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Contrasts and Classical Inference
J. Poline, F. Kherif, C. Pallier and W. Penny

INTRODUCTION

The general linear model (GLM) characterizes the rela-
tionship between our experimental manipulations and
observed data. It allows us to ask questions like: does
frontal lobe activity in a memory task depend on age? Is
the activity greater for normal subjects than for patients?
While many questions concern only one effect (e.g. age,
group), often our questions speak to multiple effects.
In 1926, John Russel wrote ‘An experiment is simply
a question put to nature � � � Even in the best planned
experiment the answer can simply be yes or no � � � The
chief requirement is simplicity: only one question should
be asked at a time’,[∗∗9�1] but R.A. Fisher’s answer in
his 1935 Design of experiments was: ‘I am convinced that
this view is wholly mistaken. If we ask Nature a sin-
gle question, she will often refuse to answer until some
other topic has been discussed’[∗∗9�2]. In other words,
we model several effects that may or may not influence
our measures and ask several questions by comparing
the relative importance of and interactions among those
effects. This chapter explains how one models and tests
for effects through the use of ‘contrasts’. These enable us
to focus on specific questions that are put to the data.

There is no unique model of an experimental
paradigm. For example, in a functional imaging exper-
iment with three conditions ‘A’, ‘B’ and ‘C’, the ‘C’
condition (say a ‘baseline’1 or low level condition) can
be modelled explicitly or implicitly. This issue gener-
alizes to more complex designs. Contrast specification
and the interpretation of the ensuing results depend
on model specification, which, in turn, depends on the

1 There is no absolute baseline condition. In fact, we generally
only interpret the difference between two conditions, and there-
fore an activation pattern in neuroimaging is almost universally
associated with at least two experimental conditions.

design of the experiment. The most important step is the
specification of the experimental paradigm: if a design
is clearly thought through, the questions asked of the
data are generally formulated easily and contrasts are
straightforward to interpret.

In general, it is not very useful simply to show that the
measured signal in a specific brain area is higher under
one condition relative to another. Rather, we want to
know whether this difference is statistically significant.
We will therefore review the aspects of hypothesis testing
that relate directly to the specification of contrasts.

This chapter is organized as follows. First, we review
the theoretical background behind the construction of
contrasts. In the next section, we describe the rules for
constructing contrasts that specify t-tests. We then dis-
cuss F -contrasts and the important issue of correlations
between predictors and their impact on the interpretation
of t- or F -tests. We conclude with some general remarks
and a summary.

CONSTRUCTING MODELS

What should be included in the model?

Put simply, the model should include all factors (con-
tinuous or discrete) that might have an impact on the
measurements. Deciding what should or should not be
included is crucial (for instance, in a functional magnetic
resonance imaging (fMRI) model, should the subjects’
movement estimates be included?). The question; ‘should
this factor be included in the model?’ can be resolved
with model selection, but a-priori knowledge is essen-
tial to limit the exploration of model space. With limited
information about which factors influence the measured
signal, the model will be larger and more complex.
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FIGURE 9.1 Model-1: design with simple linear
increase. The regressors, from top to bottom, model (i)
the effects of a linear increase in force, (ii) the effect of
force itself and (iii) the baseline response.

To make this point clear, consider an fMRI experiment
looking at motor cortex responses when a subject presses
a device with four different force levels: ‘Press’ conditions
are interleaved with ‘rest’ periods. The conditions are
ordered ‘press force 1’, ‘rest’, ‘press force 2’, ‘rest’, � � � ,
‘press force 4’, etc.2

The first issue is how one models the ‘press’ and ‘rest’
conditions. One may have very specific prior assump-
tions, for example, that the response should be a linear
function of the force. In this case, we construct a vector (a
so-called regressor, covariate, or predictor) that represents
this linear relationship. In the present example, this pre-
dictor could comprise 1s for all scans obtained during
the first (lowest) force level, of 2s for all scans acquired
during the second force level, etc. If the ‘rest’ periods are
represented by zeros, the model assumes that the differ-
ence between rest and the first force level is the same
as the difference between the first and the second force
level (or between any two neighbouring force levels).
To relax this assumption and construct a more flexible
model, the difference between any ‘press’ condition and
the rest period must be modelled explicitly in another
predictor that takes value 1 during ‘press’ conditions and
0 during ‘rest’.

Our model is then:

yi = x1
i �1 +x2

i �2 +�i 9.1

2 This order would not be used in an actual experiment, where
one would normally randomize the different force levels.

for which yi is the ith measurement (scan), x1 represents
the predictor of the linear increase with force, and x2

the difference between ‘press’ (x2
i = 1) and ‘rest’ (x2

i = 0).
The parameters �1 and �2, which we need to estimate,
are the coefficients of the linear functions encoded in
our model. The error �i is the difference between the
model prediction and the data yi. If the signal is not
zero during the rest condition (and this is always the
case in neuroimaging), this offset has to be modelled
by a constant term (i.e. a regressor consisting entirely
of 1s). With this additional regressor, our model is
written as:

yi = x1
i �1 +x2

i �2 +1�3 +�i 9.2

in which �3 represents the absolute offset of the data.
Figure 9.1 shows an example for the three regressors
from this model3 which, throughout this chapter, we refer
to as a ‘linear parametric model’ or simply ‘model 1’.
Note that this model may or may not provide a good
explanation for the measured data. It may lack important
predictors, or the measured response may not be a lin-
ear function of force. Two things can be done with this
model once its parameters have been estimated. One can

3 For models of fMRI data, one needs to take into account the
delay and dispersion of the haemodynamic signal. This is usu-
ally done by convolving the regressors with a haemodynamic
response function (see Chapter 8). Here, we have omitted this
convolution step to concentrate on the modelling aspect.
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make statistical inferences about its parameters (the �s),
i.e. specify a contrast, and one can compare it with an
alternative model.

