
Chapter 2
Linear Algebra
2.1 IntroductionWe discuss vectors, matrices, transposes, covariance, correlation, diagonal and inversematrices, orthogonality, subspaces and eigenanalysis. An alterntive source for muchof this material is the excellent book by Strang [58].2.2 Transposes and Inner ProductsA collection of variables may be treated as a single entity by writing them as a vector.For example, the three variables x1, x2 and x3 may be written as the vectorx = 264 x1x2x3 375 (2.1)Bold face type is often used to denote vectors (scalars - single variables - are writtenwith normal type). Vectors can be written as column vectors where the variables godown the page or as row vectors where the variables go across the page (it needs tobe made clear when using vectors whether x means a row vector or a column vector -most often it will mean a column vector and in our text it will always mean a columnvector, unless we say otherwise). To turn a column vector into a row vector we usethe transpose operator xT = [x1; x2; x3] (2.2)The transpose operator also turns row vectors into column vectors. We now de�nethe inner product of two vectorsxTy = [x1; x2; x3] 264 y1y2y3 375 (2.3)= x1y1 + x2y2 + x3y327



28 Signal Processing Course, W.D. Penny, April 2000.= 3Xi=1 xiyiwhich is seen to be a scalar. The outer product of two vectors produces a matrixxyT = 264 x1x2x3 375 [y1; y2; y3] (2.4)= 264 x1y1 x1y2 x1y3x2y1 x2y2 x2y3x3y1 x3y2 x3y3 375An N �M matrix has N rows and M columns. The ijth entry of a matrix is theentry on the jth column of the ith row. Given a matrix A (matrices are also oftenwritten in bold type) the ijth entry is written as Aij. When applying the transposeoperator to a matrix the ith row becomes the ith column. That is, ifA = 264 a11 a12 a13a21 a22 a23a31 a32 a33 375 (2.5)then AT = 264 a11 a21 a31a12 a22 a32a13 a23 a33 375 (2.6)A matrix is symmetric if Aij = Aji. Another way to say this is that, for symmetricmatrices, A = AT .Two matrices can be multiplied if the number of columns in the �rst matrix equalsthe number of rows in the second. MultiplyingA, an N�M matrix, by B, an M�Kmatrix, results in C, an N � K matrix. The ijth entry in C is the inner productbetween the ith row in A and the jth column in B. As an example" 2 3 45 6 7 # 264 1 3 7 24 3 4 15 6 4 2 375 = " 34 39 42 1564 75 87 30 # (2.7)Given two matrices A and B we note that(AB)T = BTAT (2.8)2.2.1 Properties of matrix multiplicationMatrix multiplication is associative(AB)C = A(BC) (2.9)distributive A(B +C) = AB +AC (2.10)but not commutative AB 6= BA (2.11)



Signal Processing Course, W.D. Penny, April 2000. 292.3 Types of matrices2.3.1 Covariance matricesIn the previous chapter the covariance, �xy, between two variables x and y was de-�ned. Given p variables there are p � p covariances to take account of. If we writethe covariances between variables xi and xj as �ij then all the covariances can besummarised in a covariance matrix which we write below for p = 3C = 264 �21 �12 �13�21 �22 �23�31 �32 �23 375 (2.12)The ith diagonal element is the covariance between the ith variable and itself whichis simply the variance of that variable; we therefore write �2i instead of �ii. Also, notethat because �ij = �ji covariance matrices are symmetric.We now look at computing a covariance matrix from a given data set. Suppose wehave p variables and that a single observation xi (a row vector) consists of measuringthese variables and suppose there are N such observations. We now make a matrixX by putting each xi into the ith row. The matrix X is therefore an N � p matrixwhose rows are made up of di�erent observation vectors. If all the variables have zeromean then the covariance matrix can then be evaluated asC = 1N � 1XTX (2.13)This is a multiplication of a p�N matrix,XT , by a N�p matrix,X, which results ina p� p matrix. To illustrate the use of covariance matrices for time series, �gure 2.1shows 3 time series which have the following covariance relationC1 = 264 1 0:1 1:60:1 1 0:21:6 0:2 2:0 375 (2.14)and mean vector m1 = [13; 17; 23]T (2.15)2.3.2 Diagonal matricesA diagonal matrix is a square matrix (M = N) where all the entries are zero exceptalong the diagonal. For exampleD = 264 4 0 00 1 00 0 6 375 (2.16)
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tFigure 2.1: Three time series having the covariance matrix C1 and mean vector m1shown in the text. The top and bottom series have high covariance but none of theother pairings do.There is also a more compact notation for the same matrixD = diag([4; 1; 6]) (2.17)If a covariance matrix is diagonal it means that the covariances between variables arezero, that is, the variables are all uncorrelated. Non-diagonal covariance matrices areknown as full covariance matrices. If V is a vector of variances V = [�21; �22; �23 ]T thenthe corresponding diagonal covariance matrix is V d = diag(V ).2.3.3 The correlation matrixThe correlation matrix,R, can be derived from the covariance matrix by the equationR = BCB (2.18)where B is a diagonal matrix of inverse standard deviationsB = diag([1=�1; 1=�2; 1=�3]) (2.19)2.3.4 The identity matrixThe identity matrix is a diagonal matrix with ones along the diagonal. Multiplicationof any matrix, X by the identity matrix results in X. That isIX =X (2.20)The identity matrix is the matrix equivalent of multiplying by 1 for scalars.



