
1 Generalised Inverse

For GLM
y = Xβ + e (1)

where X is a N×k design matrix and p(e) = N(0, σ2IN),
we can estimate the coefficients from the normal equa-
tions

(XTX)β = XTy (2)

If rank of X, denoted r(X), is k (ie. full rank) then XTX

has an inverse (it is ‘nonsingular’) and

β̂ = (XTX)−1XTy (3)

But if r(x) < k we can have Xβ1 = Xβ2 (ie. same
predictions) with β1 6= β2 (different parameters). The
parameters are then not therefore ‘unique’, ‘identifiable’
or ‘estimable’.

For example, a design matrix sometimes used in the
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Analysis of Variance (ANOVA)

X =



1 0 1
1 0 1
1 0 1
0 1 1
0 1 1
0 1 1
0 1 1


(4)

has k = 3 columns but rank r(X) = 2 ie. only two lin-
early independent columns (any column can be expressed
as a linear combination of the other two).

For models such as these XTX is not invertible, so
we must resort to the generalised inverse, X−. This is
defined as any matrix X− such that XX−X = X. It can
be shown that in the general case

β̂ = (XTX)−XTy (5)

= X−y

If X is full-rank, XTX is invertible and X− = (XTX)−1XT .
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There are many generalise inverses. We would often
choose the pseudo-inverse (pinv in MATLAB)

β̂ = X+y (6)

Take home message: avoid rank-deficient designs. If X

is full rank, then X+ = X− = (XTX)−1XT .

2 Estimating error variance

An unbiased estimate for the error variance σ2 can be
derived as follows. Let

Xβ̂ = Py (7)

where P is the projection matrix

P = X(XTX)−XT (8)

= XX−

Py projects the data y into the space of X. P has two
important properties (i) it is symmetric P T = P , (ii)
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PP=P . This second property follows from it being a
projection. If what is being projected is already in X

space (ie. Py) then looking for that component of it that
is in X space will give the same thing ie. PPy = Py.

Then residuals are

ê = y −Xβ̂ (9)

= (I − P )y

= Ry

where R = IN − XX− is the residual-forming matrix.
Remember, ê is that component of the data, orthogonal
to the ‘space’ X. Ry is another projection matrix, but
one that projects the data y into the orthogonal com-
plement of X. Similarly, R has the two properties (i)
RT = R and (ii) RR = R.

We now look seek an unbiased estimator of the vari-
ance by first looking at the expected sum of squares

E[êT ê] = E[yTRTRy] (10)

= E[yTRy]
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We now use the standard result: If p(a) = N(µ, V ) then

E[aTBa] = µTBµ + Tr(BV )

So, if p(y) = N(Xβ̂, σ2IN) then

E[yTRy] = β̂TXTRXβ̂ + Tr(σ2R) (11)

= β̂T (XTX −XTXX−X)β̂ + Tr(σ2R)

= Tr(σ2(I − P ))

= σ2(N − r(P ))

= σ2(N − k)

So, an unbiased estimate of the variance is

σ̂2 = (yTRy)/(N − k) (12)

= RSS/(N − k)

where the RSS is ‘Residual Sum of Squares’. Remember,
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the ML variance estimate is

σ̂2
ML = (yTRy)/N (13)

3 Comparing nested GLMs

Full model:
y = X0β0 + X1β1 + e (14)

Reduced model:
y = X0β0 + e0 (15)

Consider the test-statistic

f =
(RSSred −RSSfull)/(k − p)

RSSfull/(N − k)
(16)

where ’Residual Sum of Squares (RSS)’ are

RSSfull = êT ê (17)

RSSred = êT
0 ê0 (18)
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We can re-write in terms of ‘Extra Sum of Squares’

f =
ESS/(k − p)

RSSfull/(N − k)
(19)

where
ESS = RSSred −RSSfull (20)

We can compute these quantities using

RSSfull = yTRy (21)

RSSred = yTR0y

We expect the denominator to be

E[RSSfull/(N − k)] = σ2 (22)

and, under the null (β1 = 0), we have σ2
0 = σ2 and

therefore expect the numerator to be

E[(RSSred −RSSfull)/(k − p)] = σ2 (23)

where r(R0 −R) = k − p (mirroring the earlier expecta-
tion calculation). Under the null, we therefore expect a
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test statistic of unity

< f >=
σ2

σ2 (24)

as both numerator and denominator are unbiased esti-
mates of error variance. We might naively expect to
get a numerator of zero, under the null. But this is
not the case because, in any finite sample, ESS will
be non zero. When we then divide by (k − p) we get
E[ESS/(k − p)] = σ2.

When the full model is better we get a larger f value.

4 Partial correlation and R2

The square of the partial correlaton coefficient

R2
y,X1|X0

=
RSSred −RSSfull

RSSred
(25)

is the (square) of the correlation between y and X1β1

after controlling for the effect of X0β0. Abbreviating the
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above to R2, the F-statistic can be re-written as

f =
R2/(k − p)

(1−R2)/(N − k)
(26)

Model comparison tests are identical to tests of partial
correlation.

In X0 explains no variance eg. it is a constant or empty
matrix then

R2 =
Y TY − Y TRY

Y TY
(27)

which is the proportion of variance explained by the
model with design matrix X. More generally, if X0 is
not the empty matrix then R2 is that proportion of the
variability unexplained by the reduced model X0 that is
explained by the full model X.

5 Examples
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6 How large must f be for a ‘significant’ im-
provement ?

Under the null (β1 = 0), f follows an F -distribution with
k − p numerator degrees of freedom (DF) and N − k

denominator DF.
Info on PDFs and transforming them.

17



7 Contrasts

We can also compare nested models using contrasts. This
is more efficient, as we only need to estimate parameters
of the full model.

For a contrast matrix C we wish to test the hypothesis
CTβ = 0. This can correspond to a model comparison,
as before, if C is chosen appropriately. But it is also more
general, as we can test any effect which can be expressed
as

CTβ = HTXβ (28)

for some H. This defines a space of estimable contrasts.
The contrast C defines a subspace Xc = XC. As be-

fore, we can think of the hypothesis CTβ = 0 as compar-
ing a full model, X, versus a reduced model which is now
given by X0 = XC0 where C0 is a contrast orthogonal to
C ie.

C0 = Ik − CC− (29)

A test statistic can then be generated as before where
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R0 = IN −X0X
−
0 , M = R0 −R and

f =
yTMy/r(M)

yTRy/r(R)
(30)

In fMRI, the use of contrasts allows us to test for
(i) main effects and interactions in factorial designs, (ii)
choice of hemodynamic basis sets. Importantly, we do
not need to refit models.

The numerator can be calculated efficiently as

yTMy = ĉT
[
CT (XTX)−C

]−
ĉ (31)

where ĉ = CT β̂ is the estimated effect size. See Chris-
tensen [1] for details.
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8 Hemodynamic basis functions

If C(t, u) is the ‘Canonical’ basis function for event offset
u then, using a first-order Taylor series approximation

C(t, u0 + h) ≈ C(t, u0) + h
dC(t, u)

du
(32)

≈ C(t, u0) + hD(t, u0)

where the derivative is evaluated at u = u0. This will
allow us to accomodate small errors in event timings, or
earlier/later rises in the hemodynamic response.
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