)p(x)dx (10.3)which, being an integral, can sometimes be problematic to evaluate.119



120 Signal Processing Course, W.D. Penny, April 2000.10.2.1 ExampleFor discrete variables. Given a disease D with a prevalence of ten percent, a test forit T having a sensitivity of 95% and a speci�city of 85% we havep(D = 1) = 0:1 (10.4)p(T = 1jD = 1) = 0:95 (10.5)p(T = 0jD = 0) = 0:85 (10.6)The probability that subjects who test positive for D actually have D is then givenby Bayes' rulep(D = 1jT = 1) = p(T = 1jD = 1)p(D = 1)p(T = 1jD = 1)p(D = 1) + p(T = 1jD = 0)p(D = 0)(10.7)= 0:95� 0:10:95� 0:1 + 0:15� 0:9 (10.8)= 0:413 (10.9)10.3 Gaussian VariablesA Gaussian random variable x has the probability density function (PDF)p(x) = 1p2��2 exp "�(x� �)22�2 # (10.10)where the mean is � and the variance is �2. The inverse of the variance is known asthe precision � = 1=�2. The Gaussian PDF is written in shorthand asp(x) = N(x;�; �2) (10.11)If the prior is Gaussian p(x) = N(x; x0; 1=�0) (10.12)where x0 is the prior mean and �0 is the prior precision and the likelihood is alsoGaussian p(y j x) = N(y; x; 1=�D) (10.13)where the variable x is the mean of the likelihood and �D is the data precision thenthe posterior distribution is also Gaussian (see eg. [33],page 37).p(x j y) = N(x;m; 1=�) (10.14)where the mean and precision are given by� = �0 + �D (10.15)and m = �0� x0 + �D� y (10.16)Thus, the posterior precision is given by the sum of the prior precision and the dataprecision and the posterior mean is given by the sum of the prior data mean and thenew data value each weighted by their relative precisions 1.1This is the same as inverse variance weighting where the weights sum to one.



Signal Processing Course, W.D. Penny, April 2000. 12110.3.1 Combining EstimatesThis type of updating is relevant to the sensor fusion problem, where we have in-formation about a variable from two di�erent sources and we wish to combine thatinformation.Say, for example, we had two estimates for the amount of carbon in a given compound;method 1 estimates the percentage to be 35�4 units and method 2 estimates it to be40� 7 units. Before observing the second result we have a prior belief that the meanpercentage is x0 = 35 and the variance is 42 = 16 which corresponds to a precisionof �0 = 0:0625. Whilst the �rst result is viewed as the prior, the second result isviewed as the `data', which has mean y = 40 and precision �D = 1=72 = 0:0204. Ourposterior estimate for the amount of carbon is then estimated asm = 0:06250:0829 � 35 + 0:02040:0829 � 40 = 36:2 (10.17)and the posterior standard deviation is 3:5. If the results of method 2 were chosen asthe prior (instead of method 1) we'd get the same result.The equation for the posterior mean can be re-arranged asm = x0 + �D� (y � x0) (10.18)showing that the new estimate is the old estimate plus some fraction (which may beviewed as a learning rate) of an error term e = y � x0.10.3.2 Sequential EstimationAlso, this type of update is particularly suited to sequential estimation, where datacomes in a sample at a time and we update our estimates at each time step. Baye'srule is perfect for this because today's posterior becomes tomorrow's prior.Say, for example, we have a random variable x which we observe sequentially - thevalue at time t being xt ie. a time series - and that we wish to estimate the mean,without storing all the data points. At time t our estimate for the mean is �t andour estimate for the variance is �2t . Now our prior distribution for �t (ie. prior toobserving xt) is p(�t) = N(�t;�t; �2t =t) (10.19)where the variance is given by the usual standard error formula (see lecture 1). Thelikelihood of the new data point isp(xtj�t) = N(xt;�t; �2t ) (10.20)Adding the precisions to get the posterior precision gives (from equation 10.15)� = t�2t + 1�2t = t+ 1�2t (10.21)
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Figure 10.1: Sequential estimation of stationary mean. The graph plots datavalues xt (crosses) and the estimated mean value �t (circles) versus iteration numbert.The posterior mean is then given by equation 10.16�t+1 = tt+ 1�t + 1t + 1xt (10.22)Re-arranging gives �t+1 = �t + 1t + 1(xt � �t) (10.23)In the above procedure we have implicitly assumed that the data xt is stationaryie. that the mean at time t is equal to the mean at time t + T for all T (a moreformal de�nition of stationarity will be given later). This results in our estimate forthe mean converging to a steady value as t increases. The �nal value is exactly thesame as if we'd stored all the data and calculated it in the usual way.But what if the signal is non-stationary ? See the chapter on Kalman �lters.10.4 Multiple Gaussian VariablesA d-dimensional Gaussian random vector x has a PDF given byp(x) = 1(2�)d=2jCj1=2 exp��12(x� �x)TC�1(x� �x)� (10.24)where the mean �x is a d-dimensional vector, C is a d � d covariance matrix, andjCj denotes the determinant of C. The multivariate Gaussian PDF is written inshorthand as p(x) = N(x; �x;C) (10.25)



Signal Processing Course, W.D. Penny, April 2000. 123If the prior distribution is Gaussianp(x) = N(x;x0;�0) (10.26)where x0 is the prior mean and �0 is the prior covariance and the likelihood isp(y j x) = N(y;x;�D) (10.27)where the variable x is the mean of the likelihood and �D is the data covariance thenthe posterior distribution is given by [40]p(x j y) = N(x;m;�) (10.28)where the mean and covariance are given by��1 = ��10 +��1D (10.29)and m = ���10 x0 +���1D y (10.30)These updates are similar in form to the updates for the univariate case. Again, theseupdate formulae are useful for both sequential estimation and sensor fusion. In thesequential estimation case we have a Kalman �lter (see next lecture).10.5 General Linear ModelsGiven a set of input variables zn (a row vector) where n = 1::N and a �xed, possiblynonlinear, function of them xn = F (zn) (10.31)the output variable is then given as a linear combinationyn = xnw + en (10.32)where w is a column vector of coe�cients and e is zero mean Gaussian noise withprecision �. This type of model is su�ciently general to include (i) autoregressivemodels if F is the identity function and xn = [yn�1; yn�2; :::; yn�p], (ii) Fourier-typemodels if F are sine and cosine functions and (iii) wavelet models if F are the waveletbases.Given a data set D = fzn; yng where n = 1::N the likelihood of the data is given byp(D j w; �) =  �2�!N=2 exp(��ED) (10.33)where ED = 12(Y �Xw)T (Y �Xw) (10.34)



124 Signal Processing Course, W.D. Penny, April 2000.and Y is a column vector with entries yn and the nth row of the matrixX contains xn.The weights are drawn from a zero-mean Gaussian prior with an isotropic covariancehaving precision � p(w j �) = � �2��p=2 exp(��EW ) (10.35)where EW = 12 pXi=1w2i (10.36)= 12wTwThe posterior distribution over the unknown coe�cients is then given by Bayes' rulep(wjD;�; �) = p(Djw; �)p(wj�)R p(Djw; �)p(wj�)dw (10.37)As the prior is normal with mean w0 = 0 and covariance �0 = (1=�)I, the likelihoodis normal with mean wD =X�1Y and covariance �D = (�XTX)�1 then the poste-rior is also a normal with mean and covariance given by equations 10.30 and 10.29.The posterior is therefore given byp(wjD;�; �) = N(w; ŵ; �̂) (10.38)where �̂ = (�XTX + �I)�1 (10.39)ŵ = �̂XT�Y10.5.1 The evidence frameworkIf the 'hyperparameters' � and � are unknown (they almost always are) they canbe set according to following method known as either the evidence framework [35]or Maximimum Likelihood II (ML II) [2]. In this approach � and � are set so as tomaximise the evidence (also known as marginal likelihood)p(Dj�; �) = Z p(Djw; �)p(wj�)dw (10.40)Substituting in our earlier expressions for the prior and likelihood givesp(Dj�; �) =  �2�!�N=2 � �2���p=2 Z exp(�E(w))dw (10.41)where E(w) = �ED + �Ew (10.42)



