Chapter 2

Linear Algebra

2.1 Introduction

We discuss vectors, matrices, transposes, covariance, correlation, diagonal and inverse
matrices, orthogonality, subspaces and eigenanalysis. An alterntive source for much
of this material is the excellent book by Strang [58].

2.2 Transposes and Inner Products

A collection of variables may be treated as a single entity by writing them as a vector.
For example, the three variables x, x5 and x3 may be written as the vector

4o
T3

Bold face type is often used to denote vectors (scalars - single variables - are written
with normal type). Vectors can be written as column vectors where the variables go
down the page or as row vectors where the variables go across the page (it needs to
be made clear when using vectors whether & means a row vector or a column vector -
most often it will mean a column vector and in our text it will always mean a column
vector, unless we say otherwise). To turn a column vector into a row vector we use
the transpose operator

QJT = [.Z'l,.’lfg,.’lf:;] (22)

The transpose operator also turns row vectors into column vectors. We now define
the inner product of two vectors

n
e’y = [v1,20,33] | ¥ (2.3)
Y3
= T1Y1 + T2y2 + T3Y3
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3
= Zl“iyi
i=1

which is seen to be a scalar. The outer product of two vectors produces a matrix
o

myT = Ty | (Y1, Y2, ys] (2.4)

T3

Tiyr T1Y2 T1Ys

= T2y T2Y2 T2Y3

T3Y1 T3Y2 T3Ys3

An N x M matrix has N rows and M columns. The ijth entry of a matrix is the
entry on the jth column of the ith row. Given a matrix A (matrices are also often
written in bold type) the ijth entry is written as A;;. When applying the transpose
operator to a matrix the ith row becomes the ¢th column. That is, if

ajp a2 das
A = 91 Q929 Q93 (25)
az1 G32 (33
then
ajp Q21 asy
T
A = 12 Q922 Q32 (26)
13 (23 033
A matrix is symmetric if A;; = Aj;. Another way to say this is that, for symmetric
matrices, A = A",

Two matrices can be multiplied if the number of columns in the first matrix equals
the number of rows in the second. Multiplying A, an N x M matrix, by B, an M x K
matrix, results in C, an N x K matrix. The ¢jth entry in C is the inner product
between the ith row in A and the jth column in B. As an example

l234] ing _[34 39 42 15] (2.7)
5 6 7 56 4 9 64 75 87 30
Given two matrices A and B we note that

(AB)" = BT A" (2.8)
2.2.1 Properties of matrix multiplication
Matrix multiplication is associative

(AB)C = A(BC) (2.9)
distributive

AB+C)=AB+ AC (2.10)

but not commutative

AB # BA (2.11)



2.3 Types of matrices

2.3.1 Covariance matrices

In the previous chapter the covariance, o,,, between two variables  and y was de-
fined. Given p variables there are p x p covariances to take account of. If we write
the covariances between variables z; and x; as o0;; then all the covariances can be
summarised in a covariance matriz which we write below for p = 3

2
01 O12 013

C = 0921 0'% 093 (212)
2
031 032 O3

The ith diagonal element is the covariance between the ith variable and itself which
is simply the variance of that variable; we therefore write o2 instead of 0;;. Also, note
that because 0;; = 0;; covariance matrices are symmetric.

We now look at computing a covariance matrix from a given data set. Suppose we
have p variables and that a single observation @; (a row vector) consists of measuring
these variables and suppose there are N such observations. We now make a matrix
X by putting each @x; into the ith row. The matrix X is therefore an N x p matrix
whose rows are made up of different observation vectors. If all the variables have zero
mean then the covariance matrix can then be evaluated as

1

This is a multiplication of a p x N matrix, X”, by a N x p matrix, X, which results in
a p X p matrix. To illustrate the use of covariance matrices for time series, figure 2.1
shows 3 time series which have the following covariance relation

1 01 16
C, = |01 1 02 (2.14)
1.6 0.2 2.0
and mean vector
m, = [13,17,23]" (2.15)

2.3.2 Diagonal matrices

A diagonal matriz is a square matrix (M = N) where all the entries are zero except
along the diagonal. For example

D = (2.16)

S O =
o = O
o O O
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Figure 2.1: Three time series having the covariance matriz Cy and mean vector m,
shown in the text. The top and bottom series have high covariance but none of the
other pairings do.