Modelling the ‘baseline’

Should we add a predictor for the ‘rest’ periods to our
model? This predictor could consist of 1 for scans during
‘rest’ and 0 for scans during all other conditions. This is
not necessary because the difference between ‘press’ and
‘rest’ represented by predictor 2 �x2� already encodes the
difference between ‘rest’ and ‘press’.

Given the model in Eqn. 9.2, the following questions
can be asked:

1 Does the measured response increase linearly with
force, i.e. is �1 significantly greater than zero?

2 Is there an additive offset for the ‘press’ condition that
is not accounted for by the first predictor, i.e. is �2

significantly greater than zero?
3 Is the signal during ‘rest’ above zero, i.e. is �3 signifi-

cantly greater than zero?

Note that the model in this example could be con-
structed differently, i.e. reparameterized, while encod-
ing exactly the same information. For example, we could
remove the average value of the first and second predic-
tors (x1 and x2) so that their mean is zero. This operation
is called ‘mean centring’. This would not change the
parameter estimates or interpretation of the first two pre-
dictors but would change the interpretation of the third
predictor in this model (see below).

Extending the first model

The assumption that the response increases linearly with
force is a rather strong one. There are at least two ways
in which this assumption can be relaxed.

First, the first covariate can be expanded using a
Taylor-like expansion, such that not only linear but also
higher-order (quadratic, cubic, etc.) increases are mod-
elled. In this example, we restrict this expansion to second
order, including a new regressor that is the square of the
linear regressor. This results in a ‘quadratic-parametric
model’ (model 2) which is shown in Figure 9.2.

Alternatively, one can choose a non-parametric form,
enabling the model to capture any differences between
the four force levels. This is achieved by represent-
ing each force level as a separate predictor. This ‘non-
parametric’ model (model 3) is shown in Figure 9.3.
Note that we would like to model two separate aspects
of the data-first, the average activation over all force
levels (the main effect of pressing). In model 3, this
average can be computed from the sum of the different
force levels. Second, we would like to model the differ-
ences between all pairs of neighbouring force levels, i.e.
�1−2�+ �2−3�+ �3−4�. Modelling differences between
levels is similar to modelling interactions in factorial
designs (see Chapter 9.3). We therefore have the alterna-
tive choice to model the main effect and the interaction
directly. This alternative model, model 4, is shown in
Figure 9.4 (main effect and interactions). The questions
that can be put to model 3 and model 4 are exactly the
same, they just have to be ‘rephrased’ using appropriate
contrasts.

FIGURE 9.2 Model-2: linear and quadratic increase
covariates. Note the scale of the second covariate.
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FIGURE 9.3 Model-3: different force levels are modelled using
separate covariates. Black is 0 and white is 1 on this panel.
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FIGURE 9.4 Model-4: the main effect of force is modelled with
the first regressor and the interactions are modelled with regressors
2 to 4.

The choice between parametric and non-parametric
models often depends on the number of parameters that
are required. If this number is large, then parametric
models might be preferred. Relatively few parameters
(compared to the number of data points) and limited
prior information would speak to using non-parametric
models that are more flexible.

For the parametric models, we might be interested in
the following questions:

• Is there a linear increase or decrease in activation with
force level (modelled by the first covariate)?

• Is there a quadratic change in activation with force
level additionally to the linear variation (modelled by
the second covariate)?

• Is there any linear or quadratic dependency of the
response on force (a joint test on the first and second
covariate)?

Note that in the parametric model, the linear and
quadratic regressors are not uncorrelated and therefore

influence each other’s parameter estimates and statistical
inference. Issues concerning correlated regressors or con-
trasts are reviewed later in this chapter.

For the non-parametric models, interesting questions
might be:

• Is there an overall difference between force levels and
the rest condition? This question can be addressed by
means of the first four regressors in model 3 and the
first regressor in model 4, respectively.

• Are there any differences between different force lev-
els? This can be addressed by looking jointly at all
differences in force levels versus rest in model 3 and
at regressors 2 to 4 in model 4.

• Would it be possible to test for a linear dependency
of the measured signal on force level? Because any
differences between force levels have been modelled,
it is possible (but not easy) to test for a specific linear
increase.

These model specification questions are often framed
in the following form: should conditions A and B be mod-
elled separately, or should the common part of A and B
�A+B� be modelled together with the difference �A −B�?
Note that if there is no third condition (or implicit base-
line) only �A −B� can be estimated from the data.

CONSTRUCTING AND TESTING
CONTRASTS

Parameter estimation

We now turn to the issue of parameter estimation. As
reviewed in depth in Chapter 8, the general linear model4

rests on the equation:

Y = X�+� 9.3

This equation models the data Y (comprising n measure-
ments) as a linear combination of predictors which form
the columns of the design matrix X. X is of dimension
�n�p� and contains all effects x1� � � � � xp that are assumed
to influence the measured data. The quantity � is additive
noise and has a normal distribution with zero mean and
covariance 	2
i.