Signal Processing Course, W.D. Penny, April 2000. 125Bishop shows that ([3], page 398 and further details in Appendix B) the integral inequation 10.41 can be evaluated asZ exp(�E(w))dw = (2�)p=2j�j1=2 exp(�E(w)) (10.43)The log of the evidence can then be written asEV (p) = ��EW � �ED + 0:5 log j�j+ p2 log� + N2 log � � N2 log 2� (10.44)The values of � and � which maximise the evidence are� = 
2EW (10.45)� = N � 
2ED (10.46)where 
, the number of `well-determined' coe�cients, is given by
 = p� �Trace(�) (10.47)which is calculated using the `old' value of �. The update for � is therefore an implicitequation. We can also write it as the explicit update� = p2EW + Trace(�) (10.48)See Bishop ([3], chapter 10) or Mackay [35] for a derivation of the above equations.To summarise, the evidence framework works as follows. The weights are �rst es-timated using equation 10.40. The hyperparmeters are then estimated using equa-tions 10.46 and 10.48. This weights are then re-estimated and so are the hyperpa-rameters until the procedure converges. This usually takes ten or so cycles.Once the above procedure has converged we can use the evidence as a model orderselection criterion.10.5.2 ExampleThe following �gures compare the MDL and Bayesian Evidence model order selectioncriteria. The �rst �gure shows that, for low model order (relative to the numberof data samples) both methods work equally well. The second �gure shows that,at high model order, the Bayesian evidence is superior. The last �gure shows thatEEG recordings from an awake subject can be di�erentiated from those of an anaes-thetised subject. Di�erentiation was good using the Bayesian evidence criterion butinsigni�cant using MDL.
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Figure 10.2: Model Order Selection for AR(6) data with (a) MDL and (b) BayesianEvidence with 3-second blocks of data.
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Figure 10.3: Model Order Selection for AR(25) data with (a) MDL and (b) BayesianEvidence with 3-second blocks of data.
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Figure 10.4: Bayesian Evidence model order selection on EEG data from (a) awakesubject and (b) anaesthetised subject.



Chapter 11
Kalman Filters
11.1 IntroductionWe describe Bayesian Learning for sequential estimation of parameters (eg. means,AR coe�cients). The update procedures are known as Kalman Filters. We show howDynamic Linear Models, Recursive Least Squares and Steepest Descent algorithmsare all special cases of the Kalman �lter.11.1.1 Sequential Estimation of Nonstationary MeanIn the lecure on Bayesian methods we described the sequential estimation of a sta-tionary mean. We now extend that analysis to the nonstationary case.A reasonable model of a time varying mean is that it can drift from sample to sample.If the drift is random (later on we will also consider deterministic drifts) then we have�t = �t�1 + wt (11.1)where the random drift is Gaussian p(wt) = N(wt; 0; �2w) with drift variance �2w. Thedata points are then Gaussian about mean �t. If they have a �xed variance �2x (lateron we will also consider time-varing variance)xt = �t + et (11.2)where et = xt � �t. Hence p(et) = N(et; 0; �2x).At time t � 1 our estimate of �t�1 has a Gaussian distribution with mean �̂t�1 andvariance �̂2t�1. We stress that this is the variance of our mean estimate and not thevariance of the data. The standard error estimate for this variance (�2t =t) is no longervalid as we have nonstationary data. We therefore have to estimate it as we go along.This means we keep running estimates of the distribution of the mean. At time t� 1this distribution has a mean �̂t�1 and a variance �̂2t�1. The distribution at time t is127



128 Signal Processing Course, W.D. Penny, April 2000.then found from Bayes rule. Speci�cally, the prior distribution is given byp(�t) = N(�t; �̂t�1; rt) (11.3)where rt is the prior variance (we add on the random drift variance to the variancefrom the previous time step) rt = �̂2t�1 + �2w (11.4)and the likelihood is p(xtj�t) = N(xt; �̂t�1; �2x) (11.5)The posterior is then given by p(�tjxt) = N(�t; �̂t; �̂2t ) (11.6)where the mean is �̂t = �̂t�1 + rt�2x + rt (xt � �̂t�1) (11.7)and the variance is �̂2t = rt�2xrt + �2x (11.8)We now write the above equations in a slightly di�erent form to allow for comparisonwith later estimation procedures �̂t = �̂t�1 +Ktet (11.9)�̂2t = rt(1�Kt)where Kt = rt�2x + rt (11.10)and et = xt � �̂t�1 (11.11)In the next section we will see that our update equations are a special case of aKalman �lter where et is the prediction error and Kt is the Kalman gain.In �gure 11.1 we give a numerical example where 200 data points were generated; the�rst 100 having a mean of 4 and the next 100 a mean of 10. The update equationshave two paramaters which we must set (i) the data variance �2x and (ii) the driftvariance �2w. Together, these parameters determine (a) how responsive the trackingwill be and (b) how stable it will be. The two plots are for two di�erent values of �2wand �2x = 1. Later we will see how these two parameters can be learnt.11.1.2 A single state variableWe now look at a general methodology for the sequential estimation of a nonstationaryparameter (this can be anything - not necesarily the data mean).
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Figure 11.1: Sequential estimation of nonstationary mean. The graphs plotdata values xt (crosses) and estimated mean values �̂t (circles) along with error bars�̂t (vertical lines) versus iteration number t for two di�erent drift noise values (a)�2w = 0:01 and (b) �2w = 0:1.The parameter's evolution is modelled as a linear dynamical system. The state-spaceequations are �t = gt�t�1 + wt; wt � N(wt; 0; �2w)xt = ft�t + et; et � N(et; 0; �2x) (11.12)The value of the parameter at time t is referred to as the state of the system �t. Thisstate can change deterministically, by being multiplied by gt, and stochastically byadded a random drift wt. This drift is referred to as state noise. The observed data(eg. time series values) are referred to as observations xt which are generated fromthe state according to the second equation. This allows for a linear transformationplus the addition of observation noise.At time t � 1 our estimate of �t�1 has a Gaussian distribution with mean �̂t�1 andvariance �̂2t�1. The prior distribution is therefore given byp(�t) = N(�t; gt�̂t�1; rt) (11.13)where rt is the prior variance rt = g2t �̂2t�1 + �2w (11.14)and the likelihood is p(xtj�t) = N(xt; ft�̂t�1; �2x) (11.15)The posterior is then given by p(�tjxt) = N(�t; �̂t; �̂2t ) (11.16)where �̂t = gt�̂t�1 +Ktet (11.17)�̂2t = rt(1�Ktft)and Kt = rt�2x + f 2t rt ft (11.18)



130 Signal Processing Course, W.D. Penny, April 2000.The above equations constitute a 1-dimensionalKalman Filter (the state is 1-dimensionalbecause there is only 1 state variable). Next we consider many state variables.11.1.3 Multiple state variablesWe now consider linear dynamical systems where data is generated according to themodel �t = Gt�t�1 +wt; wt � N(wt; 0;W t)yt = F t�t + vt; vt � N(vt; 0;V t) (11.19)where �t are `state' or `latent' variables, Gt is a `
ow' matrix, wt is `state noise'distributed according to a normal distribution with zero mean and covariance matrixW t, yt are the multivariate observations, F t is a transformation matrix and vt is`observation noise' distributed according to a normal distribution with zero meanand covariance matrix V t. The model is parameterised by the matrices Gt, W t, F tand V t. These parameters may depend on t (as indicated by the subscript).The Kalman �lter is a recursive procedure for estimating the latent variables, �t [29].Meinhold and Singpurwalla [40] show how this estimation procedure is derived (alsosee lecture on Bayesian methods). The latent variables are normally distributed witha mean and covariance that can be estimated with the following recursive formulae�̂t = Gt�̂t�1 +Ktet (11.20)�t = Rt �KtF tRtwhere Kt is the `Kalman gain' matrix, et is the prediction error and Rt is the `priorcovariance' of the latent variables (that is, prior to yt being observed). These quan-tities are calculated as followsKt = RtF Tt �V t + F tRtF Tt ��1 (11.21)et = yt � F tGt�̂t�1Rt = Gt�t�1GTt +W tTo apply these equations you need to know the parameters Gt, W t,F t and V t andmake initial guesses for the state mean and covariance; �̂0 and �0. Equations (3) and(2) can then be applied to estimate the state mean and covariance at the next timestep. The equations are then applied recursively.



