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1 Probability Density Functions

The probability of a continuous variable, x, assuming a particular value or range
of values is defined by a Probability Density Funcion (PDF), p(x). Probability
is measured by the area under the PDF; the total area under a PDF is therefore
unity ∫

p(x)dx = 1 (1)

The probability of x assuming a value between a and b is given by

p(a ≤ x ≤ b) =
∫ b

a

p(x)dx (2)

which is the area under the PDF between a and b. The probability of x taking
on a single value is therefore zero. This makes sense because we are dealing
with continuous values; as your value becomes more precise the probability for
it decreases. It only makes sense, therefore to talk about the probability of a
value being within a certain precision or being above or below a certain value.

To calculate such probabilities we need to calculate integrals like the one
above. This process is simplified by the use of Cumulative Density Functions
(CDF) which are defined as

CDF (a) = p(x ≤ a) =
∫ a

−∞
p(x)dx (3)

Hence
p(a ≤ x ≤ b) = CDF (b)− CDF (a) (4)

1.1 The Gaussian Density

The Normal or Gaussian probability density function, for the case of a single
variable, is

p(x) ≡ N(x;µ, σ2) =
1

(2πσ2)1/2
exp

(
− (x− µ)2

2σ2

)
(5)

where µ and σ2 are known as the mean and variance, and σ (the square root
of the variance) is called the standard deviation. The quantity in front of the
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Figure 1: (a) The Gaussian Probability Density Function with mean µ = 3 and
standard deviation σ = 2, (b) The standard Gaussian density, p(z). This has
zero mean and unit variance.

exponential ensures that
∫

p(x)dx = 1. The above formula is often abbreviated
to the shorthand p(x) = N(x;µ, σ). The terms Normal and Gaussian are used
interchangeably.

If we subtract the mean from a Gaussian variable and then divide by that
variables standard deviation the resulting variable, z = (x − µ)/σ, will be dis-
tributed according the standard normal distribution, p(z) = N(z; 0, 1) which
can be written

p(z) =
1

(2π)1/2
exp

(
−z2

2

)
(6)

The probability of z being above 0.5 is given by the area to the right of 0.5.
We can calculate it as

p(z) ≥ 0.5 =
∫ ∞

0.5

p(z)dz (7)

= 1− CDFGauss(0.5)

where CDFGauss is the cumulative density function for a Gaussian.

1.2 Probability relations

The same probability relations hold for continuous variables as for discrete vari-
ables ie. the conditional probability is

p(y|x) =
p(x, y)
p(x)

(8)
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Re-arranging gives the joint probability

p(x, y) = p(y|x)p(x) (9)

which, if y does not depend on x (ie. x and y are independent) means that

p(x, y) = p(y)p(x) (10)

1.3 Expectation and moments

The expected value of a function f(x) is defined as

E[f(x)] ≡< f(x) >=
∫

p(x)f(x)dx (11)

and E[] is referred to as the expectation operator, which is also sometimes written
using the angled brackets <>. The kth moment of a distribution is given by

E[xk] =
∫

p(x)xkdx (12)

The mean is therefore the first moment of a distribution.

E[x] =
∫

p(x)xdx = µ (13)

The kth central moment of a distribution is given by

E[(x− µ)k] =
∫

p(x)(x− µ)kdx (14)

The variance is therefore the second central moment

E[(x− µ)2] =
∫

p(x)(x− µ)2dx = σ2 (15)

Sometimes we will use the notation

V ar(x) = E[(x− µ)2] (16)

The third central moment is skewness and the fourth central moment is kurtosis
(see later). In the appendix we give examples of various distributions and of
skewness and kurtosis.

1.4 Mean and Variance

For more on the mean and variance of functions of random variables see Weisberg
[7] and Bevington and Robinson [?].

Expectation is a linear operator. That is

E[(a1x + a2x)] = a1E[x] + a2E[x] (17)

Therefore, given the function
y = ax (18)
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we can calculate the mean and variance of y as functions of the mean and
variance of x.

E[y] = aE[x] (19)
V ar(y) = a2V ar(x)

If y is a function of many uncorrelated variables

y =
∑

i

aixi (20)

we can use the results

E[y] =
∑

i

aiE[xi] (21)

V ar[y] =
∑

i

a2
i V ar[xi] (22)

But if the variables are correlated then

V ar[y] =
∑

i

a2
i V ar[xi] + 2

∑
i

∑
j

aiajV ar(xi, xj) (23)

where V ar(xi, xj) denotes the covariance of the random variables xi and xj .

1.5 Standard Error

As an example, the mean

m =
1
N

∑
i

xi (24)

of uncorrelated variables xi has a variance

V ar(m) =
∑

i

1
N

V ar(xi) (25)

=
σ2

x

N

where we have used the substitution ai = 1/N in equation 22.

