Chapter 11

Kalman Filters

11.1 Introduction

We describe Bayesian Learning for sequential estimation of parameters (eg. means,
AR coefficients). The update procedures are known as Kalman Filters. We show how
Dynamic Linear Models, Recursive Least Squares and Steepest Descent algorithms
are all special cases of the Kalman filter.

11.1.1 Sequential Estimation of Nonstationary Mean

In the lecure on Bayesian methods we described the sequential estimation of a sta-
tionary mean. We now extend that analysis to the nonstationary case.

A reasonable model of a time varying mean is that it can drift from sample to sample.
If the drift is random (later on we will also consider deterministic drifts) then we have

Mt = Pe—1 + Wy (11.1)

where the random drift is Gaussian p(w;) = N (wy; 0, 02) with drift variance o2. The
data points are then Gaussian about mean ju;. If they have a fized variance o2 (later
on we will also consider time-varing variance)

Ty =y + € (11.2)
where e; = x; — j1;. Hence p(e;) = N(es;0,02).

At time ¢t — 1 our estimate of j;_; has a Gaussian distribution with mean /i, ; and
variance 67 ;. We stress that this is the variance of our mean estimate and not the
variance of the data. The standard error estimate for this variance (o7/t) is no longer
valid as we have nonstationary data. We therefore have to estimate it as we go along.

This means we keep running estimates of the distribution of the mean. At time ¢ —1
this distribution has a mean fi;_; and a variance 67 ;. The distribution at time ¢ is
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then found from Bayes rule. Specifically, the prior distribution is given by

() = N(pg; flu—1, 1) (11.3)

where 7, is the prior variance (we add on the random drift variance to the variance
from the previous time step)

re =0, + 0, (11.4)
and the likelihood is
P($t|,ut) = N(xtE fli—1, ai) (11-5)
The posterior is then given by
p(pe|ve) = N fu, 67) (11.6)
where the mean is ,
A~ A~ t A~
= [, — [y 11.7
e = [t 1+0§+7"t(xt fr—1) ( )
and the variance is
2
~2 T‘to-a;
= 11.8
“t T+ 02 ( )

We now write the above equations in a slightly different form to allow for comparison
with later estimation procedures

f = -1+ Kiey (11.9)
0A—t2 = Tt(]_ — Kt)

where .
K, = —" 11.10
¢ o2+ ( )
and
€t = Ty — /jbt,1 (].11].)

In the next section we will see that our update equations are a special case of a
Kalman filter where e, is the prediction error and K; is the Kalman gain.

In figure 11.1 we give a numerical example where 200 data points were generated; the
first 100 having a mean of 4 and the next 100 a mean of 10. The update equations
have two paramaters which we must set (i) the data variance o2 and (ii) the drift
variance 2. Together, these parameters determine (a) how responsive the tracking
will be and (b) how stable it will be. The two plots are for two different values of o2

and 02 = 1. Later we will see how these two parameters can be learnt.

11.1.2 A single state variable

We now look at a general methodology for the sequential estimation of a nonstationary
parameter (this can be anything - not necesarily the data mean).
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Figure 11.1: Sequential estimation of nonstationary mean. The graphs plot
data values z; (crosses) and estimated mean values fi; (circles) along with error bars
o, (vertical lines) versus iteration number ¢ for two different drift noise values (a)
02 =0.01 and (b) 62 =0.1.

The parameter’s evolution is modelled as a linear dynamical system. The state-space
equations are
0 = g1 +w, w ~ N(w;0,07)

11.12
xy = fib + ey, e N(eﬁoaaazc) ( )

The value of the parameter at time ¢ is referred to as the state of the system #,. This
state can change deterministically, by being multiplied by ¢;, and stochastically by
added a random drift w,. This drift is referred to as state noise. The observed data
(eg. time series values) are referred to as observations x; which are generated from
the state according to the second equation. This allows for a linear transformation
plus the addition of observation noise.

At time ¢t — 1 our estimate of #;_; has a Gaussian distribution with mean ét_l and
variance 62 ;. The prior distribution is therefore given by

p(0,) = N(0p; gfo—1, 1) (11.13)
where r; is the prior variance
r = giot, + a2 (11.14)
and the likelihood is A
p(x:|0:) = N(x; fif 1, 03) (11.15)
The posterior is then given by
p(Oi]xe) = N (0 étﬁ?) (11.16)
where
0, = gb_1+ K (11.17)
62 = r(1—Kf)
and

Tt
Ki=——-+ 11.18
! O—% +ft2rtft ( )



The above equations constitute a 1-dimensional Kalman Filter (the state is 1-dimensional
because there is only 1 state variable). Next we consider many state variables.