The model in Eqn. 9.3 states that the expectation of the
data Y is equal to X�. If the data cannot be modelled by a
linear combination of the predictors in X then the model
is not appropriate and statistical results are difficult to
interpret. This might occur if X does not contain all effects

4 Most of the notation used in this and Chapter 8 is identical but
we also summarize notation in Appendix 9.1.
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that influence the data, if it contains too many predictors
that are unrelated to the data, or if the assumed linear
relation between data and predictors does not hold.

A common method, used to solve the above equation,
is called ordinary least squares (OLS).5 OLS finds those
parameter estimates �̂ for which the sum of squared
errors becomes minimal: � � �2 =� Y −X� �2.

This corresponds to finding a �̂ such that X�̂ is as close
as possible to Y . This means that X�̂ is the orthogonal
projection of Y onto C�X�, the vector space spanned by
the columns of X (see Figure 9.15 for an illustration).
Therefore, if PX is the orthogonal projection matrix (see
Appendix 9.3) onto C�X�� �̂ must satisfy:

PXY = X�̂

This equation expresses the relationship between the
parameters �̂ and the data. For one-way analysis of vari-
ance ANOVA (Chapter 13), PXY provides the means of
the various groups, and the above equations describe the
relationship between the �̂ and these means (see below).

The matrix PX depends only on the space spanned by Xs
columns (i.e. C(X)). Therefore, two models with different
design matrices X1 and X2 are equivalent if C�X1� = C�X2�:
they explain the same aspects of the data �X��, have the
same error components, and each contrast formulated for
one model can be rephrased in the context of the other,
such that it leads to the same statistical conclusions.

The parameters � are estimated from the data using:

�̂ = �XT X�−XT Y 9.4

where X− denotes the (Moore-Penrose) pseudoinverse of
X. The fitted data Ŷ are defined as:

Ŷ = X�̂ 9.5

and represent what is predicted by the model. The esti-
mated noise (error) is:

Y − Ŷ = RY = �̂ 9.6

where

R = In −PX 9.7

The noise variance is estimated with:

	̂2 = Y T RY/tr�R
i� 9.8

Eqn. (9.4) has two important implications:

• Parameter estimates depend on the scaling of the
regressors in X. This scaling is not important when a

5 If the properties of the noise are known, the most efficient way
to estimate the parameters is a maximum likelihood procedure.
This entails whitening the noise.

parameter estimate is compared to its standard devi-
ation (see below). However, it is important if param-
eter estimates of different regressors are compared.
When defined through statistical parametric mapping’s
(SPM) graphical user interface, regressors are appro-
priately scaled to ensure sensible comparisons.

• If X is not of full rank, there are infinitely many parameter
vectors � which solve the equation. In this case, estima-
tion of �̂has a degree of arbitrariness and only some com-
pounds will be meaningful. These are called estimable
contrasts and are the subject of the next section.

Estimability

One can appreciate that not all parameters may be
estimable by looking at a model that contains the same
regressor twice, say x1 and x2 = x1 (with parameters �1

and �2). There is no information in the data on which to
base the choice of �̂1 compared to �̂2. In this case, any
solution of the form �̂1 + �̂2 = constant will provide the
same fitted data, the same residuals, but an infinity of
solutions �̂1 and �̂2.

To generalize this argument, we can consider linear
functions of the parameter estimates:

1�̂1 +· · ·+p�̂p = T �̂ 9.9

The constants i are the coefficients of a function that
‘contrasts’ the parameter estimates. The vector T =
�1� � � � �p�, where p is the number of parameters in X,
is referred to as the contrast vector. The word contrast is
used for the result of the operation T �̂. A contrast is a
random variable, because �̂ is estimated from noisy data.

The matrix X is said to be rank deficient or degenerate
when (some of) the parameter estimates are not unique
and therefore do not convey any meaning on their own.
At first sight, this situation seems unlikely. However,
many designs for position emission tomography (PET)
data or population inference, are degenerate.

A contrast is estimable if (and only if) the contrast
vector can be written as a linear combination of the rows
of X. This is because the information about a contrast
is obtained from combinations of the rows of Y . If no
combination of rows of X is equal to T , then the contrast
is not estimable.6

In more technical terms, the contrast  has to lie within
the space of XT , denoted by  ⊂ ��XT �, or, equivalently, 

6 In Chapter 8, we define a contrast as an estimable function of
the parameter estimates. If a linear combination of parameter
estimates is not estimable then that linear combination is not a
contrast. In this chapter, however, we often use the expression
‘estimable contrast’ for purposes of emphasis.
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is unchanged when projected orthogonally onto the rows
of X (i.e. PXT  =  with PXT being the ‘projector’ onto XT ;
see Appendix 9.3). The reason for this is as follows: if
there is redundancy in X, for some linear combination
q, we have Xq = 0. Therefore, Y = X� + Xq + � = X�� +
q�+�. So, if we test T �, we also test T ��+ q�, hence an
estimable contrast  will satisfy T q = 0. A necessary and
sufficient condition for this is that T = vX.

The SPM interface ensures that any specified contrast is
estimable, hence offering protection against contrasts that
would not make sense in degenerate designs. However,
a contrast may be estimable but misinterpreted. In this
chapter, we hope clarify the interpretation of contrasts.

