
Chapter 24: Variational Bayes

W. Penny, S. Kiebel and K. Friston

April 13, 2006

Introduction

Bayesian inference can be implemented for arbitrary probabilistic models us-
ing Markov Chain Monte Carlo (MCMC) [7]. But MCMC is computationally
intensive and so not practical for most brain imaging applications. This chap-
ter describes an alternative framework called ‘Variational Bayes (VB)’ which
is computationally efficient and can be applied to a large class of probabilistic
models [27].

The VB approach, also known as ‘Ensemble Learning’, takes its name from
Feynmann’s variational free energy method developed in statistical physics. VB
is a development from the machine learning community [23, 10] and has been
applied in a variety of statistical and signal processing domains [16, 3, 9, 27]. It is
now also widely used in the analysis of neuroimaging data [28, 21, 22, 25, 26, 6].

This chapter is structured as follows. We describe the fundamental relation-
ship between model evidence, free energy and Kullback-Liebler (KL) divergence
that lies at the heart of VB. Before this we review the salient properties of
the KL-divergence. We then describe how VB learning delivers a factorised,
minimum KL-divergence approximation to the true posterior density in which
learning is driven by an explicit minimisation of the free energy. The theoretical
section is completed by relating VB to Laplace approximations and describing
how the free energy can also be used as a surrogate for the model evidence,
allowing for Bayesian model comparison. The results section then describes
simulation studies using models of fMRI data [21]. These are based on a Gen-
eral Linear Model with Auto-Regressive errors, or GLM-AR model.

Theory

In what follows we use upper-case letters to denote matrices and lower-case to
denote vectors. N(m,Σ) denotes a uni/multivariate Gaussian with mean m and
variance/covariance Σ. XT denotes the matrix transpose and log x denotes the
natural logarithm.

Kullback-Liebler Divergence

For densities q(θ) and p(θ) the Relative Entropy or Kullback-Liebler (KL) di-
vergence from q to p is [5]

KL[q||p] =
∫

q(θ) log
q(θ)
p(θ)

dθ (1)
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The KL-divergence satisfies the Gibb’s inequality [14]

KL[q||p] ≥ 0 (2)

with equality only if q = p. In general KL[q||p] 6= KL[p||q], so KL is not a
distance measure. Formulae for computing KL, for both Gaussian and Gamma
densities, are given in the appendix.

Model evidence and free energy

Given a probabilistic model of some data, the log of the ‘evidence’ or ‘marginal
likelihood’ can be written as

log p(Y ) =
∫

q(θ) log p(Y )dθ

=
∫

q(θ) log
p(Y, θ)
p(θ|Y )

dθ

=
∫

q(θ) log
[
p(Y, θ)q(θ)
q(θ)p(θ|Y )

]
dθ

= F + KL(q(θ)||p(θ|Y )) (3)

where q(θ) is considered, for the moment, as an arbitrary density. We have

F =
∫

q(θ) log
p(Y, θ)
q(θ)

dθ, (4)

which in statistical physics is known as the negative free energy. The second
term in equation 3 is the KL-divergence between the density q(θ) and the true
posterior p(θ|Y ). Equation 3 is the fundamental equation of the VB-framework
and is shown graphically in Figure 5.

Because KL is always positive, due to the Gibbs inequality, F provides a
lower bound on the model evidence. Moreover, because KL is zero when two
densities are the same, F will become equal to the model evidence when q(θ) is
equal to the true posterior. For this reason q(θ) can be viewed as an approximate
posterior.

The aim of VB-learning is to maximise F and so make the approximate pos-
terior as close as possible to the true posterior. This approximate posterior will
be the one that best approximates the true posterior in the sense of minimising
KL-divergence. We should point out that this divergence cannot be minimised
explicitly because p(θ|y) is only known up to a constant. Instead, it is minimised
implicitly by maximising F and by virtue of equation 3. Of course, maximising
F , the negative free energy, is the same as minimising −F , the free energy.

