
Chapter 12
EM algorithms
The Expectation-Maximization (EM) algorithm is a maximum likelihood method formodels that have hidden variables eg. Gaussian Mixture Models (GMMs), LinearDynamic Systems (LDSs) and Hidden Markov Models (HMMs).12.1 Gaussian Mixture ModelsSay we have a variable which is multi-modal ie. it separates into distinct clusters.For such data the mean and variance are not very representative quantities.In a 1-dimensional Gaussian Mixture Model (GMM) with m-components the likeli-hood of a data point xn is given byp(xn) = mXk=1 p(xnjk)p(sn = k) (12.1)where sn is an indicator variable indicating which component is selected for whichdata point. These are chosen probabilistically according top(sn = k) = �k (12.2)and each component is a Gaussianp(xnjk) = 1(2��2k)1=2 exp �(xn � �k)22�2k ! (12.3)To generate data from a GMM we pick a Gaussian at random (according to 12.2) andthen sample from that Gaussian. To �t a GMM to a data set we need to estimate �k,�k and �2k. This can be achieved in two steps. In the 'E-Step' we soft-partition thedata among the di�erent clusters. This amounts to calculating the probability thatdata point n belongs to cluster k which, from Baye's rule, is
nk � p(sn = kjxn) = p(xnjk)p(sn = k)Pk0 p(xnjk0)p(sn = k0) (12.4)141



142 Signal Processing Course, W.D. Penny, April 2000.In the 'M-Step' we re-estimate the parameters using Maximum Likelihood, but thedata points are weighted according to the soft-partitioning�k = X 
nk (12.5)�k = P 
nkxnP 
nk�2k = P 
nk (xn � �k)2P 
nkThese two steps constitute an EM algorithm. Summarizing:
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Figure 12.1: A variable with 3 modes. This can be accurately modelled with a 3-component Gaussian Mixture Model.� E-Step: Soft-partitioning.� M-Step: Parameter updating.Application of a 3-component GMM to our example data gives for cluster (i) �1 = 0:3,�1 = 10, �21 = 10, (ii) �1 = 0:35, �1 = 40, �21 = 10, and (iii) �3 = 0:35, �1 = 50,�21 = 5.GMMs are readily extended to multivariate data by replacing each univariate Gaus-sian in the mixture with a multivariate Gaussian. See eg. chapter 3 in [3].12.2 General ApproachIf V are visible variables, H are hidden variables and � are parameters then



Signal Processing Course, W.D. Penny, April 2000. 1431. E-Step: Get p(HjV; �)2. M-Step, change � so as to maximiseQ =< log p(V;Hj�) > (12.6)where expectation is wrt p(HjV; �).Why does it work ? Maximising Q maximises the likelihood p(V j�). This can beproved as follows. Firstly p(V j �) = p(H; V j �)p(H j V; �) (12.7)This means that the log-likelihood, L(�) � log p(V j �), can be writtenL(�) = log p(H; V j �)� log p(H j V; �) (12.8)If we now take expectations with respect to a distribution p0(H) then we getL(�) = Z p0(H) log p(H; V j �)dH � Z p0(H) log p(H j V; �)dH (12.9)The second term is minimised by setting p0(H) = p(HjV; �) (we can prove this fromJensen's inequality or the positivity of the KL divergence; see [12] or lecture 4). Thistakes place in the E-Step. After the E-step the auxiliary function Q is then equal tothe log-likelihood. Therefore, when we maximise Q in the M-step we are maximisingthe likelihood.12.3 Probabilistic Principal Component AnalysisIn an earlier lecture, Principal Component Analysis (PCA) was viewed as a lineartransform y = QTx (12.10)where the jth column of the matrix Q is the jth eigenvector, qj, of the covariancematrix of the original d-dimensional data x. The jth projectionyj = qTj x (12.11)has a variance given by the jth eigenvalue �j. If the projections are ranked accordingto variance (ie. eigenvalue) then the M variables that reconstruct the original datawith minimum error (and are also linear functions of x) are given by y1; y2; :::; yM . Theremaining variables yM+1; ::; yd can be be discarded with minimal loss of information(in the sense of least squares error). The reconstructed data is given byx̂ = Q1:My1:M (12.12)where Q1:M is a matrix formed from the �rst M columns of Q. Similarly, y1:M =[y1; y2; :::; yM ]T .