Three design matrices for a two sample t-test

The (unpaired) two sample t-test, comparing the mean
of two groups, can be implemented in the linear model
framework as follows. Consider an experiment with two
groups of 2 (group 1) and 3 (group 2) subjects. In imaging
experiments, these numbers will be larger (at least 10 or
so). We have:

X =

⎡

⎢

⎢

⎢

⎢

⎣

1 0
1 0
0 1
0 1
0 1

⎤

⎥

⎥

⎥

⎥

⎦

then

PXY =

⎡

⎢

⎢

⎢

⎢

⎣

1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 0 1/3 1/3 1/3
0 0 1/3 1/3 1/3
0 0 1/3 1/3 1/3

⎤

⎥

⎥

⎥

⎥

⎦

Y = X� =

⎡

⎢

⎢

⎢

⎢

⎣

ȳ1

ȳ1

ȳ2

ȳ2

ȳ2

⎤

⎥

⎥

⎥

⎥

⎦

where ȳi is the mean observation in group i. We will now
describe two other parameterizations of the same model
(such that the matrix PX is identical in all cases) and show
how to specify meaningful contrasts.

Design matrix Parameters Contrasts

(1) X =

⎡

⎢

⎢

⎢

⎢

⎣

1 0
1 0
0 1
0 1
0 1

⎤

⎥

⎥

⎥

⎥

⎦

{

�̂1 = ȳ1

�̂2 = ȳ2

�1� 0��̂ = ȳ1

�0� 1��̂ = ȳ2

�1�−1��̂ = ȳ1 − ȳ2

��5� �5��̂ = mean�ȳ1� ȳ2�

(2) X =

⎡

⎢

⎢

⎢

⎢

⎣

1 1
1 1
0 1
0 1
0 1

⎤

⎥

⎥

⎥

⎥

⎦

{

�̂1 + �̂2 = ȳ1

�̂2 = ȳ2

�1� 1��̂ = ȳ1

�0� 1��̂ = ȳ2

�1� 0��̂ = ȳ1 − ȳ2

��5� 1��̂ = mean�ȳ1� ȳ2�

(3) X =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 1
1 0 1
0 1 1
0 1 1
0 1 1

⎤

⎥

⎥

⎥

⎥

⎦

{

�̂1 + �̂3 = ȳ1

�̂2 + �̂3 = ȳ2

�1� 0� 1��̂ = ȳ1

�0� 1� 1��̂ = ȳ2

�1�−1� 0��̂ = ȳ1 − ȳ2

��5� �5� 1��̂ = mean
�ȳ1� ȳ2�

The only intuitive case is the first parameterization. In
the two other cases, the interpretation of the parameter
estimates is not obvious and the contrasts are not intu-
itive. In case 3, parameters are not estimable and not all
contrasts are meaningful. Estimable contrasts are orthog-
onal to �1 1 −1�, because column 1 plus column 2 equals
column 3.

Constructing and testing t-contrasts

If it is clear what the parameter estimates represent, then
specification of contrasts is simple, especially in the case
of t-contrasts. These contrasts are of the form described
above, i.e. univariate linear combinations of parameter
estimates. We return to our first model, which includes
the four forces and ‘rest’ as regressors. For model 1, we
can ask if there is a linear increase by testing �1 using
the combination 1�1 +0�2 +0�3 with the contrast vector
T = �1 0 0�. A linear decrease can be tested with T =
�−1 0 0�.

To test for the additive offset of the ‘press’ condition,
not accounted for by the linear increase, we use T =
�0 1 0�. Note here that the linear increase is starting with
a value of one for the first force level, and increases to 4
for the fourth level (see Figure 9.1).

When testing for the second regressor, we are effectively
removing that part of the signal that can be accounted
for by the first regressor. This means that the second
parameter estimate is not the average of the difference
between the ‘press’ conditions and the rest condition.
To obtain the latter difference, we have to construct
a re-parameterization of model 1 and replace the first
regressor so that it models only differences of ‘force lev-
els’ around an average difference between ‘press’ and
‘rest’. This is achieved by orthogonalizing the first regres-
sor with respect to the second. This new model, model
5, is shown in Figure 9.5. The parameter estimates of
this new model are [10 30 100] as compared to [10 5
100] for model 1. This issue is detailed in Andrade et al.
(1999) and an equivalent effect can be seen for F -tests.
This emphasizes the principle that one should have in
mind not only what is, but also what is not, tested by a
contrast.

Another solution (useful in neuroimaging where esti-
mating the parameters can be time consuming) is to
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FIGURE 9.5 Model-5 This is the same as Model-1
but the main effect of force has been removed from the
first regressor. This changes the interpretation of the sec-
ond regressor.
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identify an equivalent contrast: the contrast vector T =
�1 1 0� is valid but difficult to interpret. For example, the
individual effects may be strong but, because they can
have different signs, the overall effect may be weak.

For model 3 the average amplitude of the ‘press’ con-
dition compared to ‘rest’ would be tested with T =
�1 1 1 1 0�. With model 4, the same effect can be tested
with T = �1 0 0 0 0�. The two contrasts give exactly the
same t-maps. Note that in both cases the average over
levels is tested, which could be significant just because
of the effect of a single level.