Factorised Approximations

To obtain a practical learning algorithm we must also ensure that the integrals
in F are tractable. One generic procedure for attaining this goal is to assume
that the approximating density factorizes over groups of parameters. In physics,
this is known as the mean field approximation. Thus, we consider:

q(θ) =
∏

i

q(θi) (5)
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where θi is the ith group of parameters. We can also write this as

q(θ) = q(θi)q(θ\i) (6)

where θ\i denotes all parameters not in the ith group. The distributions q(θi)
which maximise F can then be derived as follows.

F =
∫

q(θ) log
[
p(Y, θ)
q(θ)

]
dθ (7)

=
∫ ∫

q(θi)q(θ\i) log
[

p(Y, θ)
q(θi)q(θ\i)

]
dθ\idθi

=
∫

q(θi)
[∫

q(θ\i) log p(Y, θ)dθ\i

]
dθi −

∫
q(θi) log q(θi)dθi + C

=
∫

q(θi)I(θi)dθi −
∫

q(θi) log q(θi)dθi + C

where the constant C contains terms not dependent on q(θi) and

I(θi) =
∫

q(θ\i) log p(Y, θ)dθ\i (8)

Writing I(θi) = log exp I(θi) gives

F =
∫

q(θi) log
[
exp(I(θi))

q(θi)

]
dθi + C (9)

= KL [q(θi)|| exp(I(θi))] + C

This is minimised when

q(θi) =
exp[I(θi)]

Z
(10)

where Z is the normalisation factor needed to make q(θi) a valid probability
distribution. Importantly, this means we are often able to determine the optimal
analytic form of the component posteriors. This results in what is known as a
‘free-form’ approximation.

For example, Mackay [13] considers the case of linear regression models with
Gamma priors over error precisions, λ, and Gaussian priors over regression
coefficients β, with a factorised approximation q(β, λ) = q(β)q(λ). Application
of equation 10 then leads to an expression in which I(λ) has terms in λ and
log λ only. From this we can surmise that the optimal form for q(λ) is a Gamma
density (see appendix).

More generally, free-form approximations can be derived for models from the
‘conjugate-exponential’ family [9, 27, 1]. Exponential family distributions in-
clude Gaussians and discrete multinomials and conjugacy requires the posterior
(over a factor) to have the same functional form as the prior.

This allows free-form VB to be applied to arbitrary directed acyclic graphs
comprising discrete multinomial variabes with arbitrary subgraphs of univari-
ate and multivariate Gaussian variables. Special cases include Hidden Markov
Models, Linear Dynamical Systems, Principal Component Analysers, as well as
mixtures and hierarchical mixtures of these. Moreover, by introducing addi-
tional variational parameters free-form VB can be applied to models containing
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non-conjugate distributions. This includes eg. independent component analysis
[1] and logistic regression [11].

Application of equation 10 also leads to a set of update equations for the
parameters of the component posteriors. This is implemented for the linear
regression example by equating the coefficients of λ and log λ with the relevant
terms in the Gamma density (see appendix). In the general case, these update
equations are coupled as the solution for each q(θi) depends on expectations
with respect to the other factors q(θ\i). Optimisation proceeds by initialising
each factor and then cycling through each factor in turn and replacing the
current distribution with the estimate from equation 10. Examples of these
update equations are provided in the following chapter, which applies VB to
spatio-temporal models of fMRI data.

Laplace approximations

Laplace’s method approximates the integral of a function
∫

f(θ)dθ by fitting a
Gaussian at the maximum θ̂ of f(θ), and computing the volume of the Gaussian.
The covariance of the Gaussian is determined by the Hessian matrix of log f(θ)
at the maximum point θ̂ [12].

The term ‘Laplace approximation’ is used for the method of approximating
a posterior distribution with a Gaussian centered at the Maximum a Poste-
rior (MAP) estimate. This is the application of Laplace’s method with f(θ) =
p(Y |θ)p(θ). This can be justified by the fact that under certain regularity condi-
tions, the posterior distribution approaches a Gaussian as the number of samples
grows [7]. This approximation is derived in detail in chapter 35.

Despite using a full distribution to approximate the posterior, instead of a
point estimate, the Laplace approximation still suffers from most of the problems
of MAP estimation. Estimating the variances at the end of iterated learning
does not help if the procedure has already lead to an area of low probability
mass. This point will be illustrated in the results section.