Signal Processing Course, W.D. Penny, April 2000. 131A useful quantity is the likelihood of an observation given the model parametersbefore they are updatedp(yt) = N �yt;F t�̂t�1;V t + F t �GTt �t�1Gt�F Tt � (11.22)In Bayesian terminology this likelihood is known as the evidence for the data point[14]. Data points with low evidence correspond to periods when the statistics of theunderlying system are changing (non-stationarity) or, less consistently, to data pointshaving large observation noise components.The state-space equations may be viewed as a dynamic version of factor analysiswhere the factor, �t, evolves over time according to linear dynamics. Shumway andSto�er [56] derive an Expectation-Maximisation (EM) algorithm (see next lecture)in which the parameters of the model G, W and V can all be learnt. Only F isassumed known. Note that these parameters are no longer dependent on t. This doesnot, however, mean that the model is no longer dynamic; the state, �t, is still timedependent. Ghahramani and Hinton [22] have recently extended the algorithm toallow F to be learnt as well. These learning algorithms are batch learning algorithmsrather than recursive update procedures. They are therefore not suitable for `on-line'learning (where the learning algorithm has only one `look' at each observation).In the engineering and statistical forecasting literature [44] [11] the transformationmatrix, F t, is known. It is related to the observed time series (or other observed timeseries) according to a known deterministic function set by the statistician or `modelbuilder'. Assumptions are then made about the 
ow matrix, Gt. Assumptions arealso made about the state noise covariance,W t, and the observation noise covariance,V t, or they are estimated on-line. We now look at a set of assumptions which reducesthe Kalman �lter to a `Dynamic Linear Model'.11.1.4 Dynamic Linear ModelsIn this section we consider Dynamic Linear Models (DLMs) [11] which for a univariatetime series are �t = �t�1 +wt; wt � N(wt; 0;W t)yt = F t�t + vt; vt � N(vt; 0; �2t ) (11.23)This is a linear regression model with time-varying coe�cients. It is identical to thegeneric Kalman �lter model withGt = I. Substituting this into the update equationsgives �̂t = �̂t�1 +Ktet (11.24)�t = Rt �KtF tRt



132 Signal Processing Course, W.D. Penny, April 2000.where Kt = RtF Tt�2̂yt (11.25)Rt = �t�1 +W t�2̂yt = �2t + �2��2� = F tRtF Ttet = yt � ŷtŷt = F t�̂t�1 (11.26)where ŷt is the prediction and �2̂yt is the estimated prediction variance. This is com-posed of two terms; the observation noise, �2t , and the component of prediction vari-ance due to state uncertainty, �2� . The likelihood of a data point under the old model(or evidence) is p(yt) = N �yt; ŷt; �2̂yt� (11.27)If we make the further assumption that the transformation vector (its no longer amatrix because we have univariate predictions) is equal to F t = �[yt�1; yt�2; :::; yt�p]then we have a Dynamic Autoregressive (DAR) model.To apply the model we make initial guesses for the state (AR parameters) mean andcovariance (�̂0 and �0) and use the above equations. We must also plug in guessesfor the state noise covariance, W t, and the observation noise variance, �2t . In a latersection we show how these can be estimated on-line. It is also often assumed that thestate noise covariance matrix is the isotropic matrix, W t = qI. Next, we look at aset of assumptions that reduce the Kalman �lter to Recursive Least Squares.11.1.5 Recursive least squaresIf there is no state noise (wt = 0,W t = 0) and no state 
ow (Gt = I) then the lineardynamical system in equation (1) reduces to a static linear system (�t = �). If wefurther assume that our observations are univariate we can re-write the state-spaceequations as yt = F t� + vt; vt � N(vt; 0; �2t ) (11.28)This is a regression model with constant coe�cients. We can, however, estimate thesecoe�cients in a recursive manner by substituting our assumptions aboutW t, Gt andV t into the Kalman �lter update equations. This gives



Signal Processing Course, W.D. Penny, April 2000. 133�̂t = �̂t�1 +Ktet (11.29)�t = �t�1 �KtF t�t�1 (11.30)where Kt = �t�1F Tt�2̂yt (11.31)�2̂yt = �2t + �2��2� = F t�t�1F Ttet = yt � ŷtŷt = F t�̂t�1 (11.32)where ŷt is the prediction and �2̂yt is the estimated prediction variance. This is com-posed of two terms; the observation noise, �2t , and the component of prediction vari-ance due to state uncertainty, �2� .The above equations are identical to the update equations for recursive least squares(RLS) as de�ned by Abraham and Ledolter (equation (8.60) in [1]).The likelihood of a data point under the old model (or evidence) isp(yt) = N �yt; ŷt; �2̂yt� (11.33)If we make the further assumption that the transformation vector (its no longer amatrix because we have univariate predictions) is equal to F t = �[yt�1; yt�2; :::; yt�p]then we have a recursive least squares estimation procedure for an autoregressive(AR) model.To apply the model we make initial guesses for the state (AR parameters) mean andcovariance (�̂0 and �0) and use the above equations. We must also plug in our guessfor the observation noise variance, �2t . In a later section we show how this can beestimated on-line.11.1.6 Estimation of noise parametersTo use the DLM update equations it is necessary to make guesses for the state noisecovariance, W t, and the observation noise variance, �2t . In this section we showhow these can be estimated on-line. Note, we either estimate the state noise or theobservation noise - not both.



134 Signal Processing Course, W.D. Penny, April 2000.Jazwinski's method for estimating state noiseThis method, reviewed in [14] is ultimately due to Jazwinski [28] who derives thefollowing equations using the MLII approach (see Bayes lecture). We assume thatthe state noise covariance matrix is the isotropic matrix,W = qI. The parameter qcan be updated according to q = h e2 � �2q0F tF Tt ! (11.34)where h(x) is the `ramp' functionh(x) = ( x if x � 00 otherwise (11.35)and �2q0 is the estimated prediction variance assuming that q = 0�2q0 = �2t + F t�t�1F Tt (11.36)Thus, if our estimate of prediction error assuming no state noise is smaller than ourobserved error (e2) we should infer that the state noise is non-zero. This will happenwhen we transit from one stationary regime to another; our estimate of q will increase.This, in turn, will increase the learning rate (see later section). A smoothed estimateis qt = �qt�1 + (1� �)h e2 � �2q0F tF Tt ! (11.37)where � is a smoothing parameter. Alternatively, equation 11.34 can be applied to awindow of samples [14].Jazwinski's method for estimating observation noiseThis method, reviewed in [14] is ultimately due to Jazwinski [28] who derives the fol-lowing equations by applying the MLII framework (see Bayes lecture). Equation 11.26shows that the estimated prediction variance is composed of two components; the ob-servation noise and the component due to state uncertainty. Thus, to estimate theobservation noise one needs to subtract the second component from the measuredsquared error �2t = h �e2t � F tRt�1F Tt � (11.38)



Signal Processing Course, W.D. Penny, April 2000. 135This estimate can be derived by setting �2t so as to maximise the evidence (likelihood)of a new data point (equation 11.27). A smoothed estimate is�2t = ��2t�1 + (1� �)h �e2t � F tRt�1F Tt � (11.39)where � is a smoothing parameter. Alternatively, equation 11.38 can be applied to awindow of samples [14].For RLS these update equations can be used by substituting Rt = �t�1. We stress,however, that this estimate is especially unsuitable for RLS applied to non-stationaritydata (but then you should only use RLS for stationary data, anyway). This is becausethe learning rate becomes dramatically decreased.We also stress that Jazwinski's methods cannot both be applied at the same time; the'extra' prediction error is explained either as greater observation noise or as greaterstate noise.Skagens' methodSkagen [57] lets W = ��2t I ie. assumes the state noise covariance is isotropic with avariance that is proportional to the observation noise �2t .He observes that if � is kept �xed then varying �2t over six orders of magnitude haslittle or no e�ect on the Kalman �lter updates. He therefore sets �2t to an arbitraryvalue eg. 1.He then de�nes a measure R as the relative reduction in prediction error due toadaption and chooses � to give a value of R = 0:5.11.1.7 Comparison with steepest descentFor a linear predictor, the learning rule for `on-line' steepest descent is [3]�̂t = �̂t�1 + �F Tt et (11.40)where � is the learning rate, which is �xed and chosen arbitrarily beforehand. Thismethod is otherwise known as Least Mean Squares (LMS). Haykin [27] (page 362)discusses the conditions on � which lead to a convergent learning process. Comparisonof the above rule with the DLM learning rule in equation 11.25 shows that DLM hasa learning rate matrix equal to � = �t�1 + qtI�2t + �2� (11.41)The average learning rate, averaged over all state variables, is given by