11.1.3 Multiple state variables

We now consider linear dynamical systems where data is generated according to the
model

0, = GO, +w;, w; ~ N(w;0,W,) (11.19)

Yy, = Fib+ vy, v, ~ N(v;0,Vy) '
where 0; are ‘state’ or ‘latent’ variables, G; is a ‘flow’ matrix, w; is ‘state noise’
distributed according to a normal distribution with zero mean and covariance matrix
W, y, are the multivariate observations, F'; is a transformation matrix and v; is
‘observation noise’ distributed according to a normal distribution with zero mean
and covariance matrix V;. The model is parameterised by the matrices G;, W, F,
and V. These parameters may depend on ¢ (as indicated by the subscript).

The Kalman filter is a recursive procedure for estimating the latent variables, 8, [29].
Meinhold and Singpurwalla [40] show how this estimation procedure is derived (also
see lecture on Bayesian methods). The latent variables are normally distributed with
a mean and covariance that can be estimated with the following recursive formulae

Ot = Gtét,1+Ktet (1120)
X = R —-K,F\R,

where K is the ‘Kalman gain’ matrix, e; is the prediction error and R, is the ‘prior
covariance’ of the latent variables (that is, prior to y, being observed). These quan-
tities are calculated as follows

-1
K, = RF/(V,+FRF)) (11.21)

€ = Y;— Fthétfl
Rt — GtEt_thT + Wt

To apply these equations you need to know the parameters Gy, W, F; and V; and
make initial guesses for the state mean and covariance; 6y and Xy. Equations (3) and
(2) can then be applied to estimate the state mean and covariance at the next time
step. The equations are then applied recursively.



A useful quantity is the likelihood of an observation given the model parameters
before they are updated

p(y;) =N (yt; F0,_.,V,+F, (Gtht_th) FtT> (11.22)

In Bayesian terminology this likelihood is known as the evidence for the data point
[14]. Data points with low evidence correspond to periods when the statistics of the
underlying system are changing (non-stationarity) or, less consistently, to data points
having large observation noise components.

The state-space equations may be viewed as a dynamic version of factor analysis
where the factor, 8, evolves over time according to linear dynamics. Shumway and
Stoffer [56] derive an Expectation-Maximisation (EM) algorithm (see next lecture)
in which the parameters of the model G, W and V can all be learnt. Only F is
assumed known. Note that these parameters are no longer dependent on ¢. This does
not, however, mean that the model is no longer dynamic; the state, 6;, is still time
dependent. Ghahramani and Hinton [22] have recently extended the algorithm to
allow F' to be learnt as well. These learning algorithms are batch learning algorithms
rather than recursive update procedures. They are therefore not suitable for ‘on-line’
learning (where the learning algorithm has only one ‘look’ at each observation).

In the engineering and statistical forecasting literature [44] [11] the transformation
matrix, F';, is known. It is related to the observed time series (or other observed time
series) according to a known deterministic function set by the statistician or ‘model
builder’. Assumptions are then made about the flow matrix, G;. Assumptions are
also made about the state noise covariance, W, and the observation noise covariance,
V4, or they are estimated on-line. We now look at a set of assumptions which reduces
the Kalman filter to a ‘Dynamic Linear Model’.

11.1.4 Dynamic Linear Models

In this section we consider Dynamic Linear Models (DLMs) [11] which for a univariate
time series are

0, = 0, +wy, wy ~ N(wt;OaWt) (11 23)
vy = F0,+ vy, vy N(’Ut;OaUtQ) '

This is a linear regression model with time-varying coefficients. It is identical to the
generic Kalman filter model with G; = I. Substituting this into the update equations
gives

Bt = ét—1+Ktet (1124)
Y% = R - K,F\R,



where

R, F/
K, = —1 (11.25)

g%

Yt
R, = X ,+W,
azt = af—i—ag
o = F,RF]
et = Y — Ut
gt - Ftotfl

(11.26)

where 7, is the prediction and agt is the estimated prediction variance. This is com-
posed of two terms; the observation noise, o7, and the component of prediction vari-
ance due to state uncertainty, o5. The likelihood of a data point under the old model
(or evidence) is

p(y) = N (@/t; gtaazt) (11.27)

If we make the further assumption that the transformation vector (its no longer a
matrix because we have univariate predictions) is equal to Fy = —[y;—1, Y1—2, .-, Yi—p|
then we have a Dynamic Autoregressive (DAR) model.

