Chapter 3

Multivariate Statistics

3.1 Introduction

We discuss covariance matrices, multivariate linear regression, feature selection, prin-
cipal component analysis and singular value decomposition. See Chatfield’s book on
multivariate analysis for more details [10]. Also, a good practical introduction to the
material on regression is presented by Kleinbaum et al. [32]. More details of matrix
manipulations are available in Weisberg [64] and Strang has a great in-depth intro to
linear algebra [58]. See also relevant material in Numerical Recipes [49)].

3.2 Multivariate Linear Regression

For a multivariate linear data set, the dependent variable y; is modelled as a linear
combination of the input variables &; and an error term !

Yi = xT;w + e (3.1)

where @x; is a row vector, w is a column vector and e; is an error. The overall goodness
of fit can be assessed by the least squares cost function

E o= Y- (5:2)

where §y = x;w.

!The error term is introduced because, very often, given a particular data set it will not be
possible to find an exact linear relationship between x; and y; for every i. We therefore cannot
directly estimate the weights as X'y
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3.2.1 Estimating the weights

The least squares cost function can be written in matrix notation as
E=(y—Xw'(y - Xw) (3.3)

where X is an N-by-p matrix whose rows are made up of different input vectors and
y is a vector of targets. The weight vector that minimises this cost function can be
calculated by setting the first derivative of the cost function to zero and solving the
resulting equation.

By expanding the brackets and collecting terms (using the matrix identity (AB)? =
BT A" we get

F=y"y —2wXTy —w' X" Xw (3.4)
The derivative with respect to w is 2
OF
o —2X"y —2X" Xw (3.5)

Equating this derivative to zero gives
(XTX)w = X"y (3.6)
which, in regression analysis, is known as the 'normal equation’. Hence,
w=(X"X)"'X"y (3.7)

This is the general solution for multivariate linear regression 3. It is a unique minimum
of the least squares error function (ie. this is the only solution).

Once the weights have been estimated we can then estimate the error or noise variance

from
1 N

o, = N_1 Z(yz — ;) (3.8)

3.2.2 Understanding the solution

If the inputs are zero mean then the input covariance matrix multiplied by N-1 is
C,=X"X (3.9)
The weights can therefore be written as
w=C;'X"y (3.10)

ie. the inverse covariance matrix times the inner products of the inputs with the
output (the ith weight will involve the inner product of the ith input with the output).

2From matrix calculus [37] we know that the derivative of ¢! Be with respect to ¢ is (B + B)e.
Also we note that X7 X is symmetric.

3In practice we can use the equivalent expression @ = X "'y where X is the pseudo-inverse
[58]. This method is related to Singular Value Decomposition and is discussed later.



Single input

For a single input C;' = 1/(N —1)o2 and X'y = (N — 1)o,,,. Hence

x

~ Oz1y
w1 = 5
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(3.11)

This is ezactly the same as the estimate for the slope in linear regression (first lecture).

This is re-assuring.

Uncorrelated inputs

For two uncorrelated inputs

C’;lzlo L

We also have
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The two weights are therefore
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Again, these solutions are the same as for the univariate linear regression case.

General case

(3.12)

(3.13)

(3.14)

If the inputs are correlated then a coupling is introduced in the estimates of the

weights; weight 1 becomes a function of o0,, as well as o,
9 -1
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3.2.3 Feature selection

(3.15)

Some of the inputs in a linear regression model may be very useful in predicting the
output. Others, not so. So how do we find which inputs or features are useful 7 This

problem is known as feature selection.



The problem is tackled by looking at the coefficients of each input (ie. the weights) and
seeing if they are significantly non-zero. The procedure is identical to that described
for univariate linear regression.

The only added difficulty is that we have more inputs and more weights, but the
procedure is basically the same. Firstly, we have to estimate the variance on each
weight. This is done in the next section. We then compare each weight to zero using
a t-test.

The weight covariance matrix

Different instantiations of target noise will generate different estimated weight vectors
according to equation 3.7. For the case of Gaussian noise we do not actually have
to compute the weights on many instantiations of the target noise and then compute
the sample covariance 4; the corresponding weight covariance matrix is given by the
equation

E=Var((XTX) ' X"y) (3.16)

In the appendix we show that this can be evaluated as

T =0(XTX)™ (3.17)

The correlation in the inputs introduces a correlation in the weights; for uncorrelated
inputs the weights will be uncorrelated. The variance of the jth weight, wj;, is then
given by the jth diagonal entry in the covariance matrix

ol =X, (3.18)

J

To see if a weight is significantly non-zero we then compute CDF(t) (the cumula-
tive density function; see earlier lecture) where ¢ = w;/o,, and if it is above some
threshold, say p = 0.05, the corresponding feature is removed.

Note that this procedure, which is based on a t-test, is exactly equivalent to a similar
procedure based on a partial F-test (see, for example, [32] page 128).