This motivates a different approach where, for nonlinear models, the Laplace
approximation is used at each step of an iterative approximation process. This
is described in chapters 22 and 35. In fact, this method is an Expectation-
Maximisation (EM) algorithm, which is known to be a special case of VB [15].
This is clear from the fact that, at each step of the approximation, we have an
ensemble instead of a point estimate.

The relations between VB, EM, iterative Laplace approximations, and an al-
gorithm from classical statistics called Restricted Maximum Likelihood (ReML)
are discussed in a recent publication [6]. This algorithm uses a ‘fixed-form’ for
the approximating ensemble, in this case being a full-covariance Gaussian. This
is to be contrasted with the ‘free-form’ VB algorithms described in the previous
section, where the optimal form for q(θ) is derived from p(Y, θ) and the assumed
factorisation.

Model Inference

As we have seen earlier, the negative free energy, F , is a lower bound on the
model evidence. If this bound is tight then F can be used as a surrogate for the

4



model evidence and so allow for Bayesian model selection and averaging1. This
provides a mechanism for fine-tuning models. In neuroimaging, F has been used
to optimise the choice of hemodynamic basis set [20], the order of autoregressive
models [21] (see also chapter 40), and the spatial diffusivity of EEG sources (see
chapter 26).

Earlier, the negative free energy was written

F =
∫

q(θ) log
p(Y, θ)
q(θ)

dθ (11)

By using p(Y, θ) = p(Y |θ)p(θ) we can express it as the sum of two terms

F (θ) =
∫

q(θ) log p(Y |θ)dθ −KL[q(θ)||p(θ)] (12)

where the first term is the average likelihood of the data and the second term
is the KL between the approximating posterior and the prior. This is not to
be confused with the KL in equation 3 which was between the approximate
posterior and the true posterior. In equation 12 the KL term grows with the
number of model parameters and so penalizes more complex models. Thus,
F contains both accuracy and complexity terms, reflecting the two conflicting
requirements of a good model, that it fit the data yet be as simple as possible.
Model selection principles are also discussed in chapter 35.

In the very general context of probabilistic graphical models, Beal and
Ghahramani [2] have shown that the above VB approximation of model evi-
dence is considerably more accurate than the Bayesian Information Criterion
(BIC) whilst incurring little extra computational cost. Chapter 35 shows that
BIC is a special case of the Laplace approximation. Moreover, it is of compa-
rable accuracy to a much more computationally demanding method based on
Annealed Importance Sampling (AIS) [2].

Results

This section first provides an idealised example which illustrates the difference
between Laplace and VB approximations. We then present some simulation
results showing VB applied to a model of fMRI data.

Univariate densities

Figures 1 and 2 provide an example showing what it means to minimise KL for
univariate densities. The solid lines in Figure 1 show a posterior distribution p
which is a Gaussian mixture density comprising two modes. The first contains
the Maximimum A Posteriori (MAP) value and the second contains the majority
of the probability mass.

The Laplace approximation to p is therefore given by a Gaussian centred
around the first, MAP mode. This is shown in Figure 1(a). This approximation
does not have high probability mass, so the model evidence will be underesti-
mated.

1Throughout this chapter our notation has, for brevity, omitted explicit dependence on the
choice of model, m. But strictly eg. p(Y ), F , p(θ|Y ) and q(θ) should be written as p(Y |m),
F (m), p(θ|Y, m) and q(θ|m).
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Figure 1(b) shows a Laplace approximation to the second mode, which could
arise if MAP estimation found a local, rather than a global, maximum. Finally,
Figure 1(c) shows the minimum KL-divergence approximation, assuming that q
is a Gaussian. This is the VB solution and corresponds to a density q which is
moment matched to p.

Figure 2 plots KL[q||p] as a function of the mean and standard deviation of
q, showing a global minimum around the moment-matched values. These KL
values were computed by discretising p and q and approximating equation 1 by
a discrete sum. The MAP mode, maximum mass mode and moment-matched
solutions have KL[q||p] values of 11.7, 0.93 and 0.71 respectively. This shows
that low KL is achieved when q captures most of the probability mass of p and,
minimum KL when q is moment-matched to p.