There is also a more compact notation for the same matrix
D = diag([4, 1, 6]) (2.17)

If a covariance matrix is diagonal it means that the covariances between variables are
zero, that is, the variables are all uncorrelated. Non-diagonal covariance matrices are
known as full covariance matrices. If V' is a vector of variances V' = [0%, 03, 02T then
the corresponding diagonal covariance matrix is V4 = diag(V).

2.3.3 The correlation matrix

The correlation matrix, R, can be derived from the covariance matrix by the equation
R=BCB (2.18)
where B is a diagonal matrix of inverse standard deviations

B = diag([1/01,1/09,1/03]) (2.19)

2.3.4 The identity matrix

The identity matrix is a diagonal matrix with ones along the diagonal. Multiplication
of any matrix, X by the identity matrix results in X. That is

IX=X (2.20)

The identity matrix is the matrix equivalent of multiplying by 1 for scalars.



2.4 The Matrix Inverse

Given a matrix X its inverse X ! is defined by the properties

X'X =1 (2.21)
XXt =1

where I is the identity matrix. The inverse of a diagonal matrix with entries d;; is
another diagonal matrix with entries 1/d;;. This satisfies the definition of an inverse,

eg.

4007[1/4 00 100
010||0 10 |=]010 (2.22)
006J][0 0 1/6 00 1

More generally, the calculation of inverses involves a lot more computation. Before
looking at the general case we first consider the problem of solving simultaneous
equations. These constitute relations between a set of input or independent variables
x; and a set of output or dependent variables y;. Each input-output pair constitutes
an observation. In the following example we consider just N = 3 observations and
p = 3 dimensions per observation

2’[1)1 +ws + ws = 9
4101 —6w2 = -2
—2w1 —|—7w2 + 2103 =9

which can be written in matrix form

2 1 1 wy 5
4 -6 0 wy | = | —2 (2.23)
-2 7 2 Wws 9
or in matrix form
Xw=y (2.24)

This system of equations can be solved in a systematic way by subtracting multiples
of the first equation from the second and third equations and then subtracting mul-
tiples of the second equation from the third. For example, subtracting twice the first
equation from the second and —1 times the first from the third gives

2 1 1 w 5
0 -8 =2 || wy | =] —12 (2.25)
08 3 ws 4

Then, subtracting —1 times the second from the third gives

2 1 1 w 5
0 -8 =2 || wy | =] —12 (2.26)
00 1 ws 2

This process is known as forward elimination. We can then substitute the value for
w3 from the third equation into the second etc. This process is back-substitution. The



two processes are together known as Gaussian elimination. Following this through
for our example we get w = [1, 1, 2]".

When we come to invert a matrix (as opposed to solve a system of equations as in
the previous example) we start with the equation

AA ' =1 (2.27)
and just write down all the entries in the A and I matrices in one big matrix

2 1 1100
4 -6 0010 (2.28)
2 00 1

We then perform forward elimination ! until the part of the matrix corresponding to
A equals the identity matrix; the matrix on the right is then A™! (this is because in
equation 2.27 if A becomes I then the left hand side is A~' and the right side must
equal the left side). We get

12 -5 —6
010 F P2 (2.29)
001 -1 1 1

This process is known as the Gauss-Jordan method. For more details see Strang’s
excellent book on Linear Algebra [58] where this example was taken from.

Inverses can be used to solve equations of the form Xw = y. This is achieved by
multiplying both sides by X ! giving

w=X"y (2.30)
Hence,
12 =5 —6
ol B R
ws -1 1 1 9

which also gives w = [1,1, 2]7.
The inverse of a product of matrices is given by

(AB)"'=B'A! (2.32)

Only square matrices are invertible because, for y = Az, if y and x are of different
dimension then we will not necessarily have a one-to-one mapping between them.