136 Signal Processing Course, W.D. Penny, April 2000.�DLM = 1p Tr (�t�1 + qtI)(�2t + �2�) (11.42)where Tr() denotes the trace of the covariance matrix and p is the number of statevariables.DLM thus uses a learning rate which is directly proportional to the variance of thestate variables and is inversely proportional to the estimated prediction variance.If the prediction variance due to state uncertainty is signi�cantly smaller than theprediction variance due to state noise (�2� � �2t ), as it will be once the �lter hasreached a steady solution, then increasing the state noise parameter, qt, will increasethe learning rate. This is the mechanism by which DLM increases its learning ratewhen a new dynamic regime is encountered.The average learning rate for the RLS �lter is�RLS = 1p Tr (�t�1)(�2t + �2�) (11.43)As there is no state noise (qt = 0) there is no mechanism by which the learning ratecan be increased when a new dynamic regime is encountered. This underlines the factthat RLS is a stationary model. In fact, RLS behaves particularly poorly when givennon-stationary data. When a new dynamic regime is encountered, �2� will increase(and so may �2t if we're updating it online). This leads not to the desired increase inlearning rate, but to a decrease.For stationary data, however, the RLS model behaves well. As the model encountersmore data the parameter covariance matrix decreases which in turn leads to a decreasein learning rate. In on-line gradient descent learning it is desirable to start with ahigh learning rate (to achieve faster convergence) but end with a low learning rate(to prevent oscillation). RLS exhibits the desirable property of adapting its learningrate in exactly this manner. DLM also exhibits this property when given stationarydata, but when given non-stationary data, has the added property of being able toincreasing its learning rate when necessary.We conclude this section by noting that DLM and RLS may be viewed as linear on-line gradient descent estimators with variable learning rates; RLS for stationary dataand DLM for non-stationary data.11.1.8 Other algorithmsThe Least Mean Squares (LMS) algorithm [27] (Chapter 9) is identical to the steepest-descent method (as described in this paper) - both methods have constant learningrates.



Signal Processing Course, W.D. Penny, April 2000. 137Our comments on the RLS algorithm are relevant to RLS as de�ned by Abrahamand Ledolter [1]. There are, however, a number of variants of RLS. Haykin [27](page 564) de�nes an exponentially weighted RLS algorithm, where past samplesare given exponentially less attention than more recent samples. This gives riseto a limited tracking ability (see chapter 16 in [27]). The tracking ability can befurther improved by adding state noise (Extended RLS-1 [27], page 726) or a non-constant state transition matrix (Extended RLS-2 [27], page 727). The ExtendedRLS-1 algorithm is therefore similar to the DAR model described in this paper.11.1.9 An exampleThis example demonstrates the basic functioning of the dynamic AR model andcompares it to RLS.A time series was generated consisting of a 10Hz sine wave in the �rst second, a 20Hzsinewave in the second second and a 30Hz sine wave in the third second. All signalscontained additive Gaussian noise with standard deviation 0.1. One hundred sampleswere generated per second.A DAR model with p = 8 AR coe�cients was trained on the data. The algorithmwas given a �xed value of observation noise (�2t = 0:2). The state noise was initiallyset to zero and was adapted using Jazwinski's algorithm described in equation 11.34,using a smoothing value of � = 0:1. The model was initialised using linear regression;the �rst p data points were regressed onto the p + 1th data point using an SVDimplementation of least squares, resulting in the linear regression weight vector wLR.The state at time step t = p + 1 was initialised to this weight vector; �p+1 = wLR.The initial state covariance matrix was set to the linear regression covariance matrix,�p+1 = �2tF p+1F Tp+1. Model parameters before time p+ 1 were set to zero.An RLS model (with p = 8 AR coe�cients) was also trained on the data. Thealgorithm was given a �xed value of observation noise (�2t = 0:2). The model wasinitilised by setting �p+1 = wLR and �p+1 = I (setting �p+1 = �2tF p+1F Tp+1 resultedin an initial learning rate that was'nt su�ciently large for the model to adapt to thedata - see later).Figure 11.2 shows the original time series and the evidence of each point in the timeseries under the DAR model. Data points occuring at the transitions between di�erentdynamic regimes have low evidence.Figure 11.3 shows that the state noise parameter, q, increases by an amount necessaryfor the estimated prediction error to equal the actual prediction error. The state noiseis high at transitions between di�erent dynamic regimes. Within each dynamic regimethe state noise is zero.Figure 11.4 shows that the variance of state variables reduces as the model is exposedto more data from the same stationary regime. When a new stationary regime isencountered the state variance increases (because q increases).
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Figure 11.2: (a) Original time series (b) Log evidence of data points under DARmodel, log p(yt).Figure 11.5 shows that the learning rate of the DAR model increases when the systementers a new stationary regime, whereas the learning rate of RLS actually decreases.The RLS learning rate is initially higher because the state covariance matrix wasinitialised di�erently (initialising it in the same way gave much poorer RLS spectralestimates).Figure 11.6 shows the spectral estimates obtained from the DAR and RLS models.The learning rate plots and spectrogram plots show that DAR is suitable for non-stationary data whereas RLS is not.11.1.10 DiscussionDynamic Linear Models, Recursive Least Squares and Steepest-Descent Learning.are special cases of linear dynamical systems and their learning rules are special casesof the Kalman �lter. Steepest-Descent Learning is suitable for modelling stationarydata. It uses a learning rate parameter which needs to be high at the beginning oflearning (to ensure fast learning) but low at the end of learning (to prevent oscilla-tions). The learning rate parameter is usually hand-tuned to ful�ll these criteria. Re-cursive Least Squares is also suitable for modelling stationary data. It has the advan-tage of having an adaptive learning rate that reduces gradually as learning proceeds.It reduces in response to a reduction in the uncertainty (covariance) of the modelparameters. Dynamic Linear Models are suitable for stationary and non-stationaryenviroments. The models possess state-noise and observation noise parameters whichcan be updated on-line so as to maximise the evidence of the observations.
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Figure 11.3: (a) Squared prediction error, e2t , (b) Estimated prediction error withqt = 0, �2q0, (c) Estimated prediction error, �2̂yt (the baseline level is due to the �xedobservation noise component, �2t = 0:2) and (d) Estimate of state noise variance, qt.The state noise, qt, increases by an amount necessary for the estimated predictionerror (plot c) to equal the actual predicition error (plot a) - see equation 11.34.
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Figure 11.4: Average prior variance of state variables, 1pTr(Rt). As the model isexposed to more data from the same stationary regime the estimates of the statevariables become more accurate (less variance). When a new stationary regime isencountered the state variance increases (because q increases).
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Figure 11.5: Average learning rates for (a) DAR model (b) RLS model. The learningrate for RLS is set to a higher initial value (indirectly by setting � to have largerentries) to give it a better chance of tracking the data. The DAR model responds to anew dynamic regime by increasing the learning rate. The RLS responds by decreasingthe learning rate and is therefore unable to track the nonstationarity.
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Figure 11.6: Spectrograms for (a) DAR model (b) RLS model.