Capturing probability mass is particularly important if one is interested in
nonlinear functions of parameter values, such as model predictions. This is the
case for the Dynamic Causal Models described in later chapters. Figures 3 and
4 show histograms of model predictions for squared and logistic-map functions
indicating that VB predictions are qualitatively better than those from the
Laplace approximation.

Often in Bayesian inference, one quotes posterior exceedance probabilities.
Examples of this are the Posterior Probability Maps described in chapter 23 and
Dynamic Causal Models in chapter 41. For the squared function, Laplace says
5% of samples are above g = 12.2. But in the true density, 71% of samples are.
For the logisitic function 62% are above Laplace’s 5% point. The percentage of
samples above VB’s 5% points are 5.1% for the squared function and 4.2% for
the logistic-map function. So for this example, Laplace can tell you the posterior
exceedance probability is 5% when, in reality it is an order of magnitude greater.
This is not the case for VB.

As we shall see later on, the VB solution depends crucially on our assump-
tions about q. Either, in terms of the factorisation assumed (this is of course,
irrelevant for univariate densities) or the family of approximating densities as-
sumed for q. For example, if q were a mixture density, as in [3], then VB would
provide an exact approximation of p. It is also important to note that the dif-
ferences between VB and Laplace depend on the nature of p. For unimodal p,
these differences may are likely to be less significant than those in the above
example.

Factorised approximation

We now presents results of a simulation study using a General Linear Model with
Auto-Regressive errors, or GLM-AR model. The GLM-AR model can describe
both the signal and noise characteristics of fMRI data. This model is used in
the rest of the results section. For simplicity, we describe application to data at
a single voxel. But the next chapter augments the model with a spatial prior
and shows it can be applied to to whole slices of data.

We first illustrate VB’s factorised approximation to the posterior and com-
pare the marginal distributions obtained with VB to those from exact evalution.
We generated data from a known GLM-AR model

yt = xtw + et (13)
et = aet−1 + zt (14)
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where xt = 1 for all t, w = 2.7, a = 0.3 and 1/λ = Var(z) = σ2 = 4. We gener-
ated N = 128 samples. Given any particular values of parameters θ = {w, a, λ}
it is possible to compute the exact posterior distribution up to a normalisation
factor, as

p(w, a, λ|Y ) ∝ p(Y |w, a, λ)p(w|α)p(a|β)p(λ) (15)

where α is the prior precision of regression coefficients and β is the prior precision
of AR coefficients (see next chapter for more details). If we evaluate the above
quantity over a grid of values w, a, λ we can then normalise it so it sums to
one and so make plots of the exact posterior density. We then assumed an
approximate posterior q(w, a, λ) = q(w)q(a)q(λ) and used VB to fit it to the
data. Update equations are available in [21].

Figure 6 compares the exact and approximate posterior joint densities for
w, a. In the true posterior it is clear that there is a dependence between w and
a but VB’s approximate posterior ignores this dependence. Figure 7 compares
the exact and approximate posterior marginal densities for w,a and σ2. In this
example, VB has accurately estimated the marginal distributions.

Model inference

We generated data from a larger GLM-AR model having two regression coeffi-
cients and three autoregressive coefficients

yt = xtw + et (16)

et =
m∑

j=1

ajet−j + zt (17)

where xt is a two-element row vector, the first element flipping between a ‘-1’
and ‘1’ with a period of 40 scans (ie. 20 -1’s followed by 20 1’s) and the second
element being ‘1’ for all t. The two corresponding entries in w reflect the size of
the activation, w1 = 2, and the mean signal level, w2 = 3. We used an AR(3)
model for the errors with parameters a1 = 0.8, a2 = −0.6 and a3 = 0.4. The
noise precision was set to 1/λ = Var(z) = σ2 = 1 and we initially generated
N = 400 samples. This is a larger model than in the previous example as we
have more AR and regression coefficients. An example time series produced by
this process is shown in Figure 8(a).

We then generated 10 such time series and fitted GLM-AR(p) models to
each using the VB algorithm. In each case the putative model order was varied
between m = 0 and m = 5 and we estimated the model evidence for each.
Formulae for the model evidence approximation are available in [21]. Figure 8(b)
shows a plot of the average value of the negative free energy, F (m) as a function
of m, indicating that the maximum occurs at the true model order.

