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Figure 6.1: Signal x; (top) and x5 (bottom). The bottom trace leads the top trace
by 5 samples. Or we may say it lags the top by -5 samples.
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Figure 6.2: Autocorrelation function for x;. Notice the negative correlation at lag 20

and positive correlation at lag 40. Can you see from Figure 6.1 why these should occur
?



6.3 Autoregressive models

An autoregressive (AR) model predicts the value of a time series from previous values.
A pth order AR model is defined as

p
Ty = Z.’L‘t_iali + e (63)

=1

where a; are the AR coefficients and e; is the prediction error. These errors are
assumed to be Gaussian with zero-mean and variance o2. It is also possible to include
an extra parameter ag to soak up the mean value of the time series. Alternatively, we
can first subtract the mean from the data and then apply the zero-mean AR model
described above. We would also subtract any trend from the data (such as a linear
or exponential increase) as the AR model assumes stationarity (see later).

The above expression shows the relation for a single time step. To show the relation
for all time steps we can use matrix notation.

We can write the AR model in matrix form by making use of the embedding matrix,
M, and by writing the signal and AR coefficients as vectors. We now illustrate this
for p = 4. This gives

Ty T3 o) T
Ts Ty T3 o)
M = (6.4)

IN-1 IN-2 IN-3 IN-4

We can also write the AR coefficients as a vector a = [ay, as, as, as]?, the errors as a
vector e = [es, €, ..., ex]t and the signal itself as a vector X = [z5, Tg, ..., zx|T. This
gives

Ts Ty T3 o) oo a1 €5

Te Ts Ty xs3 T2 a2 €6
.. .. .. .. as ..

TN IN-1 IN-2 IN-3 IN-4 Q4 EN

which can be compactly written as
X =Ma+e (6.6)

The AR model is therefore a special case of the multivariate regression model (com-
pare the above equation to that given in the second lecture). The AR coefficients can
therefore be computed from the equation

a=(M"M)""M"X (6.7)
The AR predictions can then be computed as the vector

X =Ma (6.8)



and the error vector is then e = X — X. The variance of the noise is then calculated
as the variance of the error vector.

To illustrate this process we analyse our data set using an AR(4) model. The AR
coefficients were estimated to be

a = [1.46, —1.08,0.60, —0.186]" (6.9)

and the AR predictions are shown in Figure 6.3. The noise variance was estimated to
be 02 = 0.079 which corresponds to a standard deviation of 0.28. The variance of the
original time series was 0.3882 giving a signal to noise ratio of (0.3882—0.079)/0.079 =
3.93.

6.3.1 Random walks

If p=1 and a; = 1 then the AR model reduces to a random walk model, an example
of which is shown in Figure 6.4.

6.3.2 Relation to autocorrelation

The autoregressive model can be written as
Ty =1 T1 + Qoo + ... + QT + € (6.10)
If we multiply both sides by z;_, we get
Ty = QT4 Ly + QT oTp—f + .. + QpTi_pTi_f + €T (6.11)

If we now sum over ¢ and divide by N — 1 and assume that the signal is zero mean
(if it isn’t we can easily make it so, just by subtracting the mean value from every
sample) the above equation can be re-written in terms of covariances at different lags

Ouz(k) = 01045 (k — 1) + ag045(k — 2) + ... + apoue(k — p) + Ocs (6.12)

where the last term o, , is the covariance between the noise and the signal. But as the
noise is assumed to be independent from the signal 0., = 0. If we now divide every
term by the signal variance we get a relation between the correlations at different lags

Tee(k) = a1rge(k — 1) + agrye (b — 2) + ... + apryp(k — p) (6.13)

This holds for all lags. For an AR(p) model we can write this relation out for the
first p lags. For p =4

Ta:xgég Txxg(l); Txxg(;)l) Txxg_fg Ta:xg_gg ay
@) | T @) ) ) re=1) | | a (6.14)
Tz (4) Tex(3) Tex(2)  Tae(l)  72(0) ay



15

~0.5} e .

20 40 60 80 100

-1r 4

_15 1 1 1 1
0 20 40 60 80 100

(b) !

Figure 6.3: (a) Original signal (solid line), X, and predictions (dotted line), X, from
an AR(4) model and (b) the prediction errors, e. Notice that the variance of the
errors 1s much less than that of the original signal.
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Figure 6.4: A random walk.

which can be compactly written as
r = Ra (6.15)

where 7 is the autocorrelation vector and R is the autocorrelation matrix. The above
equations are known, after their discoverers, as the Yule-Walker relations. They
provide another way to estimate AR coefficients

a=R'r (6.16)

This leads to a more efficient algorithm than the general method for multivariate linear
regression (equation 6.7) because we can exploit the structure in the autocorrelation
matrix. By noting that r,,(k) = r.(—k) we can rewrite the correlation matrix as

7O
B=1.70) ra) 1 r(l) (647

Txx(g) me(2) Txx(l) 1

Because this matrix is both symmetric and a Toeplitz matrix (the terms along any
diagonal are the same) we can use a recursive estimation technique known as the
Levinson-Durbin algorithm *.

6.3.3 Relation to partial autocorrelation

The partial correlation coefficients (see lecture 2) in an AR model are known as
reflection coefficients. At lag m, the partial correlation between x;_,, and x;, is

!This algorithm actually operates on the autocovariance matrix, although some authors, eg.
Pardey et al. [45], call it the autocorrelation matrix. What we refer to as autocorrelation, they refer
to as normalised autocorrelation.



written as k,,; the mth reflection coefficient. It can be calculated as the relative

reduction in prediction error
E, .- E
kp = —/—— 6.18

" Emfl ( )
where E,, is the prediction error from an AR(m) model 2. The reflection coefficients
are to the AR coefficients what the correlation is to the slope in a univariate AR
model; if the mth reflection coefficient is significantly non-zero then so is the mth AR
coefficient. And vice-versa.