Signal Processing Course, W.D. Penny, April 2000. 312.4 The Matrix InverseGiven a matrix X its inverse X�1 is de�ned by the propertiesX�1X = I (2.21)XX�1 = Iwhere I is the identity matrix. The inverse of a diagonal matrix with entries dii isanother diagonal matrix with entries 1=dii. This satis�es the de�nition of an inverse,eg. 264 4 0 00 1 00 0 6 375 264 1=4 0 00 1 00 0 1=6 375 = 264 1 0 00 1 00 0 1 375 (2.22)More generally, the calculation of inverses involves a lot more computation. Beforelooking at the general case we �rst consider the problem of solving simultaneousequations. These constitute relations between a set of input or independent variablesxi and a set of output or dependent variables yi. Each input-output pair constitutesan observation. In the following example we consider just N = 3 observations andp = 3 dimensions per observation2w1 +w2 + w3 = 54w1 �6w2 = �2�2w1 +7w2 + 2w3 = 9which can be written in matrix form264 2 1 14 �6 0�2 7 2 375 264 w1w2w3 375 = 264 5�29 375 (2.23)or in matrix form Xw = y (2.24)This system of equations can be solved in a systematic way by subtracting multiplesof the �rst equation from the second and third equations and then subtracting mul-tiples of the second equation from the third. For example, subtracting twice the �rstequation from the second and �1 times the �rst from the third gives264 2 1 10 �8 �20 8 3 375 264 w1w2w3 375 = 264 5�124 375 (2.25)Then, subtracting �1 times the second from the third gives264 2 1 10 �8 �20 0 1 375 264 w1w2w3 375 = 264 5�122 375 (2.26)This process is known as forward elimination. We can then substitute the value forw3 from the third equation into the second etc. This process is back-substitution. The



32 Signal Processing Course, W.D. Penny, April 2000.two processes are together known as Gaussian elimination. Following this throughfor our example we get w = [1; 1; 2]T .When we come to invert a matrix (as opposed to solve a system of equations as inthe previous example) we start with the equationAA�1 = I (2.27)and just write down all the entries in the A and I matrices in one big matrix264 2 1 1 1 0 04 �6 0 0 1 0�2 7 2 0 0 1 375 (2.28)We then perform forward elimination 1 until the part of the matrix corresponding toA equals the identity matrix; the matrix on the right is then A�1 (this is because inequation 2.27 if A becomes I then the left hand side is A�1 and the right side mustequal the left side). We get264 1 0 0 1216 �516 �6160 1 0 48 �38 �280 0 1 �1 1 1 375 (2.29)This process is known as the Gauss-Jordan method. For more details see Strang'sexcellent book on Linear Algebra [58] where this example was taken from.Inverses can be used to solve equations of the form Xw = y. This is achieved bymultiplying both sides by X�1 givingw =X�1y (2.30)Hence, 264 w1w2w3 375 = 264 1216 �516 �61648 �38 �28�1 1 1 375 264 5�29 375 (2.31)which also gives w = [1; 1; 2]T .The inverse of a product of matrices is given by(AB)�1 = B�1A�1 (2.32)Only square matrices are invertible because, for y = Ax, if y and x are of di�erentdimension then we will not necessarily have a one-to-one mapping between them.1We do not perform back-substitution but instead continue with forward elimination until we geta diagonal matrix.



