Chapter 9

Nonlinear Methods

9.1 Introduction

This chapter covers entropy, mutual information, correlation sums, source entropy
and nonlinear prediction.

To motivate the use of nonlinear methods we give a simple example of where other
methods fail. Our example is the logistic map

Tir1 = Rl‘t(l — .I't) (91)

which is nonlinear because of the z? term. Different values of R are known to produce
different dynamics; R=3.5 and 3.6 produce periodic dynamics and R=4 produces
chaotic dynamics. A ‘chaotic’ system is a low-dimensional nonlinear determnistic
system which is sensitive to initial conditions. Because of the ‘folding’ in the logistic
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Figure 9.1: A plot of xyy1 versus x; for logistic map function xyq = 4x (1 — xy). If
i1 = 0.7, then what was xy ¢ Was it 0.23 or 0.77 ?

map, for example, the system quickly forgets where its been before. Also, a slight
change in the initial conditions soon leads to a big change in the subsequent state of
the system.
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For R = 4 the Power Spectral Density (PSD) is flat which is reminiscent of white
noise (the corresponding autocovariance is only signficiantly non-zero at zero lag).
Application of autoregressive models yields prediction errors with the same variance
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Figure 9.2: (a) Time series from the logistic map (R =4) and (b) its Power Spectral
Density

as the signal itself; ie. they are unable to detect any deterministic component in the
signal. Thus, the application of linear methods would lead us to mistakenly conclude
that the signal is purely stochastic when in fact it is purely deterministic.

If we apply nonlinear methods, however, then the underlying determinism can be
discovered. This holds the promise of short-term predictability when, under the
hypothesis of linear dynamics the system was considered to be unpredictable.

Also most early claims that physiological systems were chaotic have since been dis-
credited. What is a more plausible working hypothesis, however, is that whilst these
systems may not be nonlinear and deterministic they may very well be nonlinear and
stochastic, and there is much evidence for this [23].

We look at methods for detecting nonlinear dependencies such as the mutual informa-
tion and marginal mutual information and methods for exploiting these dependencies
for purposes of prediction, such as local-linear methods and neural networks.

9.2 Lyapunov Exponents

A defining characteristic of a chaotic system is sensitivity to initial conditions. Points
which are near at time 0 become exponentially far apart at time ¢. This can be

captured in the relation
dy = doe™ (9-2)
where dj is the initial distance, d; is the distance at time ¢ and A is the Lyapunov

exponent. Re-arranging the above equation gives

: dy
A= tliglo log & (9.3)
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Table 9.1: Relation of sign of Lyaponov exponents to type of attractor.

Negative A’s indicate convergence (damping) and positive A’s indicate divergence.
Exponents equal to zero indicate cycles.

If the points are in a d-dimensional embedding space then neighboring points will
initially be contained in a small multidimensional sphere. As time progresses this
sphere will be stretched to form an ellipsoid with the length of the ith principal axis
at time t given by d;(t). There is a corresponding spectrum of Lyapunov exponents;
one for each axis. If we consider a 3-dimensional system, for example, then the
relation between the signs of the Lyapunov exponents and the type of attractors is
shown in Table 9.2. See [41] for more details.

The exponents can be calculate from a data set using the relation
: di(t)
Ai = lim log o (9.4)

Lyapunov exponents can be calculated from box-counting algorithms or from pre-
dictive models. In the last approach, for example, we can fit a neural network to
the data, calculate the networks Jacobian matrix J (the derivative of the network’s
output with respect to its inputs - see Bishop [3] for details) and find A; from an
eigendecomposition of J ([30] page 174). See also [13].

9.3 Measures of Information

See earlier lecture on Information Theory.

9.3.1 Continuous variables

In order to apply information theory to continuous variables we can partition con-
tinuous space into a number of discrete bins !. If we use M bins and observe n;
occurences in the ¢th bin then the probability of the value x; occuring is

U2
p(z;) = N (9.5)
L An alternative is to use a parametric model to estimate the probability density p(x) from which
H(xz) can be calculated. The entropy of such a continuous variable is known as the differential
entropy [12].




where N is the total number of samples.
As we increase the number of bins, so the entropy increases.