An interesting question is whether we can test for the
linearity of the response over the four levels. For model
3, the intuitive contrast to enter would be T = �1 2 3 4 0�.
This would indeed test for a linear increase with force
level, but in a very unspecific manner; in the sense that
the test might be significant in a situation where only
the fourth condition has a greater signal than in rest
condition. This is because we are testing for the weighted
sum of the corresponding parameters. The test is valid,
but does not ensure that the signal changes linearly with
force. In other words, the model is flexible and we are
testing a very restricted hypothesis, such that the shape
of the predicted signal may be distinct from the shape of
the component tested.

Computing t-statistics

Whatever contrast is used, the contrast t-statistics are
produced using (Friston et al., 1995; Worsley and Friston,
1995):

tdf = T �̂/SD�T �̂� 9.10

where SD�z� denotes the standard deviation of z and is
computed as the square root of the variance:

var�T �̂� = 	̂2T �XT X�−XT 
iX�XT X�− 9.11

For Gaussian errors, tdf follows approximately a Stu-
dent distribution with degrees of freedom given by df =
tr�R
i�

2/tr�R
iR
i�. At the voxel level, the p-value of tdf

is computed using its null distribution.
The important point is that the standard deviation of

the contrast depends on the matrix X. More specifically,
when regressors are correlated, the variance of the corre-
sponding parameter estimates increases. In other words,
the precision of the estimation for one component is
greater when other components in the model are not
correlated. The dependence of the covariance of the esti-
mated effects and the correlation within the model can
be used, for instance, to optimize event-related designs.

The test of tdf is one-tailed when testing exclusively
for a positive (or negative) effect, and two-tailed when
jointly testing for positive or negative effects.

CONSTRUCTING AND TESTING
F-CONTRASTS

In this section, we consider an experiment with two
event-related conditions using the simple case of right
and left motor responses. The subject is asked to press a
button with the right or left hand with a visual instruc-
tion. The events arrive pseudo-randomly but with a long
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FIGURE 9.6 The left panel shows the design matrix for
analysing two event-related conditions (left or right motor
responses). The shape of the HRF is assumed to be known, up to
a scaling factor. The two first regressors have been constructed by
convolution of a series of Dirac functions with the ‘canonical’ HRF
(right panel).

inter-stimulus interval. We are interested in brain regions
that are more activated for right versus left movements.

Our first model assumes that the shape of the haemo-
dynamic response function (HRF) can be modelled by a
‘canonical HRF’ (see Chapter 14). This model is shown in
Figure 9.6. To find brain regions that are more active for
left versus right motor responses we can use T = �1−10�.
Using Eqn. 9.10 we can compute the t-map shown in
Figure 9.7. This shows activation of contralateral motor

SPM{T247}

FIGURE 9.7 SPM-t image corresponding to the overall dif-
ference between the left and right responses. This map was pro-
duced using the �1−10� contrast weights, using the model shown in
Figure 9.6.

cortex plus other typical regions, such as ipsilateral
cerebellum.

Because there is an implicit baseline, the parameters are
also interpretable individually, and when tested (t-maps
not shown) they reveal the appropriate visual and motor
regions.7 Instead of having the two regressors encod-
ing the left and right responses separately, an equiv-
alent model could have the first regressor modelling
the response common to right and left and the second
modelling the difference between them.

The fact that the HRF varies across brain regions and
subjects can be accommodated as follows. A simple exten-
sion of the model of Figure 9.6 is presented in Figure 9.8,
for which each response is modelled with three basis
functions. These functions can model small variations in
the delay and dispersion of the HRF, as described in
Chapter 14. They are mean centred, so the mean parameter
will represent the overall average of the data.

In this new model, how do we test for the effects of,
for instance, the right motor response? The most obvi-
ous approach is to test for all regressors modelling this
response. This does not entail the sum (or average) of the
parameter estimates because the sign of those parameter
estimates is not interpretable, but rather the (weighted)
sum of squares of those parameter estimates. The appro-
priate F -contrast is shown in Figure 9.9.

FIGURE 9.8 The same model as in Figure 9.6, but we use
three regressors to model each condition. The first three columns
model the first condition (left motor response) while columns 4 to 6
model the second condition (right motor response). Each set of three
regressors is the result of the convolution of the stimulus onsets
with the canonical HRF and its derivatives with respect to time and
dispersion.

7 Interestingly, there is some ipsilateral activation in the motor
cortex such that the ‘left-right’ contrast is slightly less significant
in the motor regions than the ‘left’ [1 0 0] contrast.
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FIGURE 9.9 An ‘F-contrast’ testing for the regressors mod-
elling the right motor response. As described in the text, this cor-
responds to constructing the reduced model that does not contain
the regressors that are ‘marked’ with the F-contrast.

One interpretation of the F -contrast is that it is a
series of one-dimensional contrasts, each testing the null
hypothesis that the relevant parameter is zero. To test for
the overall difference between right and the left responses
we use the contrast shown in Figure 9.10. Note that
multiplying the F -contrast coefficients by −1 does not
change the statistic. The F -test image corresponding to
this contrast is shown in Figure 9.11. This image is very
similar to the corresponding image for the simpler model
(Figure 9.12). Finally, Figure 9.13 shows that the more
complex model provides a better fit to the data.