To apply the model we make initial guesses for the state (AR parameters) mean and
covariance (90 and X) and use the above equations. We must also plug in guesses
for the state noise covariance, W, and the observation noise variance, oZ. In a later
section we show how these can be estimated on-line. It is also often assumed that the
state noise covariance matrix is the isotropic matrix, W, = ¢qI. Next, we look at a
set, of assumptions that reduce the Kalman filter to Recursive Least Squares.

11.1.5 Recursive least squares

If there is no state noise (w; = 0,W,; = 0) and no state flow (G; = I) then the linear
dynamical system in equation (1) reduces to a static linear system (6, = 0). If we
further assume that our observations are univariate we can re-write the state-space
equations as

Yy = Ftﬁ—i—'vt, Uy N('Ut;o,O'g) (1128)

This is a regression model with constant coefficients. We can, however, estimate these
coefficients in a recursive manner by substituting our assumptions about W, G; and
V', into the Kalman filter update equations. This gives



Bt == 9,5_1—1—[{,56,5 (1129)
z:t = 2tfl - Ktthtfl

(11.30)
where
>, FT
K, = =t (11.31)
T4
U;t = 0t2+ag
0'; = thtleZﬁ
e = Yr— Ut
9 = F.0,4
(11.32)

where 7, is the prediction and agt is the estimated prediction variance. This is com-
posed of two terms; the observation noise, o2, and the component of prediction vari-
ance due to state uncertainty, oj.

The above equations are identical to the update equations for recursive least squares
(RLS) as defined by Abraham and Ledolter (equation (8.60) in [1]).

The likelihood of a data point under the old model (or evidence) is

p(y) = N (@/t; ?;’t;U;t) (11.33)

If we make the further assumption that the transformation vector (its no longer a
matrix because we have univariate predictions) is equal to F; = —[y;—1, Y1—2, .-, Yi—p)
then we have a recursive least squares estimation procedure for an autoregressive

(AR) model.

To apply the model we make initial guesses for the state (AR parameters) mean and
covariance (@ and ;) and use the above equations. We must also plug in our guess
for the observation noise variance, oZ. In a later section we show how this can be

estimated on-line.

11.1.6 Estimation of noise parameters

To use the DLM update equations it is necessary to make guesses for the state noise
covariance, W, and the observation noise variance, o7. In this section we show
how these can be estimated on-line. Note, we either estimate the state noise or the

observation noise - not both.



Jazwinski’s method for estimating state noise

This method, reviewed in [14] is ultimately due to Jazwinski [28] who derives the
following equations using the MLII approach (see Bayes lecture). We assume that
the state noise covariance matrix is the isotropic matrix, W = ¢I. The parameter ¢
can be updated according to

2 9
g=h <76 Uq“) (11.34)

where h(z) is the ‘ramp’ function

z ifx>0
hz) = { 0 otherwise (11.35)

and 030 is the estimated prediction variance assuming that ¢ =0

ooy =07 + FS 1 Ff (11.36)

Thus, if our estimate of prediction error assuming no state noise is smaller than our
observed error (e?) we should infer that the state noise is non-zero. This will happen
when we transit from one stationary regime to another; our estimate of ¢ will increase.
This, in turn, will increase the learning rate (see later section). A smoothed estimate
is

e? — o2,
Q= g1 + (1 - O!)h (ﬁ) (1137)
¢

where « is a smoothing parameter. Alternatively, equation 11.34 can be applied to a
window of samples [14].

Jazwinski’s method for estimating observation noise

This method, reviewed in [14] is ultimately due to Jazwinski [28] who derives the fol-
lowing equations by applying the MLII framework (see Bayes lecture). Equation 11.26
shows that the estimated prediction variance is composed of two components; the ob-
servation noise and the component due to state uncertainty. Thus, to estimate the
observation noise one needs to subtract the second component from the measured
squared error

o} =h(e} — F,R_ F{) (11.38)



This estimate can be derived by setting o2 so as to maximise the evidence (likelihood)
of a new data point (equation 11.27). A smoothed estimate is

ol =ao} |+ (1 —a)h (e? — Fth_lFtT) (11.39)

where « is a smoothing parameter. Alternatively, equation 11.38 can be applied to a
window of samples [14].