If we have two continuous variables z and y and partition the two-dimensional space
into bins where the number of levels in each dimension is M then the probability of
a vector is given by

nij
N
where there are n;; samples in the 7, jth bin and a total of N samples. The total
number of bins will be M?2. The entropy of the above distribution is the joint entropy
(see equation 4.5) and the mutual information can be calculated from 4.15. In general,
these discretization procedures can be applied to d variables. But because the number
of bins is M?¢ we need a lot of data to estimate the probabilities. As an alternative
to box-counting algorithms we could use tree search algorithms or correlation sum
methods (see later). See Pineda and Sommerer [48] for a review.

p(xi, yi) = (9.6)

9.3.2 Measures of Information for Time Series

If our d continuous variables have come from a d-dimensional embedding of a time
series eg.

;= [371', Ti—1y--+) ﬂfi—d+1] (9-7)

and we partition the d-dimensional space into bins where the number of levels in each
dimension is M then the probability of a vector is given by
1
J=—" 9.8

pa(i) N—-d+1 (98)
where there are n; samples in the ith bin and a total of N — d + 1 samples. The
total number of bins will be M¢ so we need long time series to get good probability
estimates.

Given a signal that has a range V' the bin width will be » = V/M. The entropy of
the above distribution is the joint entropy

M

Hy(r,r) = = pa(®;) log pg(x;) (9.9)

i=1
where 7 is the lag between samples. The mutual information, defined for d = 2, is
I(r,r) = 2H(1,7) — Hy(1,7) (9.10)

It tells us about the nonlinear (or linear) correlation between x; , and z; and by
varing 7 we can plot an autocorrelation function. Figure 9.3 shows a plot of this
for the logistic map time series. The entropies were calculated using a correlation
sum method (see later) rather than a box-counting method. The mutual information
reduces from about 4 at a lag of zero to nearly zero after 5 time steps. This makes
sense as with the logistic map we lose about 1 bit of information per iteration. The
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Figure 9.3: Mutual Information, I(7,r) versus lag T for Logistic Map data. A reso-
lution r = 0.10, was used where o, is the standard deviation of the data

folding of the attractor acts like a switch and we lose about 1 bit of information per
switch press.

For general d we can define the joint mutual information as the difference between
the scalar entropies and the joint entropy

Iy(1,7) = dH\(1,7) — Hy(T,7) (9.11)

The joint mutual information measures the amount of information about x; contained
independently in the previous d samples ie. if we were to build a predictor, each of
the previous d samples could be used but no interaction terms would be allowed.

9.3.3 Marginal Mutual Information

The joint mutual information measures the difference between the measured joint
entropy of d variables and their joint entropy as if they were independent. For the
special case d = 2 it therefore measures the amount of information about z; contained
in the previous sample z; .. For d = 3 and above, however, the corresponding
measure is the marginal mutual information (or incremental mutual information or
redundancy)

Ry(m,7) = I4(T,7) = Lg_1(T,T) (9.12)

We can re-write this in terms of joint entropies
Ry(7,r) = Hy(1,7) + Hy_1(7,7) — Hy(T,7) (9.13)

Here the effect of the d — 1 previous variables is considered jointly (in the second
term) whereas in the joint mutual information they were considered independently.
The marginal mutual information, R,(7, ) measures the amount of information about
x; contained in the previous d samples. For d = 2 the marginal mutual information
reduces to the mutual information.



9.3.4 Source Entropy

The Approximate Source Entropy statistics [47] are defined as
ApEn(d,r,N) = Hy(r,7) — Hg_1(T,7) (9.14)

and

ApEn(d,r) = [Hy(T,7) — Hy1(7,7)] (9.15)

lim
N—00
They are approximations to the source entropy or KS-entropy (from Mr. Kolmogorov
and Mr Sinai) which is defined as

= lim lim ApF 1
his(T) . am Ap n(d,r) (9.16)
Now, because of the limits, the K'S — Entropy can never be estimated experimentally
(and, besides, it is only really of interest for purely deterministic sytems). But ApEn
can, and as long as the embedding dimension is large enough and the resolution fine
enough it will provide a good approximation. That is,

his(T) =~ ApEn(d,r) (9.17)

Moreover, we can relate it to the marginal mutual information. If we substitute the
above relation into equation 9.13 we get

Ry(7,7r) = Hy(7,7) — hgs(T) (9.18)
Given that (see Weigend [63] page 50, or equation 9.42 later on)
hks(T) = This (9.19)

then we have
Ry(7,r) = Hy(1,7) — This (9.20)

Thus hgg is the gradient of a plot of Ry(7,7) versus 7. The d previous samples
contain an amount of information R4(7,7) about the present sample which decreases
as the time lag 7 is increased. The rate of decrease is governed by the source entropy.

So, at a time lag of zero, the second term on the right is zero. The marginal mutual
information is equal to the scalar entropy of the signal and the signal is completely
predictable.