To conclude this section, we look at another exam-
ple; a 2 by 3 factorial design. In this experiment, words
are presented either visually (V) or aurally (A) and
belong to three different categories (C1, C2, C3). In the
design matrix, the six event-types are ordered as fol-
lows: V-C1 (presented visually and in category one),
V-C2, V-C3, A-C1, A-C2, A-C3. We can then test for
the interaction between the modality and category fac-
tors. We suppose that the experiment is a rapid event-
related design with no implicit baseline, such that only
comparisons between different event-types are meaning-
ful. In the first instance, we model each event using

FIGURE 9.10 F-contrast used to test the overall difference
(across basis functions) between the left and right responses.

FIGURE 9.11 SPM-F image corresponding to the overall dif-
ference between the left and right responses. This map was pro-
duced using the F-contrast in Figure 9.10 and the design matrix in
Figure 9.8.

a single basis function. A test for the main effect of
modality is presented in Figure 9.14(a). Figure 9.14(b)
shows the test for the main effect of category. Note
that because there is no implicit baseline here, the main
effects of factors are given by differences between levels.
Finally, the interaction term would be tested for as in
Figure 9.14(c).

SPM{F[1,247]}

FIGURE 9.12 SPM-F image corresponding to the overall dif-
ference (positive or negative) from the left and right responses. This
map was produced with an F-contrast [1 0 0;0 1 0] using the model
shown in Figure 9.6.
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FIGURE 9.13 Haemodynamic responses
at a single voxel (the maxima of the SPM-F map
in Figure 9.11). The left plot shows the HRF as
estimated using the simple model (Figure 9.6)
and demonstrates a certain lack of fit. The fit
based on a more flexible model (Figure 9.8) is
better (right panel).

The number of rows in an interaction contrast (without
implicit baseline) is given by:

Nrows =
N
∏

i=1

�li −1� 9.12

where N is the number of factors and li the number of
levels of factor i.

Interpretation of F-contrasts

There are two equivalent ways of thinking about hF -
contrasts. For example, we can think about the F -contrast
in Figure 9.9 as fitting a reduced model that does not
contain the ‘right motor response’. This reduced model
would have a design matrix X0 with zero entries in

FIGURE 9.14 F-contrasts testing respectively for (a) the main
effect of modality, (b) the main effect of categories, and (c) the
interaction modality × category.

place of the ‘right motor response’ regressors of the ‘full’
design matrix X. The test then compares the variance
of the residuals as compared to that of the full model
X. The F -test simply computes the extra sum of squares
that can be accounted for by inclusion of the three ‘right
hand’ regressors. Following any statistical textbook (e.g.,
Christensen, 1996) and the work of Friston et al. (1995)
and Worsley and Friston (1995), this is expressed by test-
ing the following quantity:

Fdf1�df2
= �Y T �I −PX0

�Y −Y T �I −PX�Y�/�1

Y T �I −PX�Y/�2
9.13

with

�1 = tr��R0 −R�
i�

�2 = tr�R
i� 9.14

and

df1 = tr��R0 −R�
i�R0 −R�
i�/tr��R0 −R�
i�
2 9.15

df2 = tr�R
iR
i�/tr�R
i�
2 9.16

where R0 is the projector onto the residual space of X0

and PX is the orthogonal projector onto X.
The second interpretation of the F -test is as a series

of one-dimensional contrasts, each of them testing the
null hypothesis that the respective contrast of parameters
is zero.

We now show formally how these two interpretations
are linked. The model in Eqn. 9.3, Y = X�+� is restricted
by the test cT � = 0 where c is now a ‘contrast matrix’.
If c yields an estimable function, then we can define a
matrix H such that c = HT X. Therefore, HT X� = 0 which,
together with Eqn. 9.3, is equivalent to Y ⊂ ��X� and
Y ⊂ ��H⊥�, the space orthogonal to H . It can be shown
that the reduced model corresponding to this test is X0 =
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PX −PH . This is valid if, and only if, the space spanned
by X0 is the space defined by ��H�⊥⋂��X�: it is easy to
show that this is indeed the case.

If ��H� ⊂ ��X�, the numerator of Eqn. 9.13 can be
rewritten as:

Y T �R0 −R�Y = Y T �X0 −R�Y = Y T �PX −X0�Y = Y T �PH�Y
9.17

We choose H such that it satisfies the condition above
with H = �XT �−c, which yields:

Y T �PH�Y = Y T X�XT X�−XT H�HT H�−HT X�XT X�−XT Y

= �̂T c�HT H�−cT �̂ 9.18

This reformulation of the F -test is important for several
reasons. First, it makes the specification and computation
of F -tests feasible in the context of large data sets. Speci-
fying a reduced model and computing the extra sum of
squares using Eqn. 9.13 would be computationally too
demanding. Second, it links the t-test and the test of a
reduced model, and therefore makes it explicit that the
‘extra’ variability cannot be explained by the reduced
model. Third, it makes the test of complex interactions
using F -tests more intuitive.