The Levinson-Durbin algorithm computes reflection coefficients as part of a recursive
algorithm for computing the AR coefficients. It finds k; and from it calculates the AR
coefficient for an AR(1) model, a;. It then computes k, and from it calculates the AR
coefficients for an AR(2) model (ay is computed afresh and a; is re-estimated from a;
for the AR(1) model - as it will be different). The algorithm continues by calculating
k. and the coefficients for AR(m) from AR(m — 1). For details, see Pardey et al.
[45].

6.3.4 Model order selection

Because an AR model is a special case of multivariate regression we can use the
same significance testing procedure (see earlier lecture) to determine the relevance or
otherwise of our variables. To recap, (i) we compute our coefficients for the AR(p)
model, (ii) we estimate the standard deviation of each AR coefficient (see second
lecture), (iii) we then perform a double-sided t-test to see if the smallest coefficient is
significantly different from zero. If it is, then we might try a larger model order and
repeat the process. If it isn’t then we might try a smaller model order. We can either
start with a model order of 1 and gradually increase it (stepwise forward selection)
or start with a very high model order and gradually decrease it (stepwise backward
selection), performing the significance test as we increase/decrease the model order.

We note that the above statistical test is identical to seeing whether or not the pth
reflection coefficient is significantly non-zero (see earlier lecture).

For our data set both SF'S and SBS, with a significance level of 0.05, chose p = 3 as
the optimal model order. For SFS, for example, when p = 4 the smallest coefficient
is ay = —0.186 and the corresponding standard deviation is o4, = 0.103. This gives
a t-statistic of ¢ = —1.8006 which under a double-sided test gives a probability of
0.0749. We therefore cannot reject the null hypothesis that the coefficient is zero at
the 0.05 significance level; the SFS procedure therefore stops at a model order of 3.

Alternatively, we could use other model selection criteria eg. the Minimum Descrip-
tion Length (MDL) (see Lecture 4)

N
MDL(p) = 5 logo2(p) + g log N (6.19)

*We have also written E,, = o2(m).
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Figure 6.5: Error variance, o(p), (solid line) and Final Prediction Error (FPE)
(dotted line) versus AR model order, p.

Another example is the Final Prediction Error

FPE(p) <N+p+1> 2

g LA (6:20)

where N is the number of samples and o2 (p) is the error variance for model order p.
Applying this to our data gives the results shown in Figure 6.5 showing an optimal
moder order of 3 or 4.

6.3.5 Example: Sleep EEG

As a subject falls from wakefulness into a deep sleep the EEG increases in amplitude
and decreases in the frequency of its oscillations. The optimal AR model order also
decreases indicating a decrease in complexity. Using FPE Pardey et al. show, for
example, that wakefulness, REM sleep and deep sleep have typical optimal model
orders of 6, 5 and 3 respectively. It should be noted that these are averages and the
optimal order has a high variance. Waking EEG shows the highest variance and deep
sleep the least.

6.3.6 Discussion

For a comprehensive introduction to AR modelling see Pardey at al. [45]. This paper
also contains details of other methods for estimating AR coefficients such as the
Burg algorithm, which minimises both a forwards prediction error and a backwards
prediction error.



6.4 Moving Average Models

A Moving Average (MA) model of order ¢ is defined as

q
zy = bieg; (6.21)
i=0
where e; is Gaussian random noise with zero mean and variance 2. They are a
type of FIR filter (see last lecture). These can be combined with AR models to get
Autoregressive Moving Average (ARMA) models

p q
L=y @i+ Y bieg; (6.22)
1=1 1=0

which can be described as an ARMA (p,q) model. They are a type of IIR filter (see
last lecture).

Usually, however, FIR and IIR filters have a set of fixed coefficients which have
been chosen to give the filter particular frequency characteristics. In MA or ARMA
modelling the coefficients are tuned to a particular time series so as to capture the
spectral characteristics of the underlying process.

6.5 Spectral Estimation

Autoregressive models can also be used for spectral estimation. An AR(p) model
predicts the next value in a time series as a linear combination of the p previous
values ,
Ty ==Y aps_p + e (6.23)
k=1
where a5 are the AR coeflicients and e; is IID Gaussian noise with zero mean and
variance o2.

The above equation can be solved by assuming that the solution is in the form of an
exponential

xy = 2t (6.24)
where z is, generally, a complex number. This form of solution has the property that
x,_; = 2177 effectively 27 acts as a delay operator denoting a delay of i time steps.
This allows the equation to be written

apztfp + apilzt*(Pfl) + ...+ Zt = e (625)

It can then be rewritten

t €t
= 6.26
: 1+>0 agz* ( )

Given that any complex number can be written in exponential form

z = exp(i2w fTy) (6.27)
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Figure 6.6: Power spectral estimates of two sinwaves in additive noise using (a)
Welch’s periodogram method and (b) Autoregressive spectral estimation.
where f is frequency and T} is the sampling period we can see that the frequency

domain characteristics of an AR model are given by (also see Pardey et al. [45])

_ o T
1+ P ag exp(—ik2n fT,) |2

P(f) (6.28)

An AR(p) model can provide spectral estimates with p/2 peaks; therefore if you know
how many peaks you're looking for in the spectrum you can define the AR model order.
Alternatively, AR model order estimation methods should automatically provide the
appropriate level of smoothing of the estimated spectrum.

AR spectral estimation has two distinct advantages over methods based on the pe-
riodogram (last lecture) (i) power can be estimated over a continuous range of fre-
quencies (not just at fixed intervals) and (ii) the power estimates have less variance.



