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1 Linear algebra

1.1 Orthogonal Matrices

The set of vectors q1..qk are orthogonal if

qT
j qk =

0 j 6= k

djk j = k
(1)

If these vectors are placed in columns of the matrix Q

then
QTQ = QQT = D (2)
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1.2 Orthonormal Matrices

The set of vectors q1..qk are orthonormal if

qT
j qk =

0 j 6= k

1 j = k
(3)

If these vectors are placed in columns of the matrix Q

then
QTQ = QQT = I (4)

Hence, the transpose equals the inverse

QT = Q−1 (5)

The vectors q1..qk are said to provide an orthonormal
basis. This means that any vector can be written as a
linear combination of the basis vectors. A trivial exam-
ple is the two-dimensional cartesian coordinate system
where q1 = [1, 0]T (the x-axis) and q2 = [0, 1]T (the y-
axis). More generally, to represent the vector x we can
write

x = x̃1q1 + x̃2q2 + ... + x̃dqd (6)
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To find the appropriate coefficients x̃k(the co-ordinates
in the new basis), multiply both sides by qT

k . Due to the
orthonormality property all terms on the right disappear
except one leaving

x̃k = qT
k x (7)

The new coordinates are the projections of the data onto
the basis functions (re. definition of projections in earlier
lecture, there is no denominator since qT

k qk = 1). In
matrix form, equation 6 can be written as x = Qx̃ which
therefore has the solution x̃ = Q−1x. But given that
Q−1 = QT we have

x̃ = QTx (8)

So for orthonormal bases, eg. Fourier or wavelets, data
can be transformed from data to parameter space and
vice-versa without inverse operators (not so for GLM
with arbitrary design matrix).
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1.3 Determinants

The determinant of a two-by-two matrix

A =

 a b

c d

 (9)

is given by
det(A) = ad− bc (10)

The determinant of a three-by-three matrix

A =


a b c

d e f

g h i

 (11)

is given by

det(A) = a det

 e f

h i

−b det

 d f

g i

+c det

 d e

g h


(12)

Determinants are important because of their properties.
In particular, if two rows of a matrix are equal then the
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determinant is zero eg. if

A =

 a b

a b

 (13)

then
det(A) = ab− ba = 0 (14)

In this case the transformation from x = [x1, x2]
T to

y = [y1, y2]
T given by

Ax = y (15)
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reduces two pieces of information (x1 and x2) to one piece
of information

y = y1 = y2 = ax1 + bx2 (16)

In this case it is not possible to reconstruct x from y;
the transformation is not invertible - the matrix A does
not have an inverse and the value of the determinant
provides a test for this: If det(A) = 0 the matrix A is
not invertible; it is singular. Conversely, if det(A) 6= 0
then A is invertible.

Another important property of determinants is that
they measure the ‘volume’ of a matrix. For a 3-by-3
matrix the three rows of the matrix form the edges of a
cube. The determinant is the volume of this cube. For a
d-by-d matrix the rows form the edges of a ‘parallepiped’.
Again, the determinant is the volume.

We also write
det(A) = |A| (17)
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1.4 Eigenanalysis

The square matrix A has eigenvalues λ and eigenvectors
q if

Aq = λq (18)

Therefore
(A− λI)q = 0 (19)

To satisfy this equation either q = 0, which is uninter-
esting, or the matrix A − λI must reduce q to the null
vector (a single point). For this to happen A− λI must
be singular. Hence

det(A− λI) = 0 (20)

Eigenanalysis therefore proceeds by (i) solving the above
equation to find the eigenvalues λi and then (ii) substi-
tuting them into equation 18 to find the eigenvectors.
For example, if

A =

 4 −5
2 −3

 (21)
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then

det(A− λI) = (4− λ)(−3− λ)− (−5)(2) = 0 (22)

which can be rearranged as

λ2 − λ− 2 = 0 (23)

(λ + 1)(λ− 2) = 0

Hence the eigenvalues are λ = −1 and λ = 2. Substitut-
ing back into equation 18 gives an eigenvector q1 which
is any multiple of [1, 1]T . Similarly, eigenvector q2 is any
multiple of [5, 2]T .

We now note that the determinant of a matrix is also
equal to the product of its eigenvalues

det(A) =
∏
k

λk (24)

We also define the Trace of a matrix as the sum of its
diagonal elements

Tr(A) =
∑
k

akk (25)
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and note that it is also equal to the sum of the eigenvalues

Tr(A) =
∑
k

λk (26)

Eigenanalysis applies only to square matrices.

1.5 Diagonalization

If we put the eigenvectors into the columns of a matrix

Q =



| | . |
| | . |
q1 q2 . qd

| | . |
| | . |


(27)

then, because, Aqk = λkqk, we have

AQ =



| | . |
| | . |
λ1q1 λ2q2 . λdqd

| | . |
| | . |


(28)
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If we put the eigenvalues into the matrix Λ then the
above matrix can also be written as QΛ. Therefore,

AQ = QΛ (29)

Pre-multiplying both sides by Q−1 gives

Q−1AQ = Λ (30)

This shows that any square matrix can be converted into
a diagonal form (provided it has distinct eigenvalues; see
eg. [4] p. 255).