2 Maximum Likelihood Estimation

We can learn the mean and variance of a Gaussian distribution using the Max-
imum Likelihood (ML) framework as follows. A Gaussian variable xn has the
PDF

p(xn) =
1

(2πσ2)1/2
exp

(
− (x− µ)2

2σ2

)
(26)

which is also called the likelihood of the data point. Given N Independent and
Identically Distributed (IID) (it is often assumed that the data points, or errors,
are independent and come from the same distribution) samples y = [y1, y2, .., yN ]
we have

p(y) =
N∏

n=1

p(yn) (27)
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which is the likelihood of the data set. We now wish to set µ and σ2 so as
to maximise this likelihood. For numerical reasons (taking logs gives us bigger
numbers) this is more conveniently achieved by maximising the log-likelihood
(note: the maximum is given by the same values of µ and σ)

L ≡ log p(y) = −N

2
log 2π − N

2
log σ2 −

N∑
n=

(yn − µ)2

2σ2
(28)

The optimal values of µ and σ are found by setting the derivatives dL
dµ and dL

dσ
to zero. This gives

µ =
1
N

N∑
n=1

yn (29)

and

σ2 =
1
N

N∑
n=1

(yn − µ)2 (30)

We note that the last formula is different to the usual formula for estimating
variance

σ2 =
1

N − 1

N∑
n=1

(xn − µ)2 (31)

because of the difference in normalisation. The last estimator of variance is
preferred as it is an unbiased estimator (see later section on bias and variance).

If we had an input-dependent mean, µn = wxn, then the optimal value for
w can be found by maximising L. As only the last term in equation 28 depends
on w this therefore corresponds to minimisation of the squared errors between
µn and yn. This provides the connection between ML estimation and Least
Squares (LS) estimation; ML reduces to LS for the case of Gaussian noise.

3 Correlation and Regression

3.1 Correlation

The covariance between two variables x and y is measured as

σxy =
1

N − 1

N∑
n=1

(xi − µx)(yi − µy) (32)

where µx and µy are the means of each variable. Note that σyx = σxy. Some-
times we will use the notation

V ar(x, y) = σxy (33)

If x tends to be above its mean when y is above its mean then σxy will be positive.
If they tend to be on opposite sides of their means σxy will be negative. The
correlation or Pearson’s correlation coefficient is a normalised covariance

r =
σxy

σxσy
(34)
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(a)

(b)

Figure 2: (a) Positive correlation, r = 0.9 and (b) Negative correlation, r =
−0.7. The dotted horizontal and vertical lines mark µx and µy.

such that −1 ≤ r ≤ 1, a value of −1 indicating perfect negative correlation and
a value of +1 indicating perfect positive correlation; see Figure 2. A value of
0 indicates no correlation. The strength of a correlation is best measured by
r2 which takes on values between 0 and 1, a value near to 1 indicating strong
correlation (regardless of the sign) and a value near to zero indicating a very
weak correlation.

3.2 Linear regression

We now look at modelling the relationship between two variables x and y as a
linear function; given a collection of N data points {xi, yi}, we aim to estimate
yi from xi using a linear model

ŷi = axi + b (35)

where we have written ŷ to denote our estimated value. Regression with one
input variable is often called univariate linear regression to distinguish it from
multivariate linear regression where we have lots of inputs. The goodness of fit
of the model to the data may be measured by the least squares cost function

E =
N∑

i=1

(yi − ŷi)2 (36)

The values of a and b that minimize the above cost function can be calculated by
setting the first derivatives of the cost function to zero and solving the resulting
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simultaneous equations (derivatives are used to find maxima and minima of
functions).

The result is derived as follows. We can find the slope a and offset b by
minising the cost function

E =
N∑

i=1

(yi − axi − b)2 (37)

Differentiating with respect to a gives

∂E

∂a
= −2

N∑
i=1

xi(yi − axi − b) (38)

Differentiating with respect to b gives

∂E

∂b
= −2

N∑
i=1

(yi − axi − b) (39)

By setting the above derivatives to zero we obtain the normal equations of the
regression. Re-arranging the normal equations gives

a
N∑

i=1

x2
i + b

N∑
i=1

xi =
N∑

i=1

xiyi (40)

and

a

N∑
i=1

xi + bN =
N∑

i=1

yi (41)

By substituting the mean observed values µx and µy into the last equation we
get

b = µy − aµx (42)

Now let

Sxx =
N∑

i=1

(xi − µx)2 (43)

=
N∑

i=1

x2
i −Nµ2

x

(44)

and

Sxy =
N∑

i=1

(xi − µx)(yi − µy) (45)

=
N∑

i=1

xiyi −Nµxµy

(46)
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Substiting for b into the first normal equation gives

a
N∑

i=1

x2
i + (µy − aµx)

N∑
i=1

xi =
N∑

i=1

xiyi (47)

Re-arranging gives

a =
∑N

i=1 xiyi − µy

∑N
i=1 xi∑N

i=1 x2
i + µx

∑N
i=1 xi

(48)

=
∑N

i=1 xiyi −Nµxµy∑N
i=1 x2

i + Nµ2
x

=
∑N

i=1(xi − µx)(yi − µy)∑N
i=1(xi − µx)2

=
σxy

σ2
x

To summarise, the solutions are

a =
σxy

σ2
x

(49)

and
b = µy − aµx (50)

where µx and µy are the mean observed values of the data and σ2
x and σxy

are the input variance and input-output covariance. This enables least squares
fitting of a regression line to a data set as shown in Figure 3.