Chapter 12
EM algorithms
The Expectation-Maximization (EM) algorithm is a maximum likelihood method formodels that have hidden variables eg. Gaussian Mixture Models (GMMs), LinearDynamic Systems (LDSs) and Hidden Markov Models (HMMs).12.1 Gaussian Mixture ModelsSay we have a variable which is multi-modal ie. it separates into distinct clusters.For such data the mean and variance are not very representative quantities.In a 1-dimensional Gaussian Mixture Model (GMM) with m-components the likeli-hood of a data point xn is given byp(xn) = mXk=1 p(xnjk)p(sn = k) (12.1)where sn is an indicator variable indicating which component is selected for whichdata point. These are chosen probabilistically according top(sn = k) = �k (12.2)and each component is a Gaussianp(xnjk) = 1(2��2k)1=2 exp �(xn � �k)22�2k ! (12.3)To generate data from a GMM we pick a Gaussian at random (according to 12.2) andthen sample from that Gaussian. To �t a GMM to a data set we need to estimate �k,�k and �2k. This can be achieved in two steps. In the 'E-Step' we soft-partition thedata among the di�erent clusters. This amounts to calculating the probability thatdata point n belongs to cluster k which, from Baye's rule, is
nk � p(sn = kjxn) = p(xnjk)p(sn = k)Pk0 p(xnjk0)p(sn = k0) (12.4)141



142 Signal Processing Course, W.D. Penny, April 2000.In the 'M-Step' we re-estimate the parameters using Maximum Likelihood, but thedata points are weighted according to the soft-partitioning�k = X 
nk (12.5)�k = P 
nkxnP 
nk�2k = P 
nk (xn � �k)2P 
nkThese two steps constitute an EM algorithm. Summarizing:
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Figure 12.1: A variable with 3 modes. This can be accurately modelled with a 3-component Gaussian Mixture Model.� E-Step: Soft-partitioning.� M-Step: Parameter updating.Application of a 3-component GMM to our example data gives for cluster (i) �1 = 0:3,�1 = 10, �21 = 10, (ii) �1 = 0:35, �1 = 40, �21 = 10, and (iii) �3 = 0:35, �1 = 50,�21 = 5.GMMs are readily extended to multivariate data by replacing each univariate Gaus-sian in the mixture with a multivariate Gaussian. See eg. chapter 3 in [3].12.2 General ApproachIf V are visible variables, H are hidden variables and � are parameters then



Signal Processing Course, W.D. Penny, April 2000. 1431. E-Step: Get p(HjV; �)2. M-Step, change � so as to maximiseQ =< log p(V;Hj�) > (12.6)where expectation is wrt p(HjV; �).Why does it work ? Maximising Q maximises the likelihood p(V j�). This can beproved as follows. Firstly p(V j �) = p(H; V j �)p(H j V; �) (12.7)This means that the log-likelihood, L(�) � log p(V j �), can be writtenL(�) = log p(H; V j �)� log p(H j V; �) (12.8)If we now take expectations with respect to a distribution p0(H) then we getL(�) = Z p0(H) log p(H; V j �)dH � Z p0(H) log p(H j V; �)dH (12.9)The second term is minimised by setting p0(H) = p(HjV; �) (we can prove this fromJensen's inequality or the positivity of the KL divergence; see [12] or lecture 4). Thistakes place in the E-Step. After the E-step the auxiliary function Q is then equal tothe log-likelihood. Therefore, when we maximise Q in the M-step we are maximisingthe likelihood.12.3 Probabilistic Principal Component AnalysisIn an earlier lecture, Principal Component Analysis (PCA) was viewed as a lineartransform y = QTx (12.10)where the jth column of the matrix Q is the jth eigenvector, qj, of the covariancematrix of the original d-dimensional data x. The jth projectionyj = qTj x (12.11)has a variance given by the jth eigenvalue �j. If the projections are ranked accordingto variance (ie. eigenvalue) then the M variables that reconstruct the original datawith minimum error (and are also linear functions of x) are given by y1; y2; :::; yM . Theremaining variables yM+1; ::; yd can be be discarded with minimal loss of information(in the sense of least squares error). The reconstructed data is given byx̂ = Q1:My1:M (12.12)where Q1:M is a matrix formed from the �rst M columns of Q. Similarly, y1:M =[y1; y2; :::; yM ]T .



144 Signal Processing Course, W.D. Penny, April 2000.In probabilistic PCA (pPCA) [60] the PCA transform is converted into a statisticalmodel by explaining the `discarded' variance as observation noisex =Wy + e (12.13)where the noise is drawn from a zero mean Gaussian distribution with isotropic co-variance �2I. The `observations' x are generated by transforming the `sources' ywith the 'mixing matrix' W and then adding `observation noise'. The pPCA modelhas M sources where M < d. For a given M , we have W = Q1:M and�2 = 1M � d dXj=M+1�j (12.14)which is the average variance of the discarded projections.There also exists an EM algorithm for �nding the mixing matrix which is more e�cientthan SVD for high dimensional data. This is because it only needs to invert an M -by-M matrix rather than a d-by-d matrix.If we de�ne S as the sample covariance matrix andC =WW T + �2I (12.15)then the log-likelihood of the data under a pPCA model is given by [60]log p(X) = �Nd2 log 2� � N2 log jCj � N2 Tr(C�1S) (12.16)where N is the number of data points.We are now in the position to apply the MDL model order selection criterion. Wehave MDL(M) = � log p(X) + Md2 logN (12.17)This gives us a procedure for choosing the optimal number of sources.Because pPCA is a probabilistic model (whereas PCA is a transform) it is readilyincorporated in larger models. A useful model, for example, is the Mixtures of pPCAmodel. This is identical to the Gaussian Mixture model except that each Gaussian isdecomposed using pPCA (rather than keeping it as a full covariance Gaussian). Thiscan greatly reduce the number of parameters in the model [61].12.4 Linear Dynamical SystemsA Linear Dynamical System is given by the following `state-space' equationsxt+1 = Axt + wt (12.18)yt = Cxt + vt



Signal Processing Course, W.D. Penny, April 2000. 145where the state noise and observation noise are zero mean Gaussian variables withcovariances Q and R. Given A,C,Q and R the state can be updated using the Kalman�lter.For real-time applications we can infer the states using a Kalman �lter. For retro-spective/o�ine data analysis the state at time t can be determined using data beforet and after t. This is known as Kalman smoothing. See eg. [21].Moreover, we can also infer other parameters; eg. state noise covariance Q , statetransformation matrix C, etc. See eg. [22]. To do this, the state is regarded as a`hidden variable' (we do not observe it) and we apply the EM algorithm [15].For an LDS xt+1 = Axt + wt (12.19)yt = Cxt + vtthe hidden variables are the states xt and the observed variable is the time series yt.If xt1 = [x1; x2; ::; xt] are the states and yT1 = [y1; y2; :::; yt] are the observations thenthe EM algorithm is as follows.M-StepIn the M-Step we maximise Q =< log p(yT1 ; xT1 j�) > (12.20)Because of the Markov Property of an LDS (the current state only depends on thelast one, and not on ones before that) we havep(yT1 ; xT1 j�) = p(x1) TYt=2 p(xtjxt�1) TYt=1 p(ytjxt) (12.21)and when we we take logs we getlog p(yT1 ; xT1 j�) = log p(x1) + TXt=2 log p(xtjxt�1) + TXt=1 log p(ytjxt) (12.22)where each PDF is a multivariate Gaussian. We now need to take expectations wrt.the distribution over hidden variables
t � p(xtjyT1 ) (12.23)This gives< log p(yT1 ; xT1 j�) >= 
1 log p(x1) + TXt=2 
t log p(xtjxt�1) + TXt=1 
t log p(ytjxt) (12.24)By taking derivates wrt each of the parameters and setting them to zero we getupdate equations for A, Q,C and R. See [22] for details. The distribution overhidden variables is calculated in the E-Step.



146 Signal Processing Course, W.D. Penny, April 2000.E-StepThe E-Step consists of two parts. In the forward-pass the joint probability�t � p(xt; yt1) = Z �t�1p(xtjxt�1)p(ytjxt)dxt�1 (12.25)is recursively evaluated using a Kalman �lter. In the backward pass we estimate theconditional probability�t � p(yTt jxt) = Z �t+1p(xt+1jxt)p(yt+1jxt+1)dxt+1 (12.26)The two are then combined to produce a smoothed estimatep(xtjyT1 ) / �t�t (12.27)This E-Step constitutes a Kalman smoother.
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Figure 12.2: (a) Kalman �ltering and (b) Kalman smoothing.
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Appendix A
Series and Complex Numbers
A.1 Power seriesA function of a variable x can often be written in terms of a series of powers of x.For the sin function, for example, we havesinx = a0 + a1x + a2x2 + a3x3 + ::: (A.1)We can �nd out what the appropriate coe�cients are as follows. If we substititex = 0 into the above equation we get a0 = 0 since sin0 = 0 and all the other termsdisappear. If we now di�erentiate both sides of the equation and substitute x = 0 weget a1 = 1 (because cos 0 = 1 = a1). Di�erentiating twice and setting x = 0 givesa2 = 0. Continuing this process givessinx = x� x33! + x55! � x77! + ::: (A.2)Similarly, the series representations for cosx and ex can be found ascos x = 1� x22! + x44! � x66! + ::: (A.3)and ex = 1 + x1! + x22! + x33! + ::: (A.4)More generally, for a function f(x) we get the general resultf(x) = f(0) + xf 0(0) + x22! f 00(0) + x33! f 000(0) + ::: (A.5)where f 0(0), f 00(0) and f 000(0) are the �rst, second and third derivatives of f(x) eval-uated at x = 0. This expansion is called a Maclaurin series.So far, to calculate the coe�cients in the series we have di�erentiated and substitutedx = 0. If, instead, we substitute x = a we getf(x) = f(a) + (x� a)f 0(a) + (x� a)22! f 00(a) + (x� a)33! f 000(a) + ::: (A.6)149



