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tFigure 6.1: Signal xt (top) and xt+5 (bottom). The bottom trace leads the top traceby 5 samples. Or we may say it lags the top by -5 samples.
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Figure 6.2: Autocorrelation function for xt. Notice the negative correlation at lag 20and positive correlation at lag 40. Can you see from Figure 6.1 why these should occur?



Signal Processing Course, W.D. Penny, April 2000. 796.3 Autoregressive modelsAn autoregressive (AR) model predicts the value of a time series from previous values.A pth order AR model is de�ned asxt = pXi=1 xt�iai + et (6.3)where ai are the AR coe�cients and et is the prediction error. These errors areassumed to be Gaussian with zero-mean and variance �2e . It is also possible to includean extra parameter a0 to soak up the mean value of the time series. Alternatively, wecan �rst subtract the mean from the data and then apply the zero-mean AR modeldescribed above. We would also subtract any trend from the data (such as a linearor exponential increase) as the AR model assumes stationarity (see later).The above expression shows the relation for a single time step. To show the relationfor all time steps we can use matrix notation.We can write the AR model in matrix form by making use of the embedding matrix,M , and by writing the signal and AR coe�cients as vectors. We now illustrate thisfor p = 4. This gives M = 26664 x4 x3 x2 x1x5 x4 x3 x2:: :: :: ::xN�1 xN�2 xN�3 xN�4 37775 (6.4)We can also write the AR coe�cients as a vector a = [a1; a2; a3; a4]T , the errors as avector e = [e5; e6; :::; eN ]T and the signal itself as a vector X = [x5; x6; :::; xN ]T . Thisgives 26664 x5x6::xN 37775 = 26664 x4 x3 x2 x1x5 x4 x3 x2:: :: :: ::xN�1 xN�2 xN�3 xN�4 37775 26664 a1a2a3a4 37775+ 26664 e5e6::eN 37775 (6.5)which can be compactly written asX =Ma+ e (6.6)The AR model is therefore a special case of the multivariate regression model (com-pare the above equation to that given in the second lecture). The AR coe�cients cantherefore be computed from the equationâ = (MTM)�1MTX (6.7)The AR predictions can then be computed as the vectorX̂ =Mâ (6.8)



80 Signal Processing Course, W.D. Penny, April 2000.and the error vector is then e =X � X̂. The variance of the noise is then calculatedas the variance of the error vector.To illustrate this process we analyse our data set using an AR(4) model. The ARcoe�cients were estimated to beâ = [1:46;�1:08; 0:60;�0:186]T (6.9)and the AR predictions are shown in Figure 6.3. The noise variance was estimated tobe �2e = 0:079 which corresponds to a standard deviation of 0:28. The variance of theoriginal time series was 0:3882 giving a signal to noise ratio of (0:3882�0:079)=0:079 =3:93.6.3.1 Random walksIf p = 1 and a1 = 1 then the AR model reduces to a random walk model, an exampleof which is shown in Figure 6.4.6.3.2 Relation to autocorrelationThe autoregressive model can be written asxt = a1xt�1 + a2xt�2 + ::: + apxt�p + et (6.10)If we multiply both sides by xt�k we getxtxt�k = a1xt�1xt�k + a2xt�2xt�k + :::+ apxt�pxt�k + etxt�k (6.11)If we now sum over t and divide by N � 1 and assume that the signal is zero mean(if it isn't we can easily make it so, just by subtracting the mean value from everysample) the above equation can be re-written in terms of covariances at di�erent lags�xx(k) = a1�xx(k � 1) + a2�xx(k � 2) + :::+ ap�xx(k � p) + �e;x (6.12)where the last term �e;x is the covariance between the noise and the signal. But as thenoise is assumed to be independent from the signal �e;x = 0. If we now divide everyterm by the signal variance we get a relation between the correlations at di�erent lagsrxx(k) = a1rxx(k � 1) + a2rxx(k � 2) + :::+ aprxx(k � p) (6.13)This holds for all lags. For an AR(p) model we can write this relation out for the�rst p lags. For p = 426664 rxx(1)rxx(2)rxx(3)rxx(4) 37775 = 26664 rxx(0) rxx(�1) rxx(�2) rxx(�3)rxx(1) rxx(0) rxx(�1) rxx(�2)rxx(2) rxx(1) rxx(0) rxx(�1)rxx(3) rxx(2) rxx(1) rxx(0) 37775 26664 a1a2a3a4 37775 (6.14)
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tFigure 6.3: (a) Original signal (solid line), X, and predictions (dotted line), X̂ , froman AR(4) model and (b) the prediction errors, e. Notice that the variance of theerrors is much less than that of the original signal.