Signal Processing Course, W.D. Penny, April 2000. 332.5 OrthogonalityThe length of a d-element vector x is written as jjxjj wherejjxjj2 = dXi=1 x2i (2.33)= xTxTwo vectors x and y are orthogonal if
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Figure 2.2: Two vectors x and y. These vectors will be orthogonal if they obeyPythagoras' relation ie. that the sum of the squares of the sides equals the square ofthe hypoteneuse. jjxjj2 + jjyjj2 = jjx� yjj2 (2.34)That is, if x21 + :::+ x2d + y21 + ::: + y2d = (x1 � y1)2 + :::+ (xd � yd)2 (2.35)Expanding the terms on the right and re-arranging leaves only the cross-termsx1y1 + ::::: + xdyd = 0 (2.36)xTy = 0That is, two vectors are orthogonal if their inner product is zero.2.5.1 Angles between vectorsGiven a vector b = [b1; b2]T and a vector a = [a1; a2]T we can work out that
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Figure 2.3: Working out the angle between two vectors.cos� = a1jjajj (2.37)sin� = a2jjajjcos � = b1jjbjjsin� = b2jjbjj (2.38)Now, cos� = cos(� � �) which we can expand using the trig identitycos(� � �) = cos � cos� + sin� sin� (2.39)Hence cos(�) = a1b1 + a2b2jjajjjjbjj (2.40)More generally, we have cos(�) = aTbjjajjjjbjj (2.41)Because, cos �=2 = 0, this again shows that vectors are orthogonal for aTb = 0. Also,because j cos �j � 1 where jxj denotes the absolute value of x we havejaTbj � jjajjjjbjj (2.42)which is known as the Schwarz Inequality.2.5.2 ProjectionsThe projection of a vector b onto a vector a results in a projection vector p which isthe point on the line a which is closest to the point b. Because p is a point on a it
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pFigure 2.4: The projection of b onto a is the point on a which is closest to b.must be some scalar multiple of it. That isp = wa (2.43)where w is some coe�cient. Because p is the point on a closest to b this means thatthe vector b� p is orthogonal to a. ThereforeaT (b� p) = 0 (2.44)aT (b� wa) = 0Re-arranging gives w = aTbaTa (2.45)and p = aTbaTaa (2.46)We refer to p as the projection vector and to w as the projection.2.5.3 Orthogonal MatricesThe set of vectors q1::qk are orthogonal ifqTj qk = 0 j 6= kdjk j = k (2.47)If these vectors are placed in columns of the matrix Q thenQTQ = QQT = D (2.48)



36 Signal Processing Course, W.D. Penny, April 2000.2.5.4 Orthonormal MatricesThe set of vectors q1::qk are orthonormal ifqTj qk = 0 j 6= k1 j = k (2.49)If these vectors are placed in columns of the matrix Q thenQTQ = QQT = I (2.50)Hence, the transpose equals the inverseQT = Q�1 (2.51)The vectors q1::qk are said to provide an orthonormal basis. This means that anyvector can be written as a linear combination of the basis vectors. A trivial exampleis the two-dimensional cartesian coordinate system where q1 = [1; 0]T (the x-axis)and q2 = [0; 1]T (the y-axis). More generally, to represent the vector x we can writex = ~x1q1 + ~x2q2 + :::+ ~xdqd (2.52)To �nd the appropriate coe�cients ~xk(the co-ordinates in the new basis), multiplyboth sides by qTk . Due to the orthonormality property all terms on the right disappearexcept one leaving ~xk = qTkx (2.53)The new coordinates are the projections of the data onto the basis functions (re.equation 2.45, there is no denominator since qTk qk = 1). In matrix form, equation 2.52can be written as x = Q~x which therefore has the solution ~x = Q�1x. But giventhat Q�1 = QT we have ~x = QTx (2.54)Transformation to an orthonormal basis preserves lengths. This is because 2jj~xjj = jjQTxjj (2.55)= (QTx)TQTx= xTQQTx= xTx= jjxjjSimilarly, inner products and therefore angles between vectors are preserved. That is~xT ~y = (QTx)TQTy (2.56)= xTQQTy= xTyTherefore, transformation by an orthonormal matrix constitutes a rotation of theco-ordinate system.2Throughout this chapter we will make extensive use of the matrix identities (AB)T = BTATand (AB)C = A(BC). We will also use (AB)�1 = B�1A�1.