At each additional time step our predictive accuracy (which is governed by the
marginal mutual information) loses hyg bits. After a certain number of time steps,
Py, the marginal mutual information will fall to zero and all prediction accuracy will
be lost.

In practice, zero prediction accuracy occurs when the the variance of the prediction
error equals the variance of the signal o2. Given a prediction accuracy at zero lag of
e (equal to the resolution of the signal) after p; time steps the accuracy will be

Op = €o2PthEs (9.21)



Taking logs (to the base 2) gives
_ log(%/eo)

;=

9.22
P (9.22)
Therefore we must know the initial conditions exponentially more accurately (ex-
ponential decrease in eg) to get a linear increase of the prediction horizon p;. By
measuring hxg we can estimate the prediction horizon. Conversely, by measuring the
prediction horizon, from a predictive model (see later), we can estimate hyg.

9.3.5 Correlation Sums

As an alternative to box-counting algorithms we can use correlation sums to estimate
the joint entropy (and therefore the mutual information and the source entropy). If
we embed a time series in d-dimensional lag space such that

T = [T, Ti1, .0, Tiay1) (9.23)
then we can measure the maximum distance between two points as
| — | = max{w; g1 — 25k} (9.24)

ie. look along the k out of d dimensions and pick the biggest distance. If we define
the step function (or Heaviside function) as h(x) = 1 for x > 0 and h(z) = 0 for
x < 0 then the indicator function

I (xj,x;) = h(r — |, — x;]) (9.25)

is 1 if the maximum distance between two points is less than r, and zero otherwise.
We can now define the pointwise correlation sum as

1 N—d+1

Cf(”:m ]Zl I(z;, ;) (9.26)

which is the proportion of points within distance r of the point ;. As such this
provides a good estimate for the probability density at point ¢

pa(x;) = C(r) (9.27)

The joint entropy can be approximated as the average log of this inverse probability
[16]
_1 N—d+1
H = — 1 i 9.28
)= Fogrr L leenda) (9.25)

Note that the sum is now over ¢ whereas before it was over j. This method was
used to calculate the mutual information in the earlier example. Now the probability
pa(x;) can be decomposed as

p(xﬂle,x?, "Jx?_l)p(levx?v "Jx;'i_l)
d

= p(‘rﬂlea .Z'?, A3 xiil)pd—l(mi)



Substituting this into the definitions for the joint entropies gives an expression for
the approximate source entropy

_1 N—d+1
ApEn(d,r,N) = Nod+1 > logp(ad|af, af, .. af ") (9.30)
i=1

Therefore, the approximate source entropy can be interpreted as the average log of a
conditional probability; the probability that points are within distance 7 in embed-
ding dimension d given that they were within this distance in embedding dimension
d—1. Application of ApEn to the logistic map shows that it is able to detect the dif-
ference between the ‘simpler’ periodic regime and the more complex ‘chaotic’ regime.
Application of ApEn to physiological signals is discussed in [23, 52, 47]. See Pincus

R  ApEn
3.5 0.0

3.6 0.229
3.8 0.425

Table 9.2: Approximate entropy of the logistic map time series with d =3, N = 300,
r = 0.10,. Increasing R increases the complexity of the time series which is reflected
in higher values of ApEn.

[47] for a discussion on how to select r.

9.4 Nonlinear Prediction

Given a time series x, where n = 1..N we wish to predict future values of the series
ie xyi1, Ty4o ete. If we view the time series up to time N as a fixed data set D then
this can be achieved by inferring a statistical model from the data and using this
model to predict future values of the signal.

This could, for example, be achieved by an autoregressive model which predicts the
next value in the time series eg x ;1 as a linear combination of the p previous values

-’IA?N-H =Ty +WerN_1+ ...+ WETN—k+1 (931)

where wy, are the autoregressive coefficients (see earlier lecture). These can be ‘learnt’
by tuning the model to the data set D.

This same process can be repeated but with a more powerful class of predictive
models; nonlinear predictors. These replace the linear function in the above equation
with a nonlinear function

i‘N+1 = f(’lD,.’I?N,.’I?N_l,..,.’I?N_k+1) (932)

having parameters w. Nonlinear predictors may be categorized into two broad classes
(i) Local methods and (ii) Global methods.