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Figure 6.4: A random walk.which can be compactly written as r = Ra (6.15)where r is the autocorrelation vector and R is the autocorrelation matrix. The aboveequations are known, after their discoverers, as the Yule-Walker relations. Theyprovide another way to estimate AR coe�cientsa = R�1r (6.16)This leads to a more e�cient algorithm than the general method for multivariate linearregression (equation 6.7) because we can exploit the structure in the autocorrelationmatrix. By noting that rxx(k) = rxx(�k) we can rewrite the correlation matrix asR = 26664 1 rxx(1) rxx(2) rxx(3)rxx(1) 1 rxx(1) rxx(2)rxx(2) rxx(1) 1 rxx(1)rxx(3) rxx(2) rxx(1) 1 37775 (6.17)Because this matrix is both symmetric and a Toeplitz matrix (the terms along anydiagonal are the same) we can use a recursive estimation technique known as theLevinson-Durbin algorithm 1.6.3.3 Relation to partial autocorrelationThe partial correlation coe�cients (see lecture 2) in an AR model are known asreection coe�cients. At lag m, the partial correlation between xt�m and xt, is1This algorithm actually operates on the autocovariance matrix, although some authors, eg.Pardey et al. [45], call it the autocorrelation matrix. What we refer to as autocorrelation, they referto as normalised autocorrelation.



Signal Processing Course, W.D. Penny, April 2000. 83written as km; the mth reection coe�cient. It can be calculated as the relativereduction in prediction error km = Em�1 � EmEm�1 (6.18)where Em is the prediction error from an AR(m) model 2. The reection coe�cientsare to the AR coe�cients what the correlation is to the slope in a univariate ARmodel; if the mth reection coe�cient is signi�cantly non-zero then so is the mth ARcoe�cient. And vice-versa.The Levinson-Durbin algorithm computes reection coe�cients as part of a recursivealgorithm for computing the AR coe�cients. It �nds k1 and from it calculates the ARcoe�cient for an AR(1) model, a1. It then computes k2 and from it calculates the ARcoe�cients for an AR(2) model (a2 is computed afresh and a1 is re-estimated from a1for the AR(1) model - as it will be di�erent). The algorithm continues by calculatingkm and the coe�cients for AR(m) from AR(m � 1). For details, see Pardey et al.[45].6.3.4 Model order selectionBecause an AR model is a special case of multivariate regression we can use thesame signi�cance testing procedure (see earlier lecture) to determine the relevance orotherwise of our variables. To recap, (i) we compute our coe�cients for the AR(p)model, (ii) we estimate the standard deviation of each AR coe�cient (see secondlecture), (iii) we then perform a double-sided t-test to see if the smallest coe�cient issigni�cantly di�erent from zero. If it is, then we might try a larger model order andrepeat the process. If it isn't then we might try a smaller model order. We can eitherstart with a model order of 1 and gradually increase it (stepwise forward selection)or start with a very high model order and gradually decrease it (stepwise backwardselection), performing the signi�cance test as we increase/decrease the model order.We note that the above statistical test is identical to seeing whether or not the pthreection coe�cient is signi�cantly non-zero (see earlier lecture).For our data set both SFS and SBS, with a signi�cance level of 0:05, chose p = 3 asthe optimal model order. For SFS, for example, when p = 4 the smallest coe�cientis a4 = �0:186 and the corresponding standard deviation is �4 = 0:103. This givesa t-statistic of t = �1:8006 which under a double-sided test gives a probability of0:0749. We therefore cannot reject the null hypothesis that the coe�cient is zero atthe 0:05 signi�cance level; the SFS procedure therefore stops at a model order of 3.Alternatively, we could use other model selection criteria eg. the Minimum Descrip-tion Length (MDL) (see Lecture 4)MDL(p) = N2 log�2e(p) + p2 logN (6.19)2We have also written Em = �2e (m).