For RLS these update equations can be used by substituting R, = ¥; ;. We stress,
however, that this estimate is especially unsuitable for RLS applied to non-stationarity
data (but then you should only use RLS for stationary data, anyway). This is because
the learning rate becomes dramatically decreased.

We also stress that Jazwinski’s methods cannot both be applied at the same time; the
‘extra’ prediction error is explained either as greater observation noise or as greater
state noise.

Skagens’ method

Skagen [57] lets W = po?I ie. assumes the state noise covariance is isotropic with a
variance that is proportional to the observation noise o7.

He observes that if p is kept fixed then varying o7 over six orders of magnitude has

little or no effect on the Kalman filter updates. He therefore sets o7 to an arbitrary
value eg. 1.

He then defines a measure R as the relative reduction in prediction error due to
adaption and chooses p to give a value of R = 0.5.

11.1.7 Comparison with steepest descent

For a linear predictor, the learning rule for ‘on-line’ steepest descent is [3]
0, =0, ,+aFle, (11.40)

where « is the learning rate, which is fixed and chosen arbitrarily beforehand. This
method is otherwise known as Least Mean Squares (LMS). Haykin [27] (page 362)
discusses the conditions on o which lead to a convergent learning process. Comparison
of the above rule with the DLM learning rule in equation 11.25 shows that DLM has
a learning rate matriz equal to

X +qd
o= —>""

11.41
o} + o} ( )

The average learning rate, averaged over all state variables, is given by



o _1Tr (B0 + qd)
R CEL]

(11.42)

where T'r() denotes the trace of the covariance matrix and p is the number of state
variables.

DLM thus uses a learning rate which is directly proportional to the variance of the
state variables and is inversely proportional to the estimated prediction variance.

If the prediction variance due to state uncertainty is significantly smaller than the
prediction variance due to state noise (03 < of ), as it will be once the filter has
reached a steady solution, then increasing the state noise parameter, ¢;, will increase
the learning rate. This is the mechanism by which DLM increases its learning rate
when a new dynamic regime is encountered.

The average learning rate for the RLS filter is

1Tr (Et—l)
QRLS = ——7 5 v
p (07 +07)

(11.43)
As there is no state noise (¢, = 0) there is no mechanism by which the learning rate
can be increased when a new dynamic regime is encountered. This underlines the fact
that RLS is a stationary model. In fact, RLS behaves particularly poorly when given
non-stationary data. When a new dynamic regime is encountered, o} will increase
(and so may o7 if we’re updating it online). This leads not to the desired increase in
learning rate, but to a decrease.

For stationary data, however, the RLS model behaves well. As the model encounters
more data the parameter covariance matrix decreases which in turn leads to a decrease
in learning rate. In on-line gradient descent learning it is desirable to start with a
high learning rate (to achieve faster convergence) but end with a low learning rate
(to prevent oscillation). RLS exhibits the desirable property of adapting its learning
rate in exactly this manner. DLM also exhibits this property when given stationary
data, but when given non-stationary data, has the added property of being able to
increasing its learning rate when necessary.

We conclude this section by noting that DLM and RLS may be viewed as linear on-
line gradient descent estimators with variable learning rates; RLS for stationary data
and DLM for non-stationary data.

11.1.8 Other algorithms

The Least Mean Squares (LMS) algorithm [27] (Chapter 9) is identical to the steepest-
descent method (as described in this paper) - both methods have constant learning
rates.



Our comments on the RLS algorithm are relevant to RLS as defined by Abraham
and Ledolter [1]. There are, however, a number of variants of RLS. Haykin [27]
(page 564) defines an exponentially weighted RLS algorithm, where past samples
are given exponentially less attention than more recent samples. This gives rise
to a limited tracking ability (see chapter 16 in [27]). The tracking ability can be
further improved by adding state noise (Extended RLS-1 [27], page 726) or a non-
constant state transition matrix (Extended RLS-2 [27], page 727). The Extended
RLS-1 algorithm is therefore similar to the DAR model described in this paper.

11.1.9 An example

This example demonstrates the basic functioning of the dynamic AR model and
compares it to RLS.