144 Signal Processing Course, W.D. Penny, April 2000.In probabilistic PCA (pPCA) [60] the PCA transform is converted into a statisticalmodel by explaining the `discarded' variance as observation noisex =Wy + e (12.13)where the noise is drawn from a zero mean Gaussian distribution with isotropic co-variance �2I. The `observations' x are generated by transforming the `sources' ywith the 'mixing matrix' W and then adding `observation noise'. The pPCA modelhas M sources where M < d. For a given M , we have W = Q1:M and�2 = 1M � d dXj=M+1�j (12.14)which is the average variance of the discarded projections.There also exists an EM algorithm for �nding the mixing matrix which is more e�cientthan SVD for high dimensional data. This is because it only needs to invert an M -by-M matrix rather than a d-by-d matrix.If we de�ne S as the sample covariance matrix andC =WW T + �2I (12.15)then the log-likelihood of the data under a pPCA model is given by [60]log p(X) = �Nd2 log 2� � N2 log jCj � N2 Tr(C�1S) (12.16)where N is the number of data points.We are now in the position to apply the MDL model order selection criterion. Wehave MDL(M) = � log p(X) + Md2 logN (12.17)This gives us a procedure for choosing the optimal number of sources.Because pPCA is a probabilistic model (whereas PCA is a transform) it is readilyincorporated in larger models. A useful model, for example, is the Mixtures of pPCAmodel. This is identical to the Gaussian Mixture model except that each Gaussian isdecomposed using pPCA (rather than keeping it as a full covariance Gaussian). Thiscan greatly reduce the number of parameters in the model [61].12.4 Linear Dynamical SystemsA Linear Dynamical System is given by the following `state-space' equationsxt+1 = Axt + wt (12.18)yt = Cxt + vt



Signal Processing Course, W.D. Penny, April 2000. 145where the state noise and observation noise are zero mean Gaussian variables withcovariances Q and R. Given A,C,Q and R the state can be updated using the Kalman�lter.For real-time applications we can infer the states using a Kalman �lter. For retro-spective/o�ine data analysis the state at time t can be determined using data beforet and after t. This is known as Kalman smoothing. See eg. [21].Moreover, we can also infer other parameters; eg. state noise covariance Q , statetransformation matrix C, etc. See eg. [22]. To do this, the state is regarded as a`hidden variable' (we do not observe it) and we apply the EM algorithm [15].For an LDS xt+1 = Axt + wt (12.19)yt = Cxt + vtthe hidden variables are the states xt and the observed variable is the time series yt.If xt1 = [x1; x2; ::; xt] are the states and yT1 = [y1; y2; :::; yt] are the observations thenthe EM algorithm is as follows.M-StepIn the M-Step we maximise Q =< log p(yT1 ; xT1 j�) > (12.20)Because of the Markov Property of an LDS (the current state only depends on thelast one, and not on ones before that) we havep(yT1 ; xT1 j�) = p(x1) TYt=2 p(xtjxt�1) TYt=1 p(ytjxt) (12.21)and when we we take logs we getlog p(yT1 ; xT1 j�) = log p(x1) + TXt=2 log p(xtjxt�1) + TXt=1 log p(ytjxt) (12.22)where each PDF is a multivariate Gaussian. We now need to take expectations wrt.the distribution over hidden variables
t � p(xtjyT1 ) (12.23)This gives< log p(yT1 ; xT1 j�) >= 
1 log p(x1) + TXt=2 
t log p(xtjxt�1) + TXt=1 
t log p(ytjxt) (12.24)By taking derivates wrt each of the parameters and setting them to zero we getupdate equations for A, Q,C and R. See [22] for details. The distribution overhidden variables is calculated in the E-Step.



146 Signal Processing Course, W.D. Penny, April 2000.E-StepThe E-Step consists of two parts. In the forward-pass the joint probability�t � p(xt; yt1) = Z �t�1p(xtjxt�1)p(ytjxt)dxt�1 (12.25)is recursively evaluated using a Kalman �lter. In the backward pass we estimate theconditional probability�t � p(yTt jxt) = Z �t+1p(xt+1jxt)p(yt+1jxt+1)dxt+1 (12.26)The two are then combined to produce a smoothed estimatep(xtjyT1 ) / �t�t (12.27)This E-Step constitutes a Kalman smoother.
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Figure 12.2: (a) Kalman �ltering and (b) Kalman smoothing.