The model will fit some data points better than others; those that it fits well
constitute the signal and those that it does’nt fit well constitute the noise. The
strength of the noise is measured by the noise variance

σ2
e =

1
N − 1

N∑
i=1

(yi − ŷi)2 (51)

and the strenth of the signal is given by σ2
y − σ2

e . The signal-to-noise ratio is
therefore (σ2

y − σ2
e)/σ2

e .
Splitting data up into signal and noise components in this manner (ie. break-

ing down the variance into what the model explains and what it does not) is at
the heart of statistical procedures such as analysis of variance (ANOVA) [3].

3.3 Relation to correlation

The correlation measure r is intimately related to the linear regression model.
Indeed (by substituting σxy from equation 32 into equation 49) r may be ex-
pressed as

r =
σx

σy
a (52)

where a is the slope of the linear regression model. Thus, for example, the
sign of the slope of the regression line defines the sign of the correlation. The
correlation is, however, also a function of the standard deviation of the x and
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(a)

(b)

Figure 3: The linear regression line is fitted by minimising the vertical distance
between itself and each data point. The estimated lines are (a) ŷ = 0.9003x +
0.2901 and (b) ŷ = −0.6629x + 4.9804.
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y variables; for example, if σx is very large, it is possible to have a strong
correlation even though the slope may be very small.

The relation between r and linear regression emphasises the fact that r is
only a measure of linear correlation. It is quite possible that two variables have
a strong nonlinear relationship (ie. are nonlinearly correlated) but that r = 0.
Measures of nonlinear correlation will be discussed in a later lecture.

The strenth of correlation can also be expressed in terms of quantites from
the linear regresssion model

r2 =
σ2

y − σ2
e

σ2
y

(53)

where σ2
e is the noise variance and σ2

y is the variance of the variable we are trying
to predict. Thus r2 is seen to measure the proportion of variance explained by
a linear model, a value of 1 indicating that a linear model perfectly describes
the relationship between x and y.

3.4 Finding the uncertainty in estimating the slope

The data points may be written as

yi = ŷi + ei (54)
= axi + b + ei

where the noise, ei has mean zero and variance σ2
e . The mean and variance of

each data point are
E(yi) = axi + b (55)

and
V ar(yi) = V ar(ei) = σ2

e (56)

We now calculate the variance of the estimate a. From earlier we see that

a =
∑N

i=1(xi − µx)(yi − µy)∑N
i=1(xi − µx)2

(57)

Let

ci =
(xi − µx)∑N

i=1(xi − µx)2
(58)

We also note that
∑N

i=1 ci = 0 and
∑N

i=1 cixi = 1. Hence,

a =
N∑

i=1

ci(yi − µy) (59)

=
N∑

i=1

ciyi − µy

N∑
i=1

ci

(60)

The mean estimate is therefore

E(a) =
N∑

i=1

ciE(yi)− µy

N∑
i=1

ci (61)
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= a
N∑

i=1

cixi + b
N∑

i=1

ci − µy

N∑
i=1

ci

= a

(62)

The variance is

V ar(a) = V ar(
N∑

i=1

ciyi − µy

N∑
i=1

ci) (63)

The second term contains two fixed quantities so acts like a constant. Hence,

V ar(a) = V ar(
N∑

i=1

ciyi) (64)

=
N∑

i=1

c2
i V ar(yi)

= σ2
e

N∑
i=1

c2
i

=
σ2

e∑N
i=1(xi − µx)2

=
σ2

e

(N − 1)σ2
x

4 Inference

When we estimate the mean and variance from small samples of data our esti-
mates may not be very accurate. But as the number of samples increases our
estimates get more and more accurate and as this number approaches infinity
the sample mean approaches the true mean or population mean. In what fol-
lows we refer to the sample means and variances as m and s and the population
means and standard deviations as µ and σ.

Hypothesis Testing: Say we have a hypothesis H which is The mean value
of my signal is 32. This is often referred to as the null hypothesis or H0. We
then get some data and test H which is then either accepted or rejected with
a certain probability or significance level, p. Very often we choose p = 0.05 (a
value used throughout science).