9.4.1 Local methods

Given a data set of N embedded points D = {x,,} we can make a nonlinear prediction
of a future time series value ;7 from the embedded data point x, as follows. Firstly,
we find the k-nearest neighbours amongst D. That is, the k£ points in D which
minimise the distance

|20 — 2| (9.33)

Put these points, &, in rows of a matrix X and put the corresponding "future’ values
Zpor into the vector Y. We now fit a linear model

Y =wX (9.34)

in the usual manner
w=(XTX)"'XTY (9.35)

and we can then use it to make the prediction
Tpir = WX, (9.36)

This constitutes a local autoregressive model since only points in the neighbourhood
of the predicting region have been used. As k — N we get the usual (global) autore-
gresive model.

A plot of prediction error versus k shows whether a local linear model (which is
globally nonlinear) or a global linear model is appropriate. These plots are known
as Deterministic versus Stochastic (DVS) plots [9]. For stochastic linear dynamics
k — N gives the smallest error and for deterministic nonlinear dynamics k — 2d + 1,
where d is the dimension of the attractor, gives the smallest error. Physiological data,
such as heart rate or EEG, is in-between; it varies from nonlinear-stochastic to linear
stochastic.

A cautionary note in the interpretation of these plots is due to the issue of stationarity.
This is because a nonstationary linear system may be viewed as a stationary nonlinear
system. The two viewpoints are both valid descriptions of the same dynamics.
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Figure 9.4: (a) Intensity pulsations of a laser and (b) heart rate.
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Figure 9.5: Plots of (log) prediction error, E, versus (log) neighbourhood size, k, for
(a) laser data and (b) heart-rate data. The minimum error points are at (a) logk = 3,
k=21 and (b) logk = 4.5, k = 91. These indicate that (a) the laser data is nonlinear

and deterministic and (b) the heart-rate data is nonlinear and stochastic.
Denoising

Not only can local methods be used for nonlinear prediction but also for nonlinear
denoising. If, for example, the above linear prediction step is replaced by an SVD
step we have a local-SVD denoising algorithm. This can also be used in combination
with local prediction methods - see Sauer et. al in [63].

9.4.2 Global methods

Probably the most powerful nonlinear predictor is a Neural Network and the most
commonly used network is the Multi-Layer Perceptron (MLP). This consists of a
number of layers of processing elements (usually only two). The first layer consists of
a number of linear transforms which are then operated on by a nonlinearity. There
are 7 = 1..p such functions each called a hidden unit

d
hj = f(z wijl"n—i) (9-37)
i=1
where 7 sums over the embedding and f is usually a sigmoidal nonlinearity
1
= 9.38
fl@) =1 (9.38)

The output of the second layer gives the networks prediction which is a linear com-
bination of hidden unit responses

d
i'n—i—T == Zvjhj (939)
j=p

Given a data set of of embedded vectors x, and corresponding future values z,.r
(often T' = 1) the parameters of the model can be set so as to minimise the prediction



error

N
E =) (Toir — Znyr)’ (9.40)
n=1

This can be achieved by various non-linear optimisation algorithms. The number of
hidden units can be chosen according to various model order selection criterion. See
Bishop [3] for details.

Application of neural nets to some time series, eg. the laser data, shows them to be
better predictors than linear methods by several orders of magnitude [63].

Other global nonlinear methods involve the use of polynomial functions or Volterra
series. Predictions are formed from linear combinations of quadratic and higher order
terms eg.

Tt = W1 Ty + Wk + W3TpTp 1 + WyTpy 1 + ... (9.41)

The number and order of such functions can be found empirically or from prior
knowledge of the possible interactions.

9.5 Discusion

A nonlinear dynamical system, with or without added stochastic noise, can thus be
characterised by a number of measures: (i) source entropy, (ii) prediction error and
(iii) Lyapunov exponents and there are relations between them. There are also many
more measures that we have'nt discussed. Most of these are relevant to nonlinear
deterministic systems rather than nonlinear stochastic ones. (the most prominent
being correlation dimension [24]).

To use them to, say, differentiate between different physiological states or experimen-
tal conditions requires not just estimating the measures themselves but also providing
error bars so we can apply significance tests.

For these ‘nonlinear’ statistics, these most often take the form of Monte-Carlo esti-
mates. Given a particular time series we compute our measure of interest, say ApEn.
We then shuffle the data and recompute the statistic. If we do this for a number of
shuffles then where on the resulting PDF our original value falls is the significance
value.

The sum of the positive Lyapunov exponents is equal to the source entropy

hgs = > A (9.42)

Ai>0

This is known as Pesin’s Identity 2. This completes the circle: Source Entropy —
Nonlinear Prediction — Lyapunov Exponents — Source Entropy etc.

2In fact, it is an upper bound on the source entropy [30]