150 Signal Processing Course, W.D. Penny, April 2000.which is called a Taylor series.For a d-dimensional vector of parameters x the equivalent Taylor series isf(x) = f(a) + (x� a)Tg + 12(x� a)TH(x� a) + ::: (A.7)where g = [@f=@a1; @f=@a2; :::; @f=@ad]T (A.8)is the gradient vector andH = 26666664 @f2@a21 @f2@a1@a2 :: @f2@a1@ad@f2@a2@a1 @f2@a22 :: @f2@a2@ad:: :: :: ::@f2@ad@a1 @f2@ad@a2 :: @f2@a2d
37777775 (A.9)is the Hessian.A.2 Complex numbersVery often, when we try to �nd the roots of an equation 1, we may end up withour solution being the square root of a negative number. For example, the quadraticequation ax2 + bx + c = 0 (A.10)has solutions which may be found as follows. If we divide by a and complete thesquare 2 we get  x + b2a!2 � b24a2 = �ca (A.11)Re-arranging gives the general solutionx = �b�pb2 � 4ac2a (A.12)Now, if b2� 4ac < 0 we are in trouble. What is the square root of a negative number? To handle this problem, mathematicians have de�ned the numberi = p�1 (A.13)allowing all square roots of negative numbers to be de�ned in terms of i, eg p�9 =p9p�1 = 3i. These numbers are called imaginary numbers to di�erentiate themfrom real numbers.1We may wish to do this in a signal processing context in, for example, an autoregressive model,where, given a set of AR coe�cients we wish to see what signals (ie. x) correspond to the AR model.See later in this chapter.2This means re-arranging a term of the form x2+kx into the form (x+ k2 )2� �k2 �2 which is oftenconvenient because x appears only once.



Signal Processing Course, W.D. Penny, April 2000. 151Finding the roots of equations, eg. the quadratic equation above, requires us tocombine imaginary numbers and real numbers. These combinations are called complexnumbers. For example, the equationx2 � 2x+ 2 = 0 (A.14)has the solutions x = 1 + i and x = 1� i which are complex numbers.A complex number z = a+ bi has two components; a real part and an imaginary partwhich may be written a = Refzg (A.15)b = ImfzgThe absolute value of a complex number isR = Absfzg = pa2 + b2 (A.16)and the argument is � = Argfzg = tan�1  ba! (A.17)The two numbers z = a + bi and z� = a � bi are known as complex conjugates; oneis the complex conjugate of the other. When multiplied together they form a realnumber. The roots of equations often come in complex conjugate pairs.A.3 Complex exponentialsIf we take the exponential function of an imaginary number and write it out as aseries expansion, we get ei� = 1 + i�1! + i2�22! + i3�33! + ::: (A.18)By noting that i2 = �1 and i3 = i2i = �i and similarly for higher powers of i we getei� = "1� �22! + :::# + i " �1! � �33! + :::# (A.19)Comparing to the earlier expansions of cos � and sin � we can see thatei� = cos � + i sin � (A.20)which is known as Euler's formula. Similar expansions for e�i� give the identitye�i� = cos � � i sin � (A.21)We can now express the sine and cosine functions in terms of complex exponentialscos � = ei� + e�i�2 (A.22)sin � = ei� � e�i�2i



152 Signal Processing Course, W.D. Penny, April 2000.A.4 DeMoivre's TheoremBy using the fact that ei�ei� = ei�+i� (A.23)(a property of the exponential function and exponents in general eg. 5353 = 56) ormore generally (ei�)k = eik� (A.24)we can write (cos� + i sin �)k = cosk� + isink� (A.25)which is known as DeMoivre's theorem.A.5 Argand DiagramsAny complex number can be represented as a complex exponentiala+ bi = Rei� = R(cos� + i sin �) (A.26)and drawn on an Argand diagram.Multiplication of complex numbers is equivalent to rotation in the complex plane (dueto DeMoivre's Theorem).(a+ bi)2 = R2ei2� = R2(cos2� + i sin 2�) (A.27)



Appendix B
Linear Regression
B.1 Univariate Linear RegressionWe can �nd the slope a and o�set b by minising the cost functionE = NXi=1(yi � axi � b)2 (B.1)Di�erentiating with respect to a gives@E@a = �2 NXi=1 xi(yi � axi � b) (B.2)Di�erentiating with respect to b gives@E@b = �2 NXi=1(yi � axi � b) (B.3)By setting the above derivatives to zero we obtain the normal equations of the regres-sion. Re-arranging the normal equations givesa NXi=1 x2i + b NXi=1 xi = NXi=1 xiyi (B.4)and a NXi=1 xi + bN = NXi=1 yi (B.5)By substituting the mean observed values �x and �y into the last equation we getb = �y � a�x (B.6)Now let Sxx = NXi=1(xi � �x)2 (B.7)= NXi=1 x2i �N�2x (B.8)153



154 Signal Processing Course, W.D. Penny, April 2000.and Sxy = NXi=1(xi � �x)(yi � �y) (B.9)= NXi=1 xiyi �N�x�y (B.10)Substiting for b into the �rst normal equation givesa NXi=1 x2i + (�y � a�x) NXi=1 xi = NXi=1 xiyi (B.11)Re-arranging gives a = PNi=1 xiyi � �yPNi=1 xiPNi=1 x2i + �xPNi=1 xi (B.12)= PNi=1 xiyi �N�x�yPNi=1 x2i +N�2x= PNi=1(xi � �x)(yi � �y)PNi=1(xi � �x)2= �xy�2xB.1.1 Variance of slopeThe data points may be written asyi = ŷi + ei (B.13)= axi + b+ eiwhere the noise, ei has mean zero and variance �2e . The mean and variance of eachdata point are E(yi) = axi + b (B.14)and V ar(yi) = V ar(ei) = �2e (B.15)We now calculate the variance of the estimate a. From earlier we see thata = PNi=1(xi � �x)(yi � �y)PNi=1(xi � �x)2 (B.16)Let ci = (xi � �x)PNi=1(xi � �x)2 (B.17)



Signal Processing Course, W.D. Penny, April 2000. 155We also note that PNi=1 ci = 0 and PNi=1 cixi = 1. Hence,a = NXi=1 ci(yi � �y) (B.18)= NXi=1 ciyi � �y NXi=1 ci (B.19)The mean estimate is thereforeE(a) = NXi=1 ciE(yi)� �y NXi=1 ci (B.20)= a NXi=1 cixi + b NXi=1 ci � �y NXi=1 ci= a (B.21)The variance is V ar(a) = V ar( NXi=1 ciyi � �y NXi=1 ci) (B.22)The second term contains two �xed quantities so acts like a constant. From the laterAppendix on Probability Distributions we see thatV ar(a) = V ar( NXi=1 ciyi) (B.23)= NXi=1 c2iV ar(yi)= �2e NXi=1 c2i= �2ePNi=1(xi � �x)2= �2e(N � 1)�2xB.2 Multivariate Linear RegressionB.2.1 Estimating the weight covariance matrixDi�erent instantiations of target noise will generate di�erent estimated weight vectorsaccording to the last equation. The corresponding weight covariance matrix is givenby V ar(ŵ) = V ar((XTX)�1XTy) (B.24)



