1 Generalised Inverse

For GLM
y=XpB+e (1)

where X is a N x k design matrix and p(e) = N(0, o*Iy),
we can estimate the coefficients from the normal equa-
tions

(X'X)3=X"y (2)

If rank of X, denoted r(X), is k (ie. full rank) then X7 X
has an inverse (it is ‘nonsingular’) and

O=x"X)"x"y (3)

But if r(x) < k we can have X3, = X[, (ie. same
predictions) with 5y # (2 (different parameters). The
parameters are then not therefore ‘unique’, ‘identifiable’
or ‘estimable’.

For example, a design matrix sometimes used in the



Analysis of Variance (ANOVA)

(4)
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has k = 3 columns but rank r(X) = 2 ie. only two lin-
early independent columns (any column can be expressed
as a linear combination of the other two).

For models such as these X7 X is not invertible, so
we must resort to the generalised inverse, X~. This is
defined as any matrix X~ such that X X~ X = X. It can
be shown that in the general case

f = (XTX) X'y (5)
— X_y
If X is full-rank, X7 X is invertible and X~ = (X7 X)) 1 X7,
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There are many generalise inverses. We would often
choose the pseudo-inverse (pinv in MATLAB)

B=X"y (6)
Take home message: avoid rank-deficient designs. If X

is full rank, then X+ = X~ = (XTX)"1XT.

2 Estimating error variance

An unbiased estimate for the error variance o? can be
derived as follows. Let
X3 =Py (7)
where P is the projection matrix
P = X(XTX) x* (8)

= XX~

Py projects the data y into the space of X. P has two
important properties (i) it is symmetric PT = P, (ii)

3



PP=P. This second property follows from it being a

projection. If what is being projected is already in X

space (ie. Py) then looking for that component of it that

is in X space will give the same thing ie. PPy = Py.
Then residuals are

¢ = y—Xp (9)
= (I-=P)y

where R = Iy — XX~ is the residual-forming matrix.
Remember, é is that component of the data, orthogonal
to the ‘space’ X. Ry is another projection matrix, but
one that projects the data y into the orthogonal com-
plement of X. Similarly, R has the two properties (i)
RT = R and (ii) RR = R.

We now look seek an unbiased estimator of the vari-
ance by first looking at the expected sum of squares

El¢'e] = Ely"R' Ry (10)
= Ely' Ry
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Space of X

FIGURE 9.15 Geometrical perspective: estimation. The data Y
are projected orthogonally onto the space of the design matrix (X)
detined by two regressors C1 and C2. The error ¢ is the distance
between the data and the smallest possible within the model space.



We now use the standard result: If p(a) = N(u, V') then
Ela’Ba) = y" By + Tr(BV)
So, if p(y) = N(X,0%Iy) then

Ely"Ry] = "XT"RX(+ Tr(c’R) (11)
= AT(XTX = XTXX X)B+Tr(c’R)
= Tr(c*(I — P))
= o*(N —r(P))
= o*(N — k)

So, an unbiased estimate of the variance is

o> = (y"Ry)/(N — k) (12)
— RSS/(N —k)

where the RSS is ‘Residual Sum of Squares’. Remember,
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the ML variance estimate is

o%yr = (y' Ry)/N (13)

3 Comparing nested GLMs

Full model:
y = Xobo+ X101 + ¢ (14)
Reduced model:
y = Xobo + €o (15)
Consider the test-statistic
f= (RSSyea — RSSyun)/(k — p)
RSSpu/(N — k)

(16)
where 'Residual Sum of Squares (RSS)’ are
RSSpu = élé (17)
RSS,eq = €L ¢y (18)



We can re-write in terms of ‘Extra Sum of Squares’
ESS/(k—p)

f = RSS (V- ) 1
where
ESS = RSSyeqa — RSSru (20)
We can compute these quantities using
RSSpu = y' Ry (21)
RSSred = y' Roy
We expect the denominator to be
E[RSStui/(N — k)] = o (22)
and, under the null (3; = 0), we have 02 = o% and

therefore expect the numerator to be
E[(RSSred — RSSfull)/(k — p)] = 02 (23)

where r(Ry — R) = k — p (mirroring the earlier expecta-
tion calculation). Under the null, we therefore expect a
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test statistic of unity

2

< f>= ; (24)

as both numerator and denominator are unbiased esti-
mates of error variance. We might naively expect to
get a numerator of zero, under the null. But this is
not the case because, in any finite sample, ESS will
be non zero. When we then divide by (k — p) we get
E[ESS/(k —p)] = o2

When the full model is better we get a larger f value.