'We do not perform back-substitution but instead continue with forward elimination until we get
a diagonal matrix.



2.5 Orthogonality

The length of a d-element vector x is written as ||z|| where

d
lel? = Yo a? (2:33)

i=1

= z'x
Two vectors & and y are orthogonal if
y
X-y

X

Figure 2.2: Two vectors © and y. These vectors will be orthogonal if they obey
Pythagoras’ relation ie. that the sum of the squares of the sides equals the square of
the hypoteneuse.
l2* + [ly[I* = Iz — yl* (2.34)
That is, if
TP+ttt ys = (01— )+ (T — va)? (2.35)
Expanding the terms on the right and re-arranging leaves only the cross-terms

1Y + ... +2qyq = 0 (2.36)

That is, two vectors are orthogonal if their inner product is zero.

2.5.1 Angles between vectors

Given a vector b = [by, bo]" and a vector a = [ay, as]” we can work out that
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Figure 2.3: Working out the angle between two vectors.

a1
cosa = —- (2.37)
lal]
. as
sina =
lall
by
cosff = ——
1]
: by
sinff = ——
10|
(2.38)
Now, cosd = cos(ff — ) which we can expand using the trig identity
cos(3 — ) = cos fcos a + sin Fsin « (2.39)
Hence b+ ash
101 T G202
cos(d) = ————— (2.40)
|la[[[B]]
More generally, we have
D (2.41)
cos(d) = :
|lal[[[b]]

Because, cos /2 = 0, this again shows that vectors are orthogonal for a’b = 0. Also,
because |cosd| < 1 where |z| denotes the absolute value of = we have

|ab] < [lall|[b]| (2.42)

which is known as the Schwarz Inequality.

2.5.2 Projections

The projection of a vector b onto a vector a results in a projection vector p which is
the point on the line a which is closest to the point b. Because p is a point on a it



Figure 2.4: The projection of b onto a is the point on a which is closest to b.

must be some scalar multiple of it. That is
p=wa (2.43)

where w is some coefficient. Because p is the point on a closest to b this means that
the vector b — p is orthogonal to a. Therefore

a’b-—p) = 0 (2.44)

a’(b—wa) =

Re-arranging gives

a’b
and Ty
a

We refer to p as the projection vector and to w as the projection.

2.5.3 Orthogonal Matrices

The set of vectors q,..q,, are orthogonal it

v 0 jF#Fk

If these vectors are placed in columns of the matrix @ then

R'Q=QQ" =D (2.48)



2.5.4 Orthonormal Matrices

The set of vectors gq,..q; are orthonormal if

0 j#k
da. = |17 (2.49)

If these vectors are placed in columns of the matrix @} then

Q'Q=QQ" =1 (2.50)
Hence, the transpose equals the inverse
Q' =Q" (2.51)

The vectors gq,..q, are said to provide an orthonormal basis. This means that any
vector can be written as a linear combination of the basis vectors. A trivial example
is the two-dimensional cartesian coordinate system where g, = [1,0]7 (the x-axis)
and g, = [0,1]" (the y-axis). More generally, to represent the vector  we can write

T =719, + T2qy + ... + Tyqy (2.52)

To find the appropriate coefficients Zx(the co-ordinates in the new basis), multiply
both sides by qi. Due to the orthonormality property all terms on the right disappear
except one leaving

Ty =qpx (2.53)

The new coordinates are the projections of the data onto the basis functions (re.
equation 2.45, there is no denominator since g} g, = 1). In matrix form, equation 2.52
can be written as & = Q& which therefore has the solution £ = Q@ 'x. But given
that Q7' = Q" we have

T=Q'z (2.54)

Transformation to an orthonormal basis preserves lengths. This is because 2
1Z]l = Q"] (2.55)
- (Q2)'Q"s
= 27QQ"z

T
led
Similarly, inner products and therefore angles between vectors are preserved. That is
'y = (Q'x)'Q"y (2.56)
= 2'QQ"y
= wTy

Therefore, transformation by an orthonormal matrix constitutes a rotation of the
co-ordinate system.