The F -contrast that looks at the total contribution of
all the ‘right regressors’ is, however, quite a non-specific
test. One may have a specific hypothesis about the mag-
nitude or the delay of the response and would like to test
for this specifically. A reasonable test would be a t-test
with contrast [0 0 0 1 0 0 0 0], testing for a positive value
of the parameter that scales the standard HRF. This is
perfectly valid, but it is not a test of the magnitude of
the response. For instance, if the response has the shape
implied by the standard model but is delayed signifi-
cantly, the test might produce poor results, even if the
delay is taken into account by the temporal derivative
(Chapter 14). This may be important when comparing
the magnitude of responses between two conditions: if
the magnitudes are the same but the delays are differ-
ent, across conditions, the test comparing the standard
response regressors might be misinterpreted: a difference
in delays might appear as a difference of magnitude even
if the basis functions are orthogonal to each other.

Note that the simplest F -contrasts are unidimensional,
in which case the F -statistic is simply the square of the
corresponding t-statistic. To differentiate between unidi-
mensional F -contrasts and t-contrasts in the SPM inter-
face, the former are displayed in terms of images and the
latter as bars.

An important point is that, generally, if we are confi-
dent about the shape of the expected response, F -tests are
often less sensitive than t-tests. The reason is that, with
increased model complexity, it becomes more likely that
a signal of no interest could be captured by the F -contrast.

The F -test implicitly corrects for this (Eqn. 9.13), but this
decreases sensitivity of the test, as compared to the more
constrained t-test.

CORRELATION BETWEEN REGRESSORS

Correlationsamongregressorscanmakethe interpretation
of tests difficult. Unfortunately, such correlation is often
imposed by the brain’s dynamics, experimental design or
the method of measurement. The risks of misinterpreta-
tion have been extensively discussed in Sen and Srivastava
(1990) and Andrade et al., (1999). To summarize, one could
miss activations when testing for a given contrast if there
is a substantial correlation with the rest of the design. A
frequently encountered example is when the response to
a stimulus is highly correlated with a motor response

If one believes that a region’s activity will not be influ-
enced by the motor response, then it is advisable to test
this specific region by first removing, from the motor
response regressor, all that can be explained by the stim-
ulus. This can be seen as a ‘dangerous’ procedure because
if, in fact, the motor response does influence the signal
in this region, then an ‘activation’ could be wrongly
attributed to a stimulus-induced effect.

Because the issue of what is and what is not tested
in a model is so important, we use two complementary
perspectives that might shed light on it. First, from a
geometrical perspective, the model is understood as some
low-dimensional space; for purposes of visualization we
choose a two-dimensonal space. The data lie in a greater
3D-space. The fitted data are an orthogonal projection of
the data onto the model space (Figure 9.15). If the model
space is spanned by two predictors C1 and C2, testing for
C2 will, in effect, test for the part of C2 that is orthogonal
to C1. If the two vectors are very similar (correlated), this

FIGURE 9.15 Geometrical perspective: estimation. The data Y
are projected orthogonally onto the space of the design matrix (X)
defined by two regressors C1 and C2. The error e is the distance
between the data and the smallest possible within the model space.



Elsevier UK Chapter: Ch09-P372560 28-7-2006 7:22p.m. Page:137 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

DESIGN COMPLEXITY 137

FIGURE 9.16 Hypothesis testing: the geometrical perspective.
With a model defined by the two regressors C1 and C2, testing
for C2 in effect measures its part orthogonal to C1. If the model
is explicitly orthogonalized, (i.e. C2 is replaced by C2orth), the test
of C2 is unchanged, but the test of C1 is, and will capture more
variablity, as indicated by C1full.

part can be very small. Explicit orthogonalization of C2
will make the effect tested by C1 appear much greater,
while the effect tested by the C2orth is left unchanged
(Figure 9.16).

A second perspective obtains from the following anal-
ogy. Let us consider a series of discs of different colours.
Each disc represents a predictor, or more generally, a
series of predictors in our model. Say we have two discs,
a blue and a red one. The discs are placed on a table,
where they might overlap. Testing for the effect of the
first regressor would be analogous to measuring the sur-
face of the blue disc that can be seen. If the two discs are
non-overlapping (i.e. the regressors are not correlated),
the two tests can be performed independently. But if the
two discs do overlap (there is some correlation between
the two regressors), testing for the blue disc corresponds
to placing the red on top and measuring what remains
of the blue. To put the blue on top amounts to orthogo-
nalizing the red. Testing for the full surface of both discs
corresponds to an F -test, and this does not depend on
how the discs are placed on each other.

Moving the variance across correlated
regressors

If one decides that regressors, or a combination of regres-
sors, should be orthogonalized with respect to some part
of the design matrix, it is not necessary to reparameterize
and fit the model again. Once the model has been fit-

ted, all the information needed can be found in the fitted
parameter estimates. For instance, instead of testing for
the additional variance explained by a regressor, one may
wish to test for all the variance that can be explained
by this regressor. If c is the contrast testing for the extra
sum of squares, it is easy to show that the contrast
matrix:

cFull_space = XT Xc 9.19

tests for all the variance explained by the subspace of X
defined by Xc since we then have H = Xc.

Contrasts and reparameterized models

The above procedure can be generalized as follows: if the
design matrix contains three subspaces say �S1� S2� S3�,
one may wish to test for what is in S1, having removed
what could be explained by S2 (but not by S3). Other
examples are conjunction analyses, in which a series of
contrasts can be modified such that the effects they test
are orthogonal. This involves orthogonalizing the sub-
sequent subspaces tested. The results may therefore dif-
fer depending on the order in which these contrasts are
entered.