Signal Processing Course, W.D. Penny, April 2000. 372.6 SubspacesA space is, for example, a set of real numbers. A subspace S is a set of points fxgsuch that (i) if we take two vectors from S and add them we remain in S and (ii) ifwe take a vector from S and multiply by a scalar we also remain in S (S is said to beclosed under addition and multiplication). An example is a 2-D plane in a 3-D space.A subspace can be de�ned by a basis.2.7 DeterminantsThe determinant of a two-by-two matrixA = " a bc d # (2.57)is given by det(A) = ad� bc (2.58)The determinant of a three-by-three matrixA = 264 a b cd e fg h i 375 (2.59)is given bydet(A) = a det " e fh i #!� b det " d fg i #!+ c det " d eg h #! (2.60)Determinants are important because of their properties. In particular, if two rows ofa matrix are equal then the determinant is zero eg. ifA = " a ba b # (2.61)then det(A) = ab� ba = 0 (2.62)In this case the transformation from x = [x1; x2]T to y = [y1; y2]T given byAx = y (2.63)reduces two pieces of information (x1 and x2) to one piece of informationy = y1 = y2 = ax1 + bx2 (2.64)In this case it is not possible to reconstruct x from y; the transformation is notinvertible - the matrix A does not have an inverse and the value of the determinantprovides a test for this: If det(A) = 0 the matrix A is not invertible; it is singular.
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Figure 2.5: A singular (non-invertible) transformation.Conversely, if det(A) 6= 0 then A is invertible. Other properties of the determinantare det(AT ) = det(A) (2.65)det(AB) = det(A) det(B)det(A�1) = 1= det(A)det(A) = Yk akkAnother important property of determinants is that they measure the `volume' of amatrix. For a 3-by-3 matrix the three rows of the matrix form the edges of a cube.The determinant is the volume of this cube. For a d-by-d matrix the rows form theedges of a `parallepiped'. Again, the determinant is the volume.2.8 EigenanalysisThe square matrix A has eigenvalues � and eigenvectors q ifAq = �q (2.66)Therefore (A� �I)q = 0 (2.67)To satisfy this equation either q = 0, which is uninteresting, or the matrix A � �Imust reduce q to the null vector (a single point). For this to happen A � �I mustbe singular. Hence det(A� �I) = 0 (2.68)Eigenanalysis therefore proceeds by (i) solving the above equation to �nd the eigen-values �i and then (ii) substituting them into equation 2.66 to �nd the eigenvectors.For example, if A = " 4 �52 �3 # (2.69)then det(A� �I) = (4� �)(�3� �)� (�5)(2) = 0 (2.70)



Signal Processing Course, W.D. Penny, April 2000. 39which can be rearranged as �2 � �� 2 = 0 (2.71)(�+ 1)(�� 2) = 0Hence the eigenvalues are � = �1 and � = 2. Substituting back into equation 2.66gives an eigenvector q1 which is any multiple of [1; 1]T . Similarly, eigenvector q2 isany multiple of [5; 2]T .We now note that the determinant of a matrix is also equal to the product of itseigenvalues det(A) =Yk �k (2.72)We also de�ne the Trace of a matrix as the sum of its diagonal elementsTr(A) =Xk akk (2.73)and note that it is also equal to the sum of the eigenvaluesTr(A) =Xk �k (2.74)Eigenanalysis applies only to square matrices.2.9 Gram-SchmidtA general class of procedures for �nding eigenvectors are the de
ation methods ofwhich QR-decomposition and Gram-Schmidt orthogonalization are examples.In Gram-Schmidt, we are given a set of vectors, say a,b and c and we wish to �nd aset of corresponding orthonormal vectors which we'll call q1,q2 and q3. To start withwe let q1 = ajjajj (2.75)We then compute b0 which is the original vector b minus the projection vector (seeequation 2.46) of b onto q1 b0 = b� qT1 bq1 (2.76)The second orthogonal vector is then a unit length version of b0q2 = b0jjb0jj (2.77)Finally, the third orthonormal vector is given byq3 = c0jjc0jj (2.78)where c0 = c� qT1 cq1 � qT2 cq2 (2.79)In QR-decomposition the Q terms are given by qi and the R terms by qTi c.