If we do remove a weight then we must recompute all the other weights (and variances)
before deciding whether or not the other weights are significantly non-zero. This
usually proceeds in a stepwise manner where we start with a large number of features
and reduce them as necessary (stepwise backward selection) or gradually build up the
number of features (stepwise forward selection) [32].

Note that, if the weights were uncorrelated we could do feature selection in a single
step; we would not have to recompute weight values after each weight removal. This
provides one motivation for the use of orthogonal transforms in which the weights are
uncorrelated. Such transforms include Fourier and Wavelet transforms as we shall
see in later lectures.

“But this type of procedure is the basis of bootstrap estimates of parameter variances. See [17].



3.2.4 Example

Suppose we wish to predict a time series x3 from two other time series 1 and z5. We
can do this with the following regression model °

T3 = Wy + W1T1 + Walo (319)

and the weights can be found using the previous formulae. To cope with the constant,
wy, we augment the X vector with an additional column of 1’s.

We analyse data having covariance matrix C; and mean vector m, (see equations 2.15
and 2.14 in an earlier lecture). N = 50 data points were generated and are shown in
Figure 3.1. The weights were then estimated from equation 3.7 as

w = [’U)l, Wwa, ’U)()]T (320)
[1.7906, —0.0554, 0.6293]T

Note that w; is much bigger than w,. The weight covariance matrix was estimated
from equation B.27 as

0.0267  0.0041  —0.4197
¥ = | 00041 00506 —0.9174 (3.21)
—0.4197 —0.9174 21.2066

giving o, = 0.1634 and o, = 0.2249. The corresponding t-statistics are ¢; = 10.96
and t, = —0.2464 giving p-values of 107! and 0.4032. This indicates that the first
weight is significantly different from zero but the second weight is not ie. z; is a good
predictor of x3 but x5 is not. We can therefore remove x5 from our regression model.

Question: But what does linear regression tell us about the data that the correla-
tion/covariance matrix does’nt 7 Answer: Partial correlations.

3.2.5 Partial Correlation

Remember (see eg. equation 1.36 from lecture 1), the square of the correlation coef-
ficient between two variables x; and y is given by

oy —0e(r1)
e, =2 g (3.22)
y

where oZ(z,) is the variance of the errors from using a linear regression model based

on x; to predict y. Writing o7 = 07(0), ie. the error with no predictive variables

, _ 20) — o¥()
w0

(3.23)

>Strictly, we can only apply this model if the samples within each time series are independent (see
later). To make them independent we can randomize the time index thus removing any correlation
between lagged samples. We therefore end up with a random variables rather than time series.
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Figure 3.1: Three time series having the correlation matriz Cy and mean vector m,
shown in the text. The dotted line shows the value of the third time series as predicted
from the other two using a regression model.

When we have a second predictive variable x5, the square of the partial correlation
between x5 and y is defined as

2 o Uf(xl) - 03(331:«’172)

ra;Qy‘:El - 0_2(331)
e

(3.24)

where o2(zy,x3) is the variance of the errors from the regression model based on
and x,. It’s the extra proportion of variance in y explained by x,. It’s different to
rfay because x5 may be correlated to x; which itself explains some of the variance in
y. After controlling for this, the resulting proportionate reduction in variance is given
by rimxl. More generally, we can define pth order partial correlations which are the
correlations between two variables after controlling for p variables.

The sign of the partial correlation is given by the sign of the corresponding regression
coefficient.

Relation to regression coefficients

Partial correlations are to regression coefficients what the correlation is to the slope
in univariate linear regression. If the partial correlation is significantly non-zero then
the corresponding regression coefficient will also be. And vice-versa.



3.3 Principal Component Analysis

Given a set of data vectors {x,} we can construct a covariance matrix

1 _ \T
C = N Xn:(a:n - Z)(x, — T) (3.25)

or, if we construct a matrix X with rows equal to x,, — & then

1
C = NXTX (3.26)

Because covariance matrices are real and symmetric we can apply the spectral theorem
C = QAQ" (3.27)

If the eigenvectors (columns of Q) are normalised to unit length, they constitute
an orthonormal basis. If the eigenvalues are then ordered in magnitude such that
A1 > Ay > ... > Ay then the decomposition is known as Principal Component Analysis
(PCA). The projection of a data point @, onto the principal components is

Yy, =Q'z, (3.28)
The mean projection is
T=Q'z (3.29)
The covariance of the projections is given by the matrix
1 _ _
Cy=5 2 W~ D, —9)" (3.30)

Substituting in the previous two expressions gives
1 _ _
C, = + 2 Q" (@~ )@ —2)'Q (331)

Q'CQ
= A
where A is the diagonal eigenvalue matrix with entries Ay (07 = );). This shows
that the variance of the kth projection is given by the kth eigenvalue. Moreover, it

says that the projections are uncorrelated. PCA may therefore be viewed as a linear
transform

y=Q'x (3.32)

which produces uncorrelated data.