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pFigure 6.5: Error variance, �2e(p), (solid line) and Final Prediction Error (FPE)(dotted line) versus AR model order, p.Another example is the Final Prediction ErrorFPE(p) =  N + p+ 1N � p� 1! �2e(p) (6.20)where N is the number of samples and �2e(p) is the error variance for model order p.Applying this to our data gives the results shown in Figure 6.5 showing an optimalmoder order of 3 or 4.6.3.5 Example: Sleep EEGAs a subject falls from wakefulness into a deep sleep the EEG increases in amplitudeand decreases in the frequency of its oscillations. The optimal AR model order alsodecreases indicating a decrease in complexity. Using FPE Pardey et al. show, forexample, that wakefulness, REM sleep and deep sleep have typical optimal modelorders of 6, 5 and 3 respectively. It should be noted that these are averages and theoptimal order has a high variance. Waking EEG shows the highest variance and deepsleep the least.6.3.6 DiscussionFor a comprehensive introduction to AR modelling see Pardey at al. [45]. This paperalso contains details of other methods for estimating AR coe�cients such as theBurg algorithm, which minimises both a forwards prediction error and a backwardsprediction error.



Signal Processing Course, W.D. Penny, April 2000. 856.4 Moving Average ModelsA Moving Average (MA) model of order q is de�ned asxt = qXi=0 biet�i (6.21)where et is Gaussian random noise with zero mean and variance �2e . They are atype of FIR �lter (see last lecture). These can be combined with AR models to getAutoregressive Moving Average (ARMA) modelsxt = pXi=1 aixt�i + qXi=0 biet�i (6.22)which can be described as an ARMA(p,q) model. They are a type of IIR �lter (seelast lecture).Usually, however, FIR and IIR �lters have a set of �xed coe�cients which havebeen chosen to give the �lter particular frequency characteristics. In MA or ARMAmodelling the coe�cients are tuned to a particular time series so as to capture thespectral characteristics of the underlying process.6.5 Spectral EstimationAutoregressive models can also be used for spectral estimation. An AR(p) modelpredicts the next value in a time series as a linear combination of the p previousvalues xt = � pXk=1 akxt�k + et (6.23)where ak are the AR coe�cients and et is IID Gaussian noise with zero mean andvariance �2.The above equation can be solved by assuming that the solution is in the form of anexponential xt = zt (6.24)where z is, generally, a complex number. This form of solution has the property thatxt�i = zt�i; e�ectively z�i acts as a delay operator denoting a delay of i time steps.This allows the equation to be writtenapzt�p + ap�1zt�(p�1) + :::+ zt = et (6.25)It can then be rewritten zt = et1 +Ppk=1 akz�k (6.26)Given that any complex number can be written in exponential formz = exp(i2�fTs) (6.27)
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Figure 6.6: Power spectral estimates of two sinwaves in additive noise using (a)Welch's periodogram method and (b) Autoregressive spectral estimation.where f is frequency and Ts is the sampling period we can see that the frequencydomain characteristics of an AR model are given by (also see Pardey et al. [45])P (f) = �2eTsj1 +Ppk=1 ak exp(�ik2�fTs)j2 (6.28)An AR(p) model can provide spectral estimates with p=2 peaks; therefore if you knowhow many peaks you're looking for in the spectrum you can de�ne the ARmodel order.Alternatively, AR model order estimation methods should automatically provide theappropriate level of smoothing of the estimated spectrum.AR spectral estimation has two distinct advantages over methods based on the pe-riodogram (last lecture) (i) power can be estimated over a continuous range of fre-quencies (not just at �xed intervals) and (ii) the power estimates have less variance.