We can do a one-sided or a two-sided statistical test depending on exactly
what the null hypothesis is. In a one-sided test our hypothesis may be (i) our
parameter is less than x or (ii) our parameter is greater than x. For two-sided
tests our hypothesis is of the form (iii) our parameter is x. This last hypothesis
can be rejected if the sample statistic is either much smaller or much greater
than it should be if the parameter truly equals x.

4.1 Regression

In a linear regression model we are often interested in whether or not the gradient
is significantly different from zero or other value of interest.
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To answer the question we first estimate the variance of the slope and then
perform a t-test. In the appendix we show that the variance of the slope is given
by 1

σ2
a =

σ2
e

(N − 1)σ2
x

(65)

We then calculate the t-statistic

t =
a− ah

σa
(66)

where ah is our hypothesized slope value (eg. ah may be zero) and look up p(t)
with N − 2 DF (we have used up 1DF to estimate the input variance and 1DF
to estimate the noise variance). In the data plotted in Figure 3(b) the estimated
slope is a = −0.6629. From the data we also calculate that σa = 0.077. Hence,
to find out if the slope is significantly non-zero we compute CDFt(t) where
t = −0.6629/0.077 = −8.6. This has a p-value of 10−13 ie. a very significant
value. To find out if the slope is significantly different from −0.7 we calculate
CDFt(t) for t = (−0.6629+0.7)/0.077 = 0.4747 which gives a p-value of 0.3553
ie. not significantly different (again, we must bear in mind that we need to do
a two-sided test; see earlier).

4.2 Correlation

Because of the relationship between correlation and linear regression we can
find out if correlations are significantly non-zero by using exactly the same
method as in the previous section; if the slope is significantly non-zero then the
corresponding correlation is also significantly non-zero.

By substituting a = (σy/σx)r (this follows from equation 49 and equation 34)
and σ2

e = (1 − r2)σ2
y (from equation 53) into equation 65 and then σa into

equation 66 we get the test statistic 2

t =
r
√

N − 2√
1− r2

(67)

which has N − 2 DF.
For example, the two signals in Figure 4(a) have, over the N = 50 given

samples, a correlation of r = 0.8031 which gives t = 9.3383 and a p-value of
10−12. We therefore reject the hypothesis that the signals are not correlated;
they clearly are. The signals in Figure 4(b) have a correlation of r = 0.1418 over
the N = 50 given samples which gives t = 0.9921 and a p-value of p = 0.1631.
We therefore accept the null hypothesis that the signals are not correlated.

5 Linear algebra

5.1 Transposes and Inner Products

A collection of variables may be treated as a single entity by writing them as a
vector. For example, the three variables x1, x2 and x3 may be written as the

1When estimating σ2
x we should divide by N − 1 and when estimating σ2

e we should divide
by N − 2.

2Strictly, we should use σ2
e = N−1

N−2
(1− r2)σ2

y to allow for using N − 2 in the denominator

of σ2
e .
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(a)

(b)

Figure 4: Two signals (a) sample correlation r = 0.8031 and (b) sample correla-
tion, r=0.1418. Strong correlation; by shifting and scaling one of the time series
(ie. taking a linear function) we can make it look like the other time series.
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vector

x =

 x1

x2

x3

 (68)

Bold face type is often used to denote vectors (scalars - single variables - are
written with normal type). Vectors can be written as column vectors where the
variables go down the page or as row vectors where the variables go across the
page (it needs to be made clear when using vectors whether x means a row
vector or a column vector - most often it will mean a column vector and in our
text it will always mean a column vector, unless we say otherwise). To turn a
column vector into a row vector we use the transpose operator

xT = [x1, x2, x3] (69)

The transpose operator also turns row vectors into column vectors. We now
define the inner product of two vectors

xT y = [x1, x2, x3]

 y1

y2

y3

 (70)

= x1y1 + x2y2 + x3y3

=
3∑

i=1

xiyi

which is seen to be a scalar. The outer product of two vectors produces a matrix

xyT =

 x1

x2

x3

 [y1, y2, y3] (71)

=

 x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3


An N ×M matrix has N rows and M columns. The ijth entry of a matrix is
the entry on the jth column of the ith row. Given a matrix A (matrices are also
often written in bold type) the ijth entry is written as Aij . When applying the
transpose operator to a matrix the ith row becomes the ith column. That is, if

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 (72)

then

AT =

 a11 a21 a31

a12 a22 a32

a13 a23 a33

 (73)

A matrix is symmetric if Aij = Aji. Another way to say this is that, for
symmetric matrices, A = AT .
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Two matrices can be multiplied if the number of columns in the first matrix
equals the number of rows in the second. Multiplying A, an N ×M matrix, by
B, an M ×K matrix, results in C, an N ×K matrix. The ijth entry in C is
the inner product between the ith row in A and the jth column in B. As an
example

[
2 3 4
5 6 7

] 1 3 7 2
4 3 4 1
5 6 4 2

 =
[

34 39 42 15
64 75 87 30

]
(74)