2Throughout this chapter we will make extensive use of the matrix identities (AB)? = BT AT
and (AB)C = A(BC). We will also use (AB)~' = B™*A™".



2.6 Subspaces

A space is, for example, a set of real numbers. A subspace S is a set of points {x}
such that (i) if we take two vectors from S and add them we remain in S and (ii) if
we take a vector from S and multiply by a scalar we also remain in S (S is said to be
closed under addition and multiplication). An example is a 2-D plane in a 3-D space.
A subspace can be defined by a basis.

2.7 Determinants

The determinant of a two-by-two matrix
A = [ Z b ] (2.57)

is given by
det(A) = ad — bc (2.58)

The determinant of a three-by-three matrix

a b c
A = |de f (2.59)
g h 1

is given by

watm=ot ([ 1) -san (2 ) rean([5]) e

Determinants are important because of their properties. In particular, if two rows of
a matrix are equal then the determinant is zero eg. if

a b
A = l . ] (2.61)
then
det(A) = ab—ba =0 (2.62)

In this case the transformation from x = [z, 25]7 to y = [y1, y2]* given by
Az =y (2.63)
reduces two pieces of information (x; and x5) to one piece of information
Y =1y1=y2=ar; +bxy (2.64)

In this case it is not possible to reconstruct & from y; the transformation is not
invertible - the matrix A does not have an inverse and the value of the determinant
provides a test for this: If det(A) = 0 the matrix A is not invertible; it is singular.



Figure 2.5: A singular (non-invertible) transformation.

Conversely, if det(A) # 0 then A is invertible. Other properties of the determinant
are

det(AT) = det(A) (2.65)
det(AB) = det(A)det(B)
det(A™') = 1/det(A)
det(A)

= Hakk
k

Another important property of determinants is that they measure the ‘volume’ of a
matrix. For a 3-by-3 matrix the three rows of the matrix form the edges of a cube.
The determinant is the volume of this cube. For a d-by-d matrix the rows form the
edges of a ‘parallepiped’. Again, the determinant is the volume.

2.8 Eigenanalysis

The square matrix A has eigenvalues A\ and eigenvectors q if
Aq =)\q (2.66)

Therefore
(A-X)g=0 (2.67)

To satisfy this equation either ¢ = 0, which is uninteresting, or the matrix A — \I
must reduce g to the null vector (a single point). For this to happen A — AI must
be singular. Hence

det(A—AI) =0 (2.68)

Eigenanalysis therefore proceeds by (i) solving the above equation to find the eigen-
values \; and then (ii) substituting them into equation 2.66 to find the eigenvectors.
For example, if

A - [;‘ :g] (2.69)

then
det(A— M) =(4—-XN)(=3=X)—(=5)(2)=0 (2.70)



which can be rearranged as
M—-A=-2 = 0 (2.71)
A+1)(A=2) = 0
Hence the eigenvalues are A = —1 and A\ = 2. Substituting back into equation 2.66

gives an eigenvector g, which is any multiple of [1,1]". Similarly, eigenvector g, is
any multiple of [5, 2]T.

We now note that the determinant of a matrix is also equal to the product of its
eigenvalues

det(A) = [ M (2.72)

We also define the Trace of a matrix as the sum of its diagonal elements

Tr(A) =) au (2.73)

and note that it is also equal to the sum of the eigenvalues

Tr(A) =3 M (2.74)

Eigenanalysis applies only to square matrices.

2.9 Gram-Schmidt

A general class of procedures for finding eigenvectors are the deflation methods of
which QR-decomposition and Gram-Schmidt orthogonalization are examples.