3.3.1 The Multivariate Gaussian Density

In d dimensions the general multivariate normal probability density can be written

p(e) = Ww exp <—%(a: — &) C (e - z»)) (3.33)



where the mean & is a d-dimensional vector, C is a d x d covariance matrix, and |C|
denotes the determinant of C. Because the determinant of a matrix is the product
of its eigenvalues then for covariance matrices, where the eigenvalues correspond to
variances, the determinant is a single number which represents the total volume of
variance. The quantity

M(z) = (z — 7)7C Yz — 7) (3.34)

which appears in the exponent is called the Mahalanobis distance from x to &. This
is the equation for an ellipse (see earlier). The directions of the axes are given by the
principal components and the lengths are given by o; M (x) where o; is the standard
deviation of the data in the ith direction (see earlier section on quadratic forms and
note that \; = 0?). We can therefore map a given probability p(x) to a Mahalanobis
distance (using equation E.9) and from that plot the ellipse axes. See the figure in
the appendix.

3.3.2 Dimensionality Reduction

Given that the eigenvalues in PCA are ordered and that they correspond to the vari-
ance of the data in orthogonal directions then it would seem plausible that a reason-
able data reconstruction could be obtained from just a few of the larger components
and this is indeed the case.

If we retain only a subset M < d of the basis vectors then a data point can be
reconstructed as
M d
&, =Y wpgp+ Y. by (3.35)
k=1 k=M-+1
where the by, are constants (they don’t depend on n) and, as we have seen, wi = gt x,,.
If we keep only the projections wy and the associated eigenvectors g, we have reduced

the dimension of our data set from d to M. Now, given that the actual data point
can be written as

d
T, = Z Wi gy (3.36)
k=1

where the sum is over all d components (not just M) then the reconstruction error is

d
T, — &, = Y (wp—b)g, (3.37)

k=M+1

It is the cost of replacing the variable w} by a constant b;. The reconstruction error
averaged over the whole data set is

1 N
By = Y llen — &l (3.38)
n=1
1 N d )
= NZ Z (wi — bk)



where the g,’s disappear because q..q, = 1. We can minimise Ej; by setting

1 N
b = ﬁg (3.39)
T

T
k

I
Q

which is the mean projection in direction gq,. The error is therefore

By = v Y [d@-a)] (3.40)

The reconstruction error is therefore minimised, for a given M, by throwing away the
d — M smallest components, as you would expect. The corresponding error is just
the sum of the corresponding eigenvalues.

3.3.3 Singular Value Decomposition

The eigenvalue-eigenvector factorisation (see equation 2.85)

A=QAQ" (3.41)

applies to square symmetric matrices only. There is an equivalent factorisation for
rectangular matrices, having N rows and d columns, called Singular Value Decompo-
sition (SVD)

A=Q,DQ} (3.42)
where Q7 is an orthonormal N-by-/N matrix, Qs is an orthonormal d-by-d matrix, D

is a diagonal matrix of dimension N-by-d and the kth diagonal entry in D is known
as the kth singular value, oy.

If we substitute the SVD of A into AT A, after some rearranging, we get
ATA = Q,D'DQ} (3.43)

which is of the form A = QAQ" where @ = Q, and A = D" D. This shows that
the columns of @, contain the eigenvectors of AT A and that D contains the square
roots of the corresponding eigenvalues. Similarly, by substituting the SVD of A into
AAT we can show that the columns of @, are the eigenvectors of AA”.



Relation to PCA

Given a data matrix X constructed as before (see PCA section), except that the
matrix is scaled by a normalisation factor /1/N, then X" X is equivalent to the
covariance matrix C. If we therefore decompose X using SVD, the principal com-
ponents will apear in @, and the square roots of the corresponding eigenvalues will
appear in D.

Therefore we can implement PCA in one of two ways (i) compute the covariance ma-
trix and perform an eigendecomposition or (ii) use SVD directly on the (normalised)
data matrix.

The Pseudo-Inverse

Given the SVD of a matrix
A=Q,DQ} (3.44)

the Pseudo-Inverse of A is defined as
A" =Q,D* QY (3.45)

where DV is a d-by-N matrix with diagonal entries 1/0,1/0,...,1/04. The matrix

D™ can be computed as
D" =(D"D)'D" (3.46)

The Pseudo-Inverse is used in the solution of the multivariate linear regression prob-

lem (see equation 3.7)
w=(XTX)' X"y (3.47)

We can substitute the SVD for X into the above expression in a series of steps to
give

X'X =Q,D"'DQ} (3.48)
The inverse is
(X"X)"'=Q,(D'D)'Q; (3.49)
Hence
(X"X)"'X" = Q,(D"D)"' D" Q¥ (3.50)
Substituting for D gives
(X"X)"'X" = Q,D'Q! (3.51)
— X+

Therefore, the linear regression weights can be computed by projecting the targets
onto the Pseudo-Inverse of the input data matrix

w=X"y (3.52)