Given two matrices A and B we note that

(AB)T = BT AT (75)

5.2 Properties of matrix multiplication

Matrix multiplication is associative

(AB)C = A(BC) (76)

distributive
A(B + C) = AB + AC (77)

but not commutative
AB 6= BA (78)

5.3 Covariance matrices

In the previous chapter the covariance, σxy, between two variables x and y was
defined. Given p variables there are p× p covariances to take account of. If we
write the covariances between variables xi and xj as σij then all the covariances
can be summarised in a covariance matrix which we write below for p = 3

C =

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3

 (79)

The ith diagonal element is the covariance between the ith variable and itself
which is simply the variance of that variable; we therefore write σ2

i instead of
σii. Also, note that because σij = σji covariance matrices are symmetric.

We now look at computing a covariance matrix from a given data set. Sup-
pose we have p variables and that a single observation xi (a row vector) consists
of measuring these variables and suppose there are N such observations. We
now make a matrix X by putting each xi into the ith row. The matrix X
is therefore an N × p matrix whose rows are made up of different observation
vectors. If all the variables have zero mean then the covariance matrix can then
be evaluated as

C =
1

N − 1
XT X (80)

This is a multiplication of a p ×N matrix, XT , by a N × p matrix, X, which
results in a p × p matrix. To illustrate the use of covariance matrices for time
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Figure 5: Three time series having the covariance matrix C1 and mean vector
m1 shown in the text. The top and bottom series have high covariance but none
of the other pairings do.

series, figure 5 shows 3 time series which have the following covariance relation

C1 =

 1 0.1 1.6
0.1 1 0.2
1.6 0.2 2.0

 (81)

and mean vector
m1 = [13, 17, 23]T (82)

5.4 Diagonal matrices

A diagonal matrix is a square matrix (M = N) where all the entries are zero
except along the diagonal. For example

D =

 4 0 0
0 1 0
0 0 6

 (83)

There is also a more compact notation for the same matrix

D = diag([4, 1, 6]) (84)

If a covariance matrix is diagonal it means that the covariances between variables
are zero, that is, the variables are all uncorrelated. Non-diagonal covariance
matrices are known as full covariance matrices. If V is a vector of variances
V = [σ2

1 , σ2
2 , σ2

3 ]T then the corresponding diagonal covariance matrix is V d =
diag(V ).
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5.5 The correlation matrix

The correlation matrix, R, can be derived from the covariance matrix by the
equation

R = BCB (85)

where B is a diagonal matrix of inverse standard deviations

B = diag([1/σ1, 1/σ2, 1/σ3]) (86)

5.6 The identity matrix

The identity matrix is a diagonal matrix with ones along the diagonal. Multi-
plication of any matrix, X by the identity matrix results in X. That is

IX = X (87)

The identity matrix is the matrix equivalent of multiplying by 1 for scalars.

5.7 Matrix inverse

Given a matrix X its inverse X−1 is defined by the properties

X−1X = I (88)
XX−1 = I

where I is the identity matrix. The inverse of a diagonal matrix with entries
dii is another diagonal matrix with entries 1/dii. This satisfies the definition of
an inverse, eg. 4 0 0

0 1 0
0 0 6

 1/4 0 0
0 1 0
0 0 1/6

 =

 1 0 0
0 1 0
0 0 1

 (89)

More generally, the calculation of inverses involves a lot more computation.
Before looking at the general case we first consider the problem of solving si-
multaneous equations. These constitute relations between a set of input or
independent variables xi and a set of output or dependent variables yi. Each
input-output pair constitutes an observation. In the following example we con-
sider just N = 3 observations and p = 3 dimensions per observation

2w1 +w2 + w3 = 5
4w1 −6w2 = −2
−2w1 +7w2 + 2w3 = 9

which can be written in matrix form 2 1 1
4 −6 0
−2 7 2

 w1

w2

w3

 =

 5
−2
9

 (90)

or in matrix form
Xw = y (91)

17



This system of equations can be solved in a systematic way by subtracting
multiples of the first equation from the second and third equations and then
subtracting multiples of the second equation from the third. For example, sub-
tracting twice the first equation from the second and −1 times the first from
the third gives  2 1 1

0 −8 −2
0 8 3

 w1

w2

w3

 =

 5
−12
14

 (92)

Then, subtracting −1 times the second from the third gives 2 1 1
0 −8 −2
0 0 1

 w1

w2

w3

 =

 5
−12
2

 (93)

This process is known as forward elimination. We can then substitute the
value for w3 from the third equation into the second etc. This process is back-
substitution. The two processes are together known as Gaussian elimination.
Following this through for our example we get w = [1, 1, 2]T .