4 Partial correlation and R2

The square of the partial correlaton coefficient

r_ RSS.a— RSSp
v, X1|Xo T RSS,.q

is the (square) of the correlation between y and X0
after controlling for the effect of Xy3,. Abbreviating the

(25)



above to R?, the F-statistic can be re-written as

R?/(k —p)
(1= R)/(N—F)

Model comparison tests are identical to tests of partial
correlation.

In X explains no variance eg. it is a constant or empty
matrix then

;= (26)

B YTY —YTRY
B YTy
which is the proportion of variance explained by the
model with design matrix X. More generally, if X is
not the empty matrix then R? is that proportion of the
variability unexplained by the reduced model X, that is
explained by the full model X.

R2

(27)

5 Examples
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Unfamiliar Famihar
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6 How large must f be for a ‘significant’ im-
provement 7

Under the null (8; = 0), f follows an F-distribution with
k — p numerator degrees of freedom (DF) and N — k
denominator DF.

Info on PDFs and transforming them.
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7 Contrasts

We can also compare nested models using contrasts. This
is more efficient, as we only need to estimate parameters
of the full model.

For a contrast matrix C' we wish to test the hypothesis
CT3 = 0. This can correspond to a model comparison,
as before, if C'is chosen appropriately. But it is also more
general, as we can test any effect which can be expressed
as

CTp=HTXp (28)
for some H. This defines a space of estimable contrasts.

The contrast C' defines a subspace X, = XC. As be-
fore, we can think of the hypothesis C7 3 = 0 as compar-
ing a full model, X, versus a reduced model which is now
given by Xy = Xy where () is a contrast orthogonal to
C ie.

Co=1;—CC™ (29)

A test statistic can then be generated as before where
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R():IN—X()XO_,M:R()—Rand

;e y' My/r(M)
y"Ry/r(R)

In fMRI, the use of contrasts allows us to test for
(i) main effects and interactions in factorial designs, (ii)
choice of hemodynamic basis sets. Importantly, we do
not need to refit models.

The numerator can be calculated efficiently as

y'My=:¢"[CT(XTX)C|] e (31)

(30)

where ¢ = C’TB is the estimated effect size. See Chris-
tensen [1] for details.
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8 Hemodynamic basis functions

If C(t,u) is the ‘Canonical’ basis function for event offset
u then, using a first-order Taylor series approximation

C(t, Uy + h) ~ O(t, U()) + hdcc(it’u) (32)
u

~ C(t,up) + hD(t,up)

where the derivative is evaluated at © = wuy. This will
allow us to accomodate small errors in event timings, or
earlier /later rises in the hemodynamic response.

20



20 PST (s)

15

10

21



Delay=0.50, b=[1.01,-0.51]

Delay=1.00, b=[1.00,-1.00]

Delay=1.50, b=[0.96,-1.43]

0.3

03

0.3

Delay=2.00, b=[0.89,-1.76]

0 20 40

Delay=2.50, b=[0.81-1.98]

0 20 40

0 20

40

Delay=3.00, b=[0.72,-2.08]

0 20 4
Delay=3.50, b=[0.62,-2.07]

0 20 4
Delay=4.00, b=[0.52,-1.99]

0 20

40

Delay=4.50, b=[0.42,-1.84]

22

40



Proportion of variance explained using HRF + Deriv

4 07E

0.6

0.5+

0.4 ‘ i

0.5 1 1.5

23

L
25
Delay, s

4.5



fMRI

fMRI

R2=0.05

80

55 : :
0 100 200 300

80

400

55
0

24

400

Scans

Scans

Il

|

Regressors



fMRI

fMRI

R2=0.25

80

50
100

2 150

3

@ 200
250
300
350

50
100

® 150

3

& 200
250

300

55 L : : 3580
0

25

[ >

|
|

(

——

I

)

i
<
I‘I |

i

il

|

|

|

Regressors



FIGURE 9.16 Hypothesis testing: the geometrical perspective.
With a model defined by,the two regressors C1 and C2, testing
for C2 in effect measures its part orthogonal to C1. If the model
is explicitly orthogonalized, (i.e. C2 is replaced by C2°%), the test
ot C2 is unchanged, but the test of C1 is, and will capture more
variablity, as indicated by Clg,.
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