A time series was generated consisting of a 10Hz sine wave in the first second, a 20Hz
sinewave in the second second and a 30Hz sine wave in the third second. All signals
contained additive Gaussian noise with standard deviation 0.1. One hundred samples
were generated per second.

A DAR model with p = 8 AR coefficients was trained on the data. The algorithm
was given a fixed value of observation noise (07 = 0.2). The state noise was initially
set, to zero and was adapted using Jazwinski’s algorithm described in equation 11.34,
using a smoothing value of & = 0.1. The model was initialised using linear regression;
the first p data points were regressed onto the p + 1th data point using an SVD
implementation of least squares, resulting in the linear regression weight vector wg.
The state at time step ¢ = p + 1 was initialised to this weight vector; 0,1 = wrg.
The initial state covariance matrix was set to the linear regression covariance matrix,
Yot = otszHFZH. Model parameters before time p + 1 were set to zero.

An RLS model (with p = 8 AR coefficients) was also trained on the data. The
algorithm was given a fixed value of observation noise (07 = 0.2). The model was
initilised by setting 0,1, = wrg and ¥, = I (setting ¥,,, = O’?Fp+1F$+1 resulted
in an initial learning rate that was’nt sufficiently large for the model to adapt to the
data - see later).

Figure 11.2 shows the original time series and the evidence of each point in the time
series under the DAR model. Data points occuring at the transitions between different
dynamic regimes have low evidence.

Figure 11.3 shows that the state noise parameter, ¢, increases by an amount necessary
for the estimated prediction error to equal the actual prediction error. The state noise
is high at transitions between different dynamic regimes. Within each dynamic regime
the state noise is zero.

Figure 11.4 shows that the variance of state variables reduces as the model is exposed
to more data from the same stationary regime. When a new stationary regime is
encountered the state variance increases (because ¢ increases).
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Figure 11.2: (a) Original time series (b) Log evidence of data points under DAR
model, log p(y;).

Figure 11.5 shows that the learning rate of the DAR model increases when the system
enters a new stationary regime, whereas the learning rate of RLS actually decreases.
The RLS learning rate is initially higher because the state covariance matrix was
initialised differently (initialising it in the same way gave much poorer RLS spectral
estimates).

Figure 11.6 shows the spectral estimates obtained from the DAR and RLS models.
The learning rate plots and spectrogram plots show that DAR is suitable for non-
stationary data whereas RLS is not.

11.1.10 Discussion

Dynamic Linear Models, Recursive Least Squares and Steepest-Descent Learning.
are special cases of linear dynamical systems and their learning rules are special cases
of the Kalman filter. Steepest-Descent Learning is suitable for modelling stationary
data. It uses a learning rate parameter which needs to be high at the beginning of
learning (to ensure fast learning) but low at the end of learning (to prevent oscilla-
tions). The learning rate parameter is usually hand-tuned to fulfill these criteria. Re-
cursive Least Squares is also suitable for modelling stationary data. [t has the advan-
tage of having an adaptive learning rate that reduces gradually as learning proceeds.
It reduces in response to a reduction in the uncertainty (covariance) of the model
parameters. Dynamic Linear Models are suitable for stationary and non-stationary
enviroments. The models possess state-noise and observation noise parameters which
can be updated on-line so as to maximise the evidence of the observations.
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Figure 11.3: (a) Squared prediction error, €2, (b) Estimated prediction error with

¢ =0, 059, (c) Estimated prediction error, o3, (the baseline level is due to the fixed
observation noise component, o7 = 0.2) and (d) Estimate of state noise variance, ¢;.
The state noise, ¢;, increases by an amount necessary for the estimated prediction
error (plot ¢) to equal the actual predicition error (plot a) - see equation 11.34.
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Figure 11.4: Average prior variance of state variables, %TT(R,:). As the model is
exposed to more data from the same stationary regime the estimates of the state
variables become more accurate (less variance). When a new stationary regime is
encountered the state variance increases (because ¢ increases).
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Figure 11.5: Average learning rates for (a) DAR model (b) RLS model. The learning
rate for RLS is set to a higher initial value (indirectly by setting 3 to have larger
entries) to give it a better chance of tracking the data. The DAR model responds to a
new dynamic regime by increasing the learning rate. The RLS responds by decreasing
the learning rate and is therefore unable to track the nonstationarity.
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Figure 11.6: Spectrograms for (a) DAR model (b) RLS model.