Gibbs Sampling

Whilst it is possible, in principle, to plot the exact posteriors using the method
described previously, this would require a prohibitive amount of computer time
for this larger model. We therefore validated VB by comparing it with Gibbs
sampling [7, 21].

We generated a number of data sets containing either N = 40, N = 160 or
N = 400 scans. At each data set size we compared Gibbs and VB posteriors
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for each of the regression coefficients. For the purpose of these comparisons the
model order was kept fixed at m = 3. Figure 9 shows representative results
indicating a better agreement with increasing number of scans. We also note
that VB requires more iterations for fewer scans (typically 4 iterations for N =
400, 5 iterations for N = 160 and 7 iterations for N = 40). This is because the
algorithm was initialised with an Ordinary Least Squares (OLS) solution which
is closer to the VB estimate if there are a large number of scans.

Estimation of effect size

Finally, we generated a number of data sets of various sizes to compare VB and
OLS estimates of activation size with the true value of w1 = 2. This comparison
was made using a matched-pairs t-test on the absolute estimation error. For
N > 100 the VB estimation error was significantly smaller for VB than for OLS
(p < 0.05). For N = 160, for example, the VB estimation error was 15% smaller
than the OLS error (p < 0.02).

Discussion

Variational Bayes delivers a factorised, minimum KL-divergence approximation
to the true posterior density and model evidence. This provides a computation-
ally efficient implementation of Bayesian inference for a large class of probabilis-
tic models [27]. It allows for parameter inference, based on the approximating
density q(θ|m) and model inference based on a free energy approximation, F (m)
to the model evidence, p(y|m).

The quality of inference provided by VB depends on the nature of the ap-
proximating distribution. There are two distinct approaches here. Fixed-form
approximations fix the form of q to be eg. a diagonal [10] or full-covariance
Gaussian ensemble [6]. Free-form approximations choose a factorisation that
depends on p(Y, θ). These range from fully-factorised approximations, where
there are no dependencies in q, to structured approximations. These identify
substructures in p(Y, θ), such as trees or mixtures of trees, in which exact in-
ference is possible. Variational methods are then used to handle interactions
between them [8].

VB also delivers an approximation to the model evidence, allowing for Bayesian
model comparison. However, it turns out that model selections based on VB are
systematically biased towards simpler models [2]. Nevertheless, they have been
shown empirically to be more accurate than BIC approximations and faster than
sampling approximations [2]. Bayesian model selection is discussed further in
chapter 35.

Chapter 24 described a Parametric Empirical Bayes (PEB) algorithm for
inference in hierarchical linear Gaussian models. This algorithm may be viewed
as a special case of VB with a fixed-form full-covariance Gaussian ensemble [6].
More generally, however, VB can be applied to models with discrete as well as
continuous variables.

A classic example here is the Gaussian mixture model. This has been applied
to an analysis of intersubject variability in fMRI data. Model comparisons
based on VB identified two overlapping degenerate neuronal systems in subjects
performing a crossmodal priming task [18].
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In the dynamic realm, VB has been used to fit and select Hidden Markov
Models (HMMs) for the analysis of EEG data [4]. These HMMs use discrete
variables to enumerate the hidden states and continuous variables to parame-
terise the activity in each. Here, VB identifies the number of stationary dynamic
regimes, when they occur, and describes activity in each with a Multivariate Au-
toregressive (MAR) model. The application of VB to MAR models is described
further in chapter 40.

The following chapter uses a spatio-temporal model for the analysis of fMRI.
This includes spatial regularisation of the autoregressive processes which char-
acterise fMRI noise. This regularistion requires a prior over error terms which
is precluded in chapter 22’s PEB framework but is readily accomodated using
free-form VB.

Appendix

For univariate Normal densities q(x) = N(µq, σ
2
q ) and p(x) = N(µp, σ

2
p) the

KL-divergence is

KLN1(µq, σq;µp, σp) = 0.5 log
σ2

p

σ2
q

+
µ2

q + µ2
p + σ2

q − 2µqµp

2σ2
p

− 0.5 (18)

The multivariate Normal density is given by

N(µ,Σ) = (2π)−d/2|Σ|−1/2 exp
(
−1

2
(x− µ)T Σ−1(x− µ)

)
(19)

The KL divergence for Normal densities q(x) = N(µq,Σq) and p(x) =
N(µp,Σp) is

KLN (µq,Σq;µp,Σp) = 0.5 log
|Σp|
|Σq|

+ 0.5Tr(Σ−1
p Σq) (20)

+ 0.5(µq − µp)T Σ−1
p (µq − µp)−

d

2
where |Σp| denotes the determinant of the matrix Σp.