When we come to invert a matrix (as opposed to solve a system of equations
as in the previous example) we start with the equation

AA−1 = I (94)

and just write down all the entries in the A and I matrices in one big matrix 2 1 1 1 0 0
4 −6 0 0 1 0
−2 7 2 0 0 1

 (95)

We then perform forward elimination 3 until the part of the matrix correspond-
ing to A equals the identity matrix; the matrix on the right is then A−1 (this is
because in equation 94 if A becomes I then the left hand side is A−1 and the
right side must equal the left side). We get 1 0 0 12

16
−5
16

−6
16

0 1 0 4
8

−3
8

−2
8

0 0 1 −1 1 1

 (96)

This process is known as the Gauss-Jordan method. For more details see
Strang’s excellent book on Linear Algebra [6] where this example was taken
from.

Inverses can be used to solve equations of the form Xw = y. This is achieved
by multiplying both sides by X−1 giving

w = X−1y (97)

Hence,  w1

w2

w3

 =

 12
16

−5
16

−6
16

4
8

−3
8

−2
8

−1 1 1

 5
−2
9

 (98)

3We do not perform back-substitution but instead continue with forward elimination until
we get a diagonal matrix.
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which also gives w = [1, 1, 2]T .
The inverse of a product of matrices is given by

(AB)−1 = B−1A−1 (99)

Only square matrices are invertible because, for y = Ax, if y and x are of
different dimension then we will not necessarily have a one-to-one mapping
between them.

5.8 Orthogonality

The length of a d-element vector x is written as ||x|| where

||x||2 =
d∑

i=1

x2
i (100)

= xT x

Two vectors x and y are orthogonal if

Figure 6: Two vectors x and y. These vectors will be orthogonal if they obey
Pythagoras’ relation ie. that the sum of the squares of the sides equals the square
of the hypoteneuse.

||x||2 + ||y||2 = ||x − y||2 (101)

That is, if

x2
1 + ... + x2

d + y2
1 + ... + y2

d = (x1 − y1)2 + ... + (xd − yd)2 (102)

Expanding the terms on the right and re-arranging leaves only the cross-terms

x1y1 + ..... + xdyd = 0 (103)
xT y = 0

That is, two vectors are orthogonal if their inner product is zero.
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Figure 7: Working out the angle between two vectors.

5.9 Angles between vectors

Given a vector b = [b1, b2]T and a vector a = [a1, a2]T we can work out that

cos α =
a1

||a||
(104)

sinα =
a2

||a||

cos β =
b1

||b||

sinβ =
b2

||b||
(105)

Now, cosδ = cos(β − α) which we can expand using the trig identity

cos(β − α) = cos β cos α + sinβ sinα (106)

Hence
cos(δ) =

a1b1 + a2b2

||a||||b||
(107)

More generally, we have

cos(δ) =
aT b

||a||||b||
(108)

Because, cos π/2 = 0, this again shows that vectors are orthogonal for aT b = 0.
Also, because | cos δ| ≤ 1 where |x| denotes the absolute value of x we have

|aT b| ≤ ||a||||b|| (109)

which is known as the Schwarz Inequality.
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5.10 Projections

The projection of a vector b onto a vector a results in a projection vector p
which is the point on the line a which is closest to the point b. Because p is a

Figure 8: The projection of b onto a is the point on a which is closest to b.

point on a it must be some scalar multiple of it. That is

p = wa (110)

where w is some coefficient. Because p is the point on a closest to b this means
that the vector b − p is orthogonal to a. Therefore

aT (b− p) = 0 (111)
aT (b− wa) = 0

Re-arranging gives

w =
aT b

aT a
(112)

and

p =
aT b

aT a
a (113)

We refer to p as the projection vector and to w as the projection.

6 Multiple Regression

A good practical introduction to the material on regression is presented by
Kleinbaum et al. [3]. More details of matrix manipulations are available in
Weisberg [7] and Strang has a great in-depth intro to linear algebra [6]. See also
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relevant material in Numerical Recipes [5]. See Chatfield’s book on multivariate
analysis for more details [1].

For a multivariate linear data set, the dependent variable yi is modelled as
a linear combination of the input variables xi and an error term 4

yi = xiw + ei (114)

where xi is a row vector, w is a column vector and ei is an error. The overall
goodness of fit can be assessed by the least squares cost function

E =
N∑

i=1

(yi − ŷi)2 (115)

where ŷi = xiw.

6.1 Estimating the weights

The least squares cost function can be written in matrix notation as

E = (y −Xw)T (y −Xw) (116)

where X is an N-by-p matrix whose rows are made up of different input vectors
and y is a vector of targets. The weight vector that minimises this cost function
can be calculated by setting the first derivative of the cost function to zero and
solving the resulting equation.