40 Signal Processing Course, W.D. Penny, April 2000.2.9.1 DiagonalizationIf we put the eigenvectors into the columns of a matrixQ = 26666664 j j : jj j : jq1 q2 : qdj j : jj j : j
37777775 (2.80)then, because, Aqk = �kqk, we haveAQ = 26666664 j j : jj j : j�1q1 �2q2 : �dqdj j : jj j : j

37777775 (2.81)If we put the eigenvalues into the matrix � then the above matrix can also be writtenas Q�. Therefore, AQ = Q� (2.82)Pre-multiplying both sides by Q�1 givesQ�1AQ = � (2.83)This shows that any square matrix can be converted into a diagonal form (providedit has distinct eigenvalues; see eg. [58] p. 255). Sometimes there won't be d distincteigenvalues and sometimes they'll be complex.2.9.2 Spectral TheoremFor any real symmetric matrix all the eigenvalues will be real and there will be d dis-tinct eigenvalues and eigenvectors. The eigenvectors will be orthogonal (if the matrixis not symmetric the eigenvectors won't be orthogonal). They can be normalised andplaced into the matrix Q. Since Q is now orthonormal we have Q�1 = QT . HenceQTAQ = � (2.84)Pre-multiplying by Q and post-multiplying by QT givesA = Q�QT (2.85)which is known as the spectral theorem. It says that any real, symmetric matrix canbe represented as above where the columns of Q contain the eigenvectors and � is adiagonal matrix containing the eigenvalues, �i. Equivalently,A = 26666664 j j : jj j : jq1 q2 : qdj j : jj j : j
37777775 26666664 �1 �2 �d

37777775 26664 � � q1 � �� � q2 � �: : : :� � qd � � 37775 (2.86)



Signal Processing Course, W.D. Penny, April 2000. 41This can also be written as a summationA = dXk=1�kqkqTk (2.87)2.10 Complex MatricesIf A = " 3 + 2i 4 6 + 3i�2 + i 3 + 2i 7 + 4i # (2.88)then the complex transpose or Hermitian transpose is given byAH = 264 3� 2i �2� i4 3� 2i6� 3i 7� 4i 375 (2.89)ie. each entry changes into its complex conjugate (see appendix) and we then trans-pose the result. Just as A�T denotes the transpose of the inverse so A�H denotesthe Hermitian transpose of the inverse.If AHA is a diagonal matrix then A is said to be a unitary matrix. It is the complexequivalent of an orthogonal matrix.2.11 Quadratic FormsThe quadratic functionf(x) = a11x21 + a12x1x2 + a21x2x1 + ::: + addx2d (2.90)can be written in matrix form asf(x) = [x1; x2; :::; xd] 26666664 a11 a12 a1da21 a22 a2dad1 ad2 add
37777775 26664 x1x2:xd 37775 (2.91)which is written compactly as f(x) = xTAx (2.92)If f(x) > 0 for any non-zero x then A is said to be positive-de�nite. Similarly, iff(x) � 0 then A is positive-semi-de�nite.If we substitute A = Q�QT and x = Qy where y are the projections onto theeigenvectors, then we can write f(x) = yT�y (2.93)= Xi y2i �i



42 Signal Processing Course, W.D. Penny, April 2000.Hence, for positive-de�niteness we must therefore have �i > 0 for all i (ie. positiveeigenvalues).2.11.1 EllipsesFor 2-by-2 matrices if A = I then we havef = x21 + x22 (2.94)which is the equation of a circle with radius pf . If A = kI we havefk = x21 + x22 (2.95)The radius is now qf=k. If A = diag([k1; k2]) we havef = k1x21 + k2x22 (2.96)which is the equation of an ellipse. For k1 > k2 the major axis has length qf=k2 andthe minor axis has length qf=k1.For a non-diagonal A we can diagonalise it using A = Q�QT . This givesf = �1~x21 + �2~x22 (2.97)where the ellipse now lives in a new co-ordinate system given by the rotation ~x =xTQ. The major and minor axes have lengths qf=�2 and qf=�1.