In Gram-Schmidt, we are given a set, of vectors, say a,b and ¢ and we wish to find a
set of corresponding orthonormal vectors which we’ll call g,,q, and q5. To start with

we let
a

q, = — (2.75)
C lal]

We then compute b’ which is the original vector b minus the projection vector (see
equation 2.46) of b onto ¢;

b =b—qlbq, (2.76)
The second orthogonal vector is then a unit length version of &'
bl

Finally, the third orthonormal vector is given by

(2.78)

where
d=c—qicq, —q;cq, (2.79)

In QR-decomposition the @) terms are given by g; and the R terms by g c.



2.9.1 Diagonalization

If we put the eigenvectors into the columns of a matrix

Q = |a a - qq (2.80)

then, because, Ag;, = \;q;, we have

| | -
| | -
AQ = Mg, Aeqy - Aiqy (2.81)
| | -
| | -
If we put the eigenvalues into the matrix A then the above matrix can also be written
as QA. Therefore,

AQ = QA (2.82)
Pre-multiplying both sides by Q! gives
Q'AQ = A (2.83)

This shows that any square matrix can be converted into a diagonal form (provided
it has distinct eigenvalues; see eg. [58] p. 255). Sometimes there won’t be d distinct
eigenvalues and sometimes they’ll be complex.

2.9.2 Spectral Theorem

For any real symmetric matrix all the eigenvalues will be real and there will be d dis-
tinct eigenvalues and eigenvectors. The eigenvectors will be orthogonal (if the matrix
is not symmetric the eigenvectors won’t be orthogonal). They can be normalised and
placed into the matrix Q. Since @ is now orthonormal we have Q™' = Q”. Hence

QTAQ =A (2.84)
Pre-multiplying by @ and post-multiplying by Q* gives
A=QAQ" (2.85)

which is known as the spectral theorem. It says that any real, symmetric matrix can
be represented as above where the columns of @ contain the eigenvectors and A is a
diagonal matrix containing the eigenvalues, \;. Equivalently,

. A

A = g, 49> - 4q o _qz _ (2.86)



This can also be written as a summation

d
A=Y Maal (2.87)
k=1

2.10 Complex Matrices

If

1 3+20 4 6+ 3¢
4 = —2+1 3420 T+4 (2.:88)

then the complex transpose or Hermitian transpose is given by

3-2 —2—i
Al = |4 3—2i (2.89)
6—3i 7—4i

ie. each entry changes into its complex conjugate (see appendix) and we then trans-
pose the result. Just as A7 denotes the transpose of the inverse so A~ denotes
the Hermitian transpose of the inverse.

If A” A is a diagonal matrix then A is said to be a unitary matriz. It is the complex
equivalent of an orthogonal matrix.

2.11 Quadratic Forms

The quadratic function
f(m) = CLH.’E% + A12L1T2 + A21T2X1 + ...+ Cde.’L‘Z (290)
can be written in matrix form as

11 A12 Q14

x
21 A22 Q2d a:;
f(m) = [.Z'l,.’lfg,...,.fd] (291)
Zq
Qd1 Qg2 Qqd
which is written compactly as
flx) =a" Az (2.92)

If f(x) > 0 for any non-zero & then A is said to be positive-definite. Similarly, if
f(x) > 0 then A is positive-semi-definite.

If we substitute A = QAQT and * = Qy where y are the projections onto the
eigenvectors, then we can write

fl®) = y'Ay (2.93)

= ny)‘z



Hence, for positive-definiteness we must therefore have \; > 0 for all ¢ (ie. positive
eigenvalues).

2.11.1 Ellipses

For 2-by-2 matrices if A = I then we have
f=a+a5 (2.94)
which is the equation of a circle with radius v/f. If A = kI we have

% =z} + 7} (2.95)

The radius is now /f/k. If A = diag([k, k2]) we have
f = kix] + ko (2.96)

which is the equation of an ellipse. For k; > ko the major axis has length +/f/ks and
the minor axis has length /f/k;.

For a non-diagonal A we can diagonalise it using A = QAQ’. This gives
f= M} + Xois (2.97)

where the ellipse now lives in a new co-ordinate system given by the rotation & =

z''Q. The major and minor axes have lengths \/f/Xs and \/f/\;.