By expanding the brackets and collecting terms (using the matrix identity
(AB)T = BT AT we get

E = yT y − 2wT XT y + wT XT Xw (117)

The derivative with respect to w is 5

∂E

∂w
= −2XT y + 2XT Xw (118)

Equating this derivative to zero gives

(XT X)w = XT y (119)

which, in regression analysis, is known as the ’normal equation’. Hence,

ŵ = (XT X)−1XT y (120)

This is the general solution for multivariate linear regression 6. It is a unique
minimum of the least squares error function (ie. this is the only solution).

Once the weights have been estimated we can then estimate the error or
noise variance from

σ2
e =

1
N − 1

N∑
i=1

(yi − ŷi)2 (121)

4The error term is introduced because, very often, given a particular data set it will not
be possible to find an exact linear relationship between xi and yi for every i. We therefore
cannot directly estimate the weights as X−1y.

5From matrix calculus [4] we know that the derivative of cT Bc with respect to c is (BT +
B)c. Also we note that XT X is symmetric.

6In practice we can use the equivalent expression ŵ = X+1y where X+1 is the pseudo-
inverse [6]. This method is related to Singular Value Decomposition and is discussed later.

22



6.2 Understanding the solution

If the inputs are zero mean then the input covariance matrix multiplied by N-1
is

Cx = XT X (122)

The weights can therefore be written as

ŵ = C−1
x XT y (123)

ie. the inverse covariance matrix times the inner products of the inputs with
the output (the ith weight will involve the inner product of the ith input with
the output).

6.2.1 Single input

For a single input C−1
x = 1/(N − 1)σ2

x1
and XT y = (N − 1)σx1y. Hence

ŵ1 =
σx1y

σ2
x1

(124)

This is exactly the same as the estimate for the slope in linear regression (first
lecture). This is re-assuring.

6.2.2 Uncorrelated inputs

For two uncorrelated inputs

C−1
x =

[
1

(N−1)σ2
x1

0

0 1
(N−1)σ2

x2

]
(125)

We also have

XT y =
[

(N − 1)σx1,y

(N − 1)σx2,y

]
(126)

The two weights are therefore

ŵ1 =
σx1y

σ2
x1

(127)

ŵ2 =
σx2y

σ2
x2

Again, these solutions are the same as for the univariate linear regression case.

6.2.3 General case

If the inputs are correlated then a coupling is introduced in the estimates of the
weights; weight 1 becomes a function of σx2y as well as σx1y

ŵ =
[

σ2
x1

σx1x2

σx1x2 σ2
x2

]−1 [
σx1,y

σx2,y

]
(128)
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6.3 Inference

Some of the inputs in a linear regression model may be very useful in predicting
the output. Others, not so. So how do we find which inputs or features are
useful ? This problem is known as feature selection.

The problem is tackled by looking at the coefficients of each input (ie. the
weights) and seeing if they are significantly non-zero. The procedure is identical
to that described for univariate linear regression.

The only added difficulty is that we have more inputs and more weights, but
the procedure is basically the same. Firstly, we have to estimate the variance
on each weight. This is done in the next section. We then compare each weight
to zero using a t-test.

6.3.1 Functions of random vectors

For a vector of random variables, z, and a matrix of constants, C, and a vector
of constants, d, we have

V ar(Cz + d) = C[V ar(z)]CT (129)

where, here, Var() denotes a covariance matrix. This is a generalisation of the
result for scalar random variables V ar(cz) = c2V ar(z).

The covariance between a pair of random vectors is given by

V ar(C1z,C2z) = C1[V ar(z)]CT
2 (130)

6.3.2 The weight covariance matrix

Different instantiations of target noise will generate different estimated weight
vectors according to equation 120. For the case of Gaussian noise we do not
actually have to compute the weights on many instantiations of the target noise
and then compute the sample covariance 7; the corresponding weight covariance
matrix is given by the equation

Σ = V ar((XT X)−1XT y) (131)

Substituting y = Xŵ + e gives

Σ = V ar((XT X)−1XT Xw + (XT X)−1XT e) (132)

This is in the form of V ar(Cz + d) (see earlier) with d being given by the
first term which is constant, C being given by (XT X)−1XT and z being given
by e. Hence,

Σ = (XT X)−1XT [V ar(e)][(XT X)−1XT ]T (133)
= (XT X)−1XT (σ2

eI)[(XT X)−1XT ]T

= (XT X)−1XT (σ2
eI)X(XT X)−1

7But this type of procedure is the basis of bootstrap estimates of parameter variances. See
[2].
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Re-arranging further gives

Σ = σ2
e(XT X)−1 (134)

In the appendix we show that this can be evaluated as

Σ = σ2
e(XT X)−1 (135)

The correlation in the inputs introduces a correlation in the weights; for
uncorrelated inputs the weights will be uncorrelated. The variance of the jth
weight, wj , is then given by the jth diagonal entry in the covariance matrix

σ2
wj

= Σjj (136)

To see if a weight is significantly non-zero we then compute CDFt(t) (the
cumulative density function; see earlier lecture) where t = wj/σwj and if it is
above some threshold, say p = 0.05, the corresponding feature is removed.