156 Signal Processing Course, W.D. Penny, April 2000.Substituting y =Xw + e givesV ar(ŵ) = V ar((XTX)�1XTXw + (XTX)�1XTe) (B.25)This is in the form of equation B.28 in Appendix A with d being given by the �rstterm which is constant, C being given by (XTX)�1XT and z being given by e.Hence, V ar(ŵ) = (XTX)�1XT [V ar(e)][(XTX)�1XT ]T (B.26)= (XTX)�1XT (�2I)[(XTX)�1XT ]T= (XTX)�1XT (�2I)X(XTX)�1Re-arranging further gives V ar(ŵ) = �2(XTX)�1 (B.27)B.3 Functions of random vectorsFor a vector of random variables, z, and a matrix of constants, C, and a vector ofconstants, d, we have V ar(Cz + d) = C[V ar(z)]CT (B.28)where, here, Var() denotes a covariance matrix. This is a generalisation of the resultfor scalar random variables V ar(cz) = c2V ar(z).The covariance between a pair of random vectors is given byV ar(C1z;C2z) = C1[V ar(z)]CT2 (B.29)B.3.1 Estimating the weight covariance matrixDi�erent instantiations of target noise will generate di�erent estimated weight vectorsaccording to the equation 3.7. The corresponding weight covariance matrix is givenby � = V ar((XTX)�1XTy) (B.30)Substituting y =Xŵ + e gives



Signal Processing Course, W.D. Penny, April 2000. 157� = V ar((XTX)�1XTXw + (XTX)�1XTe) (B.31)This is in the form of V ar(Cz + d) (see earlier) with d being given by the �rst termwhich is constant, C being given by (XTX)�1XT and z being given by e. Hence,� = (XTX)�1XT [V ar(e)][(XTX)�1XT ]T (B.32)= (XTX)�1XT (�2eI)[(XTX)�1XT ]T= (XTX)�1XT (�2eI)X(XTX)�1Re-arranging further gives � = �2e(XTX)�1 (B.33)B.3.2 Equivalence of t-test and F-test for feature selectionWhen adding a new variable xp to a regression model we can test to see if the increasein the proportion of variance explained is signi�cant by computingF = (N � 1)�2y [r2(y; ŷp)� r2(y; ŷp�1)]�2e(p) (B.34)where r2(y; ŷp) is the square of the correlation between y and the regression model withall p variables (ie. including xp) and r2(y; ŷp�1) is the square of the correlation betweeny and the regression model without xp. The denominator is the noise variance fromthe model including xp. This statistic is distributed according to the F-distributionwith v1 = 1 and v2 = N � p� 2 degrees of freedom.This test is identical to the double sided t-test on the t-statistic computed from theregression coe�cient ap, described in this lecture (see also page 128 of [32]). This testis also equivalent to seeing if the partial correlation between xp and y is signi�cantlynon-zero (see page 149 of [32]).
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Appendix C
Matrix Identities
C.1 MultiplicationMatrix multiplication is associative(AB)C = A(BC) (C.1)distributive A(B +C) = AB +AC (C.2)but not commutative AB 6= BA (C.3)C.2 TransposesGiven two matrices A and B we have(AB)T = BTAT (C.4)C.3 InversesGiven two matrices A and B we have(AB)�1 = B�1A�1 (C.5)The Matrix Inversion Lemma is(XBXT +A)�1 = A�1 �A�1X(B�1 +XTA�1X)�1XTA�1 (C.6)The Sherman-Morrison-Woodury formula or Woodbury's identity is(UV T +A)�1 = A�1 �A�1U(I + V TA�1U)�1V TA�1 (C.7)159



160 Signal Processing Course, W.D. Penny, April 2000.C.4 EigendecompositionQTAQ = � (C.8)Pre-multiplying by Q and post-multiplying by QT givesA = Q�QT (C.9)which is known as the spectral theorem. Any real, symmetric matrix can be repre-sented as above where the columns of Q contain the eigenvectors and � is a diagonalmatrix containing the eigenvalues, �i. Equivalently,A = dXk=1�kqkqTk (C.10)C.5 DeterminantsIf det(A) = 0 the matrix A is not invertible; it is singular. Conversely, if det(A) 6= 0then A is invertible. Other properties of the determinant aredet(AT ) = det(A) (C.11)det(AB) = det(A) det(B)det(A�1) = 1= det(A)det(A) = Yk akk det(A) =Yk �kC.6 TracesThe Trace is the sum of the diagonal elementsTr(A) =Xk akk (C.12)and is also equal to the sum of the eigenvaluesTr(A) =Xk �k (C.13)Also Tr(A+B) = Tr(A) + Tr(B) (C.14)C.7 Matrix CalculusFrom [37] we know that the derivative of cTBc with respect to c is (BT +B)c.



Appendix D
Probability Distributions
This appendix archives a number of useful results from texts by Papoulis [44], Lee [33]and Cover [12]. Table 16.1 in Cover (page 486) gives entropies of many distributionsnot listed here.D.1 Transforming PDFsBecause probabilities are de�ned as areas under PDFs when we transform a variabley = f(x) (D.1)we transform the PDF by preserving the areasp(y)jdyj = p(x)jdxj (D.2)where the absolute value is taken because the changes in x or y (dx and dy) may benegative and areas must be positive. Hencep(y) = p(x)j dydx j (D.3)where the derivative is evaluated at x = f�1(y). This means that the function f(x)must be one-to-one and invertible.If the function is many-to-one then it's inverse will have multiple solutions x1; x2; :::; xnand the PDF is transformed at each of these points (Papoulis' Fundamental Theorem[44], page 93) p(y) = p(x1)j dydx1 j + p(x2)j dydx2 j + ::: + p(xn)j dydxn j (D.4)D.1.1 Mean and VarianceFor more on the mean and variance of functions of random variables see Weisberg[64]. 161



162 Signal Processing Course, W.D. Penny, April 2000.Expectation is a linear operator. That isE[(a1x + a2x)] = a1E[x] + a2E[x] (D.5)Therefore, given the function y = ax (D.6)we can calculate the mean and variance of y as functions of the mean and varianceof x. E[y] = aE[x] (D.7)V ar(y) = a2V ar(x)If y is a function of many uncorrelated variablesy =Xi aixi (D.8)we can use the results E[y] = Xi aiE[xi] (D.9)V ar[y] = Xi a2iV ar[xi] (D.10)But if the variables are correlated thenV ar[y] =Xi a2iV ar[xi] + 2Xi Xj aiajV ar(xi; xj) (D.11)where V ar(xi; xj) denotes the covariance of the random variables xi and xj.Standard ErrorAs an example, the mean m = 1N Xi xi (D.12)of uncorrelated variables xi has a variance�2m � V ar(m) = Xi 1NV ar(xi) (D.13)= �2xNwhere we have used the substitution ai = 1=N in equation D.10. Hence�m = �xpN (D.14)
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Figure D.1: The Gaussian Probability Density Function with � = 3 and � = 2.D.2 Uniform DistributionThe uniform PDF is given by U(x; a; b) = 1b� a (D.15)for a � x � b and zero otherwise. The mean is 0:5(a+ b) and variance is (b� a)2=12.The entropy of a uniform distribution isH(x) = log(b� a) (D.16)D.3 Gaussian DistributionThe Normal or Gaussian probability density function, for the case of a single variable,is N(x;�; �2) = 1(2��2)1=2 exp �(x� �)22�2 ! (D.17)where � and �2 are the mean and variance.D.3.1 EntropyThe entropy of a Gaussian variable isH(x) = 12 log �2 + 12 log 2� + 12 (D.18)
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Figure D.2: The Gamma Density for b = 1:6 and c = 3:125.For a given variance, the Gaussian distribution has the highest entropy. For a proofof this see Bishop ([3], page 240).D.3.2 Relative EntropyFor Normal densities q(x) = N(x;�q; �2q ) and p(x) = N(x;�p; �2p) the KL-divergenceis D[qjjp] = 12 log �2p�2q + �2q + �2p + �2q � 2�q�p2�2p � 12 (D.19)D.4 The Gamma distributionThe Gamma density is de�ned as�(x; b; c) = 1�(c) xc�1bc exp��xb � (D.20)where �() is the gamma function [49]. The mean of a Gamma density is given by bcand the variance by b2c. Logs of gamma densities can be written aslog �(x; b; c) = �xb + (c� 1) logx+K (D.21)where K is a quantity which does not depend on x; the log of a gamma densitycomprises a term in x and a term in logx. The Gamma distribution is only de�nedfor positive variables.