The principle for computing the same contrast in two
different model parameterizations, which span the same
space, is simple. If X and Xp are two differently parame-
terized versions of the same model then we can define a
matrix T such that Xp = XT . If cp is a test expressed in Xp

while the data have been fitted using X, the equivalent
of cp using the parameter estimates of X is

c = cp�T
T XT XT�−TT XT X 9.20

DESIGN COMPLEXITY

Before acquiring neuroimaging data one should think
about how to model them and which contrasts are of
interest. Most of the problems concerning contrast spec-
ification derive from poor design specification. Poor
designs may be unclear about the objectives pursued,
include factors that are confounded, or may try to
answer too many questions in a single experiment.
This often leads to compromises and it can become
difficult to provide clear answers to the questions of
interest.
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This does not preclude the use of a complex paradigm,
in the sense that many conditions can and (often should
be) included in the design. The process of recruiting
subjects and acquiring data is long and costly, and it
is only natural that one would like to answer as many
questions as possible with the same data. However, this
requires careful thought about which contrasts will be
specified and whether they actually answer the question
of interest.

SUMMARY

In functional imaging experiments, one is often interested
in many sorts of effects, e.g. the main effect of a factor
and the possible interactions between factors. To analyse
each of these effects one could fit several different GLMs
and test hypotheses by looking at individual parameter
estimates. However, this approach is impractical, because
functional imaging data sets are very large. A more expe-
dient approach is to fit larger models and test for effects
using specific contrasts.

In this chapter, we have seen how the specification of
the design matrix is intimately related to the specification
of contrast weights. For example, it is often the case that
main effects and interactions can be set up using paramet-
ric or non-parametric designs. These different designs lead

to the use of different contrasts. Parametric approaches are
favoured for factorial designs with many levels per factor.
Contrasts must be estimable to be interpretable, and we
have described the conditions for estimability.

In fMRI, one can model haemodynamic responses
using the canonical HRF. This allows one to test for acti-
vations using t-contrasts. To account for the variabil-
ity in the haemodynamic response, across subjects and
brain regions, one can model the HRF using a canonical
HRF plus its derivatives, with respect to time and disper-
sion. Inferences about differences in activation can then
be made using F -contrasts. We have shown that there
are two equivalent ways of interpreting F -contrasts, one
employing the extra-sum-of-squares principle to compare
the model and a reduced model, and one specifying a
series of one-dimensional contrasts. Designs with corre-
lations between regressors are less efficient and correla-
tion can be removed by orthogonalizing one effect with
respect to others. However, this may have a strong impact
on the interpretation of subsequent tests. Finally, we have
shown how such orthogonalization can be applied retro-
spectively, i.e. without having to refit the models.

In this chapter, we have focused on how to test for
specific treatment effects encoded by the design matrix
of the general linear model. However, the general linear
model also entails assumptions about the random errors.
In the next chapter, we examine these assumptions, in
terms of covariance component and non-sphericity.

APPENDIX 9.1 NOTATION

Y : Data The �n� 1� time series, where n is the number of time points or
scans. yi: one of those measures.

c or : Contrast weights Linear combination of the parameter estimates used to form the
(numerator) of the statistics

X: Design matrix or design model the �n�p� matrix of regressors
�: Model parameters The true (unobservable) coefficients such that the weighted sum

of the regressors is the expectation of our data (if X is correct)
�̂: Parameter estimates The computed estimation of the � using the data Y : �̂ =

�XT X�−XT Y
C�X�: Vector space spanned by X Given a model X, the vector space spanned by X are all vectors v

that can be written as v = X
PX�X� or
M�X�: The orthogonal projector onto X PX = X�XT X�−XT

R: Residual forming matrix Given a model X, the residual forming matrix R = In −XX− trans-
forms the data Y into the residuals r = RY .

	2
i: scan (time) covariance This �n�n� matrix describes the (noise) covariance between scans
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APPENDIX 9.2 SUBSPACES

Let us consider a set of p vectors xi of dimension �n� 1�
(with p < n), e.g. regressors in fMRI. The space spanned
by this set of vectors is formed from all possible vectors
(say u) that can be expressed as a linear combination
of the xi: u = �1x1 + �2x2 + � � � �pxp. If the matrix X is
formed with the xi : X = �x1x2 � � � xp�, we denote this space
as ��X�.

Not all the xi may be necessary to form ��X�. The
minimal number needed is called the rank of the matrix
X. If only a subset of the xi is selected, they form a
smaller matrix X0. The space spanned by X0, ��X0�, is
called a subspace of X. A contrast defines two subspaces
of the design matrix X: one that is tested and one of ‘no
interest’, corresponding to the reduced model.

APPENDIX 9.3 ORTHOGONAL
PROJECTION

The orthogonal projection of a vector x onto the space of
a matrix A is the vector (e.g a time-series) that is closest
in the space C�A�, where distance is measured as the
sum of squared errors. The projector onto A, denoted

PA, is unique and can be computed with PA = AA−, with
A− denoting the Moore-Penrose pseudoinverse8 of A. For
instance, the fitted data Ŷ can be computed with

Ŷ = PXY = XX−Y = X�XT X�−XT Y = X�̂ 9.21

Most of the operations needed when working with linear
models only involve computations in parameter space, as
is shown in Eqn. 9.18. For a further gain in computational
expediency, one can work with an orthonormal basis of
the space of X, if the design is degenerate. This is how
the SPM code is implemented.
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