Note that this procedure, which is based on a t-test, is exactly equivalent to
a similar procedure based on a partial F-test (see, for example, [3] page 128).

If we do remove a weight then we must recompute all the other weights (and
variances) before deciding whether or not the other weights are significantly non-
zero. This usually proceeds in a stepwise manner where we start with a large
number of features and reduce them as necessary (stepwise backward selection)
or gradually build up the number of features (stepwise forward selection) [3].

Note that, if the weights were uncorrelated we could do feature selection in
a single step; we would not have to recompute weight values after each weight
removal. This provides one motivation for the use of orthogonal transforms
in which the weights are uncorrelated. Such transforms include Fourier and
Wavelet transforms as we shall see in later lectures.

6.4 Equivalence of t-test and F-test for feature selection

When adding a new variable xp to a regression model we can test to see if the
increase in the proportion of variance explained is significant by computing

F =
(N − 1)σ2

y

[
r2(y, ŷp)− r2(y, ŷp−1)

]
σ2

e(p)
(137)

where r2(y, ŷp) is the square of the correlation between y and the regression
model with all p variables (ie. including xp) and r2(y, ŷp−1) is the square of the
correlation between y and the regression model without xp. The denominator
is the noise variance from the model including xp. This statistic is distributed
according to the F-distribution with v1 = 1 and v2 = N − p − 2 degrees of
freedom.

This test is identical to the double sided t-test on the t-statistic computed
from the regression coefficient ap, described in this lecture (see also page 128 of
[3]). This test is also equivalent to seeing if the partial correlation between xp

and y is significantly non-zero (see page 149 of [3]).
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6.5 Example

Suppose we wish to predict a time series x3 from two other time series x1 and
x2. We can do this with the following regression model 8

x3 = w0 + w1x1 + w2x2 (138)

and the weights can be found using the previous formulae. To cope with the
constant, w0, we augment the X vector with an additional column of 1’s.

We analyse data having covariance matrix C1 and mean vector m1 (see
equations 82 and 81 in an earlier lecture). N = 50 data points were generated
and are shown in Figure 9. The weights were then estimated from equation 120
as

ŵ = [w1, w2, w0]T (139)
= [1.7906,−0.0554, 0.6293]T

Note that w1 is much bigger than w2. The weight covariance matrix was esti-
mated from equation 135 as

Σ =

 0.0267 0.0041 −0.4197
0.0041 0.0506 −0.9174
−0.4197 −0.9174 21.2066

 (140)

giving σw1 = 0.1634 and σw2 = 0.2249. The corresponding t-statistics are
t1 = 10.96 and t2 = −0.2464 giving p-values of 10−15 and 0.4032. This indicates
that the first weight is significantly different from zero but the second weight is
not ie. x1 is a good predictor of x3 but x2 is not. We can therefore remove x2

from our regression model.
Question: But what does linear regression tell us about the data that the

correlation/covariance matrix does’nt ? Answer: Partial correlations.

6.6 Partial Correlation

Remember (see eg. equation 53 from lecture 1), the square of the correlation
coefficient between two variables x1 and y is given by

r2
x1y =

σ2
y − σ2

e(x1)
σ2

y

(141)

where σ2
e(x1) is the variance of the errors from using a linear regression model

based on x1 to predict y. Writing σ2
y = σ2

e(0), ie. the error with no predictive
variables

r2
x1y =

σ2
e(0)− σ2

e(x1)
σ2

e(0)
(142)

When we have a second predictive variable x2, the square of the partial corre-
lation between x2 and y is defined as

r2
x2y|x1

=
σ2

e(x1)− σ2
e(x1, x2)

σ2
e(x1)

(143)

8Strictly, we can only apply this model if the samples within each time series are indepen-
dent (see later). To make them independent we can randomize the time index thus removing
any correlation between lagged samples. We therefore end up with a random variables rather
than time series.
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Figure 9: Three time series having the correlation matrix C1 and mean vector
m1 shown in the text. The dotted line shows the value of the third time series
as predicted from the other two using a regression model.

where σ2
e(x1, x2) is the variance of the errors from the regression model based

on x1 and x2. It’s the extra proportion of variance in y explained by x2. It’s
different to r2

x2y because x2 may be correlated to x1 which itself explains some of
the variance in y. After controlling for this, the resulting proportionate reduction
in variance is given by r2

x2y|x1
. More generally, we can define pth order partial

correlations which are the correlations between two variables after controlling
for p variables.

The sign of the partial correlation is given by the sign of the corresponding
regression coefficient.

6.6.1 Relation to regression coefficients

Partial correlations are to regression coefficients what the correlation is to the
slope in univariate linear regression. If the partial correlation is significantly
non-zero then the corresponding regression coefficient will also be. And vice-
versa.
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