The Gamma density is defined as

Ga(b, c) =
1

Γ(c)
xc−1

bc
exp

(
−x

b

)
(21)

The log of the gamma density

log Ga(b, c) = − log Γ(c)− c log b + (c− 1) log x− x

b
(22)

In [13], application of equation 10 for the approximate posterior over the error
precision q(λ) leads to an expression containing terms in λ and log λ only. This
identifies q(λ) as a Gamma density. The coefficients of these terms are then
equated with those in the above equation to identify the parameters of q(λ).

For Gamma densities q(x) = Ga(x; bq, cq) and p(x) = Ga(x; bp, cp) the KL-
divergence is

KLGa(bq, cq; bp, cp) = (cq − 1)Ψ(cq)− log bq − cq − log Γ(cq) (23)

+ log Γ(cp) + cp log bp − (cp − 1)(Ψ(cq) + log bq) +
bqcq

bp
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where Γ() is the gamma function and Ψ() the digamma function [24]. Similar
equations for multinomial and Wishart densities are given in [19].
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(a)

(b)

(c)

Figure 1: Probability densities p(θ) (solid lines) and q(θ) (dashed lines) for a
Gaussian mixture p(θ) = 0.2× N(m1, σ

2
1) + 0.8× N(m2, σ

2
2) with m1 = 3,m2 =

5,σ1 = 0.3, σ2 = 1.3, and a single Gaussian q(θ) = N(µ, σ2) with (a) µ = µ1, σ =
σ1 which fits the first mode, (b) µ = µ2, σ = σ2 which fits the second mode and
(c) µ = 4.6, σ = 1.4 which is moment-matched to p(θ).
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Figure 2: KL-divergence, KL(q||p) for p as defined in Figure 1 and q being a
Gaussian with mean µ and standard deviation σ. The KL-divergences of the
approximations in Figure 1 are (a) 11.73 for the first mode (yellow ball), (b)
0.93 for the second mode (green ball) and (c) 0.71 for the moment-matched
solution (red ball).

13



Figure 3: Histograms of 10,000 samples drawn from g(θ) where the distribution
over θ is from the Laplace approximation (top), VB approximation (middle) and
true distribution, p, (bottom) for g(θ) = θ2.
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Figure 4: Histograms of 10,000 samples drawn from g(θ) where the distribution
over θ is from the Laplace approximation (top), VB approximation (middle) and
true distribution, p, (bottom) for g(θ) = θ ∗ (10 − θ). This is akin to a logistic
map function encountered in dynamical systems [17].

Figure 5: The negative free energy, F , provides a lower bound on the log-evidence
of the model with equality when the approximate posterior equals the true pos-
terior.
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Figure 6: The figures show contour lines of constant probability density from
(a) the exact posterior p(a,w|Y ) and (b) the approximate posterior used in VB,
q(a,w) for the GLM-AR model. This clearly shows the effect of the factorisation,
q(a,w) = q(a)q(w).
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Figure 7: The figures compare the exact (solid lines) and approximate (dashed
lines) marginal posteriors (a) p(w|Y ) and q(w), (b) p(a|Y ) and q(a), (c) p(σ2|Y )
and q(σ2) (where σ2 = 1/λ).
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Figure 8: The figures show (a) an example time series from a GLM-AR model
with AR model order m = 3 and (b) a plot of the average negative free energy
F (m), with error bars, versus m. This shows that F (m) picks out the correct
model order.
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Figure 9: The figures show the posterior distributions from Gibbs sampling
(solid lines) and Variational Bayes (dashed lines) for data sets containing 40
scans (top row), 160 scans (middle row) and 400 scans (bottom row). The
distributions in the left column are for the first regression coefficient (size of
activation) and in the right column for the second regression coefficient (offset).
The fidelity of the VB approximation increases with number of scans.
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