Signal Processing Course, W.D. Penny, April 2000. 165D.4.1 EntropyUsing the result for Gamma densitiesZ p(x) logx = 	(c) + log b (D.22)where 	() is the digamma function [49] the entropy can be derived asH(x) = log�(c) + c log b� (c� 1)(	(c) + log b) + c (D.23)D.4.2 Relative EntropyFor Gamma densities q(x) = �(x; bq; cq) and p(x) = �(x; bp; cp) the KL-divergence isD[qjjp] = (cq � 1)	(cq)� log bq � cq � log �(cq) (D.24)+ log �(cp) + cp log bp � (cp � 1)(	(cq) + log bq) + bqcqbpD.5 The �2-distributionIf z1; z2; :::; zN are independent normally distributed random variables with zero-meanand unit variance then x = NXi=1 z2i (D.25)has a �2-distribution with N degrees of freedom ([33], page 276). This distributionis a special case of the Gamma distribution with b = 2 and c = N=2. This gives�2(x;N) = 1�(N=2) xN=2�12N=2 exp��x2 � (D.26)The mean and variance are N and 2N . The entropy and relative entropy can befound by substituting the the values b = 2 and c = N=2 into equations D.23 andD.24. The �2 distribution is only de�ned for positive variables.If x is a �2 variable with N degrees of freedom andy = px (D.27)then y has a �-density with N degrees of freedom. For N = 3 we have a Maxwelldensity and for N = 2 a Rayleigh density ([44], page 96).
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Figure D.3: The �2 Density for N = 5 degrees of freedom.D.6 The t-distributionIf z1; z2; :::; zN are independent Normally distributed random variables with mean �and variance �2 and m is the sample mean and s is the sample standard deviationthen x = m� �s=pN (D.28)has a t-distribution with N � 1 degrees of freedom. It is writtent(x;D) = 1B(D=2; 1=2)  1 + x2D!�(D+1)=2 (D.29)where D is the number of 'degrees of freedom' andB(a; b) = �(a)�(b)�(a+ b) (D.30)is the beta function. For D = 1 the t-distribution reduces to the standard Cauchydistribution ([33], page 281).D.7 Generalised Exponential DensitiesThe `exponential power' or `generalised exponential' probability density is de�ned asp(a) = G(a;R; �) = R�1=R2�(1=R) exp(��jajR) (D.31)
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Figure D.4: The t-distribution with (a) N = 3 and (b) N = 49 degrees of freedom.
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Figure D.5: The generalised exponential distribution with (a) R = 1,w = 5 and (b)R = 6,w = 5. The parameter R �xes the weight of the tails and w �xes the widthof the distribution. For (a) we have a Laplacian which has positive kurtosis (k = 3);heavy tails. For (b) we have a light-tailed distribution with negative kurtosis (k = �1).where �() is the gamma function [49], the mean of the distribution is zero 1, thewidth of the distribution is determined by 1=� and the weight of its tails is set byR. This gives rise to a Gaussian distribution for R = 2, a Laplacian for R = 1 and auniform distribution in the limit R !1. The density is equivalently parameterisedby a variable w, which de�nes the width of the distribution, where w = ��1=R givingp(a) = R2w�(1=R) exp(�ja=wjR) (D.32)The variance is V = w2�(3=R)�(1=R) (D.33)which for R = 2 gives V = 0:5w2. The kurtosis is given by [7]K = �(5=R)�(1=R)�(3=R)2 � 3 (D.34)where we have subtracted 3 so that a Gaussian has zero kurtosis. Samples may begenerated from the density using a rejection method [59].1For non zero mean we simply replace a with a� � where � is the mean.



168 Signal Processing Course, W.D. Penny, April 2000.D.8 PDFs for Time SeriesGiven a signal a = f(t) which is sampled uniformly over a time period T , its PDF,p(a) can be calculated as follows. Because the signal is uniformly sampled we havep(t) = 1=T . The function f(t) acts to transform this density from one over t to toone over a. Hence, using the method for transforming PDFs, we getp(a) = p(t)jdadt j (D.35)where jj denotes the absolute value and the derivative is evaluated at t = f�1(x).D.8.1 SamplingWhen we convert an analogue signal into a digital one the sampling process canhave a crucial e�ect on the resulting density. If, for example, we attempt to sampleuniformly but the sampling frequency is a multiple of the signal frequency we are,in e�ect, sampling non-uniformly. For true uniform sampling it is necessary that theratio of the sampling and signal frequencies be irrational.D.8.2 Sine WaveFor a sine wave, a = sin(t), we get p(a) = 1jcos(t)j (D.36)where cos(t) is evaluated at t = sin�1(a). The inverse sine is only de�ned for ��=2 �t � �=2 and p(t) is uniform within this. Hence, p(t) = 1=�. Thereforep(a) = 1�p1� a2 (D.37)This density is multimodal, having peaks at +1 and �1. For a more general sine wavea = R sin(wt) (D.38)we get p(t) = w=� p(a) = 1�q1� (a=R)2 (D.39)which has peaks at �R.
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Figure D.6: The PDF of a = R sin(wt) for R = 3.
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Appendix E
Multivariate ProbabilityDistributions
E.1 Transforming PDFsJust as univariate Probability Density Functions (PDFs) are transformed so as to pre-serve area so multivariate probability distributions are transformed so as to preservevolume. If y = f(x) (E.1)then this can be achieved from p(y) = p(x)abs(jJ j) (E.2)where abs() denotes the absolute value and jj the determinant andJ = 266664 @y1@x1 @y1@x2 :: @y1@xd@y2@x1 @y2@x2 :: @y2@xd:: :: :: ::@yd@x1 @yd@x2 :: @yd@xd

377775 (E.3)is the Jacobian matrix for d-dimensional vectors x and y. The partial derivativesare evaluated at x = f�1(y). As the determinant of J measures the volume of thetransformation, using it as a normalising term therefore preserves the volume underthe PDF as desired. See Papoulis [44] for more details.E.1.1 Mean and CovarianceFor a vector of random variables (Gaussian or otherwise), x, with mean �x andcovariance �x a linear transformationy = Fx+C (E.4)171



172 Signal Processing Course, W.D. Penny, April 2000.

(a) −2 −1 0 1 2 3 4
−2

0

2

4
0

0.05

0.1

0.15

0.2

(b) −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Figure E.1: (a) 3D-plot and (b) contour plot of Multivariate Gaussian PDF with� = [1; 1]T and �11 = �22 = 1 and �12 = �21 = 0:6 ie. a positive correlation ofr = 0:6.gives rise to a random vector y with mean�y = F�x +C (E.5)and covariance �y = F�xF T (E.6)If we generate another random vector, this time from a di�erent linear transformationof x z = Gx+D (E.7)then the covariance between the random vectors y and z is given by�y;z = F�xGT (E.8)The i,jth entry in this matrix is the covariance between yi and zj.E.2 The Multivariate GaussianThe multivariate normal PDF for d variables isN(x;�;�) = 1(2�)d=2j�j1=2 exp��12(x� �)T��1(x� �)� (E.9)where the mean � is a d-dimensional vector, � is a d� d covariance matrix, and j�jdenotes the determinant of �.E.2.1 EntropyThe entropy is H(x) = 12 log j�j+ d2 log 2� + d2 (E.10)



Signal Processing Course, W.D. Penny, April 2000. 173E.2.2 Relative EntropyFor Normal densities q(x) = N(x;�q;�q) and p(x) = N(x;�p;�p) the KL-divergenceisD[qjjp] = 0:5 log j�pjj�qj +0:5Trace(��1p �q) + 0:5(�q ��p)T��1p (�q ��p)� d2 (E.11)where j�pj denotes the determinant of the matrix �p.E.3 The Multinomial DistributionIf a random variable x can take one of one m discrete values x1; x2; ::xm andp(x = xs) = �s (E.12)then x is said to have a multinomial distribution.E.4 The Dirichlet DistributionIf � = [�1; �2; :::�m] are the parameters of a multinomial distribution thenq(�) = �(�tot) mYs=1 ��s�1s�(�s) (E.13)de�nes a Dirichlet distribution over these parameters where�tot =Xs �s (E.14)The mean value of �s is �s=�tot.E.4.1 Relative EntropyFor Dirichlet densities q(�) = D(�;�q) and p(�) = D(�;�p) where the number ofstates is m and �q = [�q(1); �q(2); ::; �q(m)] and �p = [�p(1); �p(2); ::; �p(m)]. theKL-divergence isD[qjjp] = �(log�qtot) + mXs=1(�q(s)� 1)(	(�q(s))� 	(�qtot)� log �(�q(s))(E.15)� �(log�ptot) + mXs=1(�p(s)� 1)(	(�q(s))�	(�qtot)� log �(�p(s))
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