1.6 Spectral Theorem

For any real symmetric matrix all the eigenvalues will be
real and there will be d distinct eigenvalues and orthog-
onal eigenvectors. They can be normalised and placed
into the matrix Q. Since Q is now orthonormal we have
Q−1 = QT . Hence

QTAQ = Λ (31)
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Pre-multiplying by Q and post-multiplying by QT gives

A = QΛQT (32)

which is known as the spectral theorem. It says that
any real, symmetric matrix can be represented as above
where the columns of Q contain the eigenvectors and
Λ is a diagonal matrix containing the eigenvalues, λi.
Equivalently,

A =



| | . |
| | . |
q1 q2 . qd

| | . |
| | . |





λ1

λ2

λd




− − q1 − −
− − q2 − −
. . . .

− − qd − −

(33)

This can also be written as a summation

A =
d∑

k=1
λkqkq

T
k (34)

This provides a particularly efficient way to compute
powers of matrices

Ak = QΛkQT (35)

11



This is particularly useful for solving multivariate differ-
ence and differential equations (see later lecture). Using
the above with k = −1 shows det(A−1) = 1/ det(A).
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1.7 Quadratic Forms

The quadratic function

f(x) = a11x
2
1 + a12x1x2 + a21x2x1 + ... + addx

2
d (36)

can be written in matrix form as

f(x) = [x1, x2, ..., xd]



a11 a12 a1d

a21 a22 a2d

ad1 ad2 add




x1

x2

.

xd

 (37)

which is written compactly as

f(x) = xTAx (38)

If f(x) > 0 for any non-zero x then A is said to be
positive-definite. Similarly, if f(x) ≥ 0 then A is positive-
semi-definite.

If we substitute A = QΛQT and x = Qy where y are
the projections onto the eigenvectors, then we can write

f(x) = yTΛy (39)
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=
∑
i

y2
i λi

Hence, for positive-definiteness we must therefore have
λi > 0 for all i (ie. positive eigenvalues).

2 Principal Component Analysis

Given a set of data vectors {xn} we can construct a co-
variance matrix

C =
1

N

∑
n

(xn − x̄)(xn − x̄)T (40)

or, if we construct a matrix X with rows equal to xn− x̄

then

C =
1

N
XTX (41)

Because covariance matrices are real and symmetric we
can apply the spectral theorem

C = QΛQT (42)
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If the eigenvectors (columns of Q) are normalised to
unit length, they constitute an orthonormal basis. If
the eigenvalues are then ordered in magnitude such that
λ1 ≥ λ2 ≥ ... ≥ λd then the decomposition is known as
Principal Component Analysis (PCA). The projection of
a data point xn onto the principal components is

yn = QTxn (43)

The mean projection is

ȳ = QT x̄ (44)

The covariance of the projections is given by the matrix

Cy =
1

N

∑
n

(yn − ȳ)(yn − ȳ)T (45)

Substituting in the previous two expressions gives

Cy =
1

N

∑
n

QT (xn − x̄)(xn − x̄)TQ (46)

= QTCQ

= Λ
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where Λ is the diagonal eigenvalue matrix with entries
λk (σ2

k = λk). This shows that the variance of the kth
projection is given by the kth eigenvalue. Moreover, it
says that the projections are uncorrelated. PCA may
therefore be viewed as a linear transform

y = QTx (47)

which produces uncorrelated data.

2.1 The Multivariate Gaussian Density

In d dimensions the general multivariate normal proba-
bility density can be written

p(x) =
1

(2π)d/2|C|1/2 exp

(
−1

2
(x− x̄)TC−1(x− x̄)

)
(48)

where the mean x̄ is a d-dimensional vector, C is a d×d

covariance matrix, and |C| denotes the determinant of
C. Because the determinant of a matrix is the product
of its eigenvalues then for covariance matrices, where the
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eigenvalues correspond to variances, the determinant is
a single number which represents the total volume of
variance. The quantity

M(x) = (x− x̄)TC−1(x− x̄) (49)

which appears in the exponent is called the Mahalanobis
distance from x to x̄.

2.2 Singular Value Decomposition

The eigenvalue-eigenvector factorisation (see equation 32)

A = QΛQT (50)

applies to real symmetric matrices only. There is an
equivalent factorisation for rectangular matrices, having
N rows and d columns, called Singular Value Decompo-
sition (SVD)

A = Q1DQT
2 (51)

where Q1 is an orthonormal N -by-N matrix, Q2 is an
orthonormal d-by-d matrix, D is a diagonal matrix of
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(a)

(b)

Figure 1: (a) 3D-plot and (b) contour plot of Multivariate Gaussian PDF with
µ = [1, 1]T and C11 = C22 = 1 and C12 = C21 = 0.6 ie a positive correlation
of r = 0.6.
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dimension N -by-d and the kth diagonal entry in D is
known as the kth singular value, σk.

If we substitute the SVD of A into ATA, after some
rearranging, we get

ATA = Q2D
TDQT

2 (52)

which is of the form A = QΛQT where Q = Q2 and
Λ = DTD. This shows that the columns of Q2 con-
tain the eigenvectors of ATA and that D contains the
square roots of the corresponding eigenvalues. Similarly,
by substituting the SVD of A into AAT we can show
that the columns of Q1 are the eigenvectors of AAT .

2.2.1 Relation to PCA

Given a data matrix X constructed as before (see PCA
section), except that the matrix is scaled by a normali-
sation factor

√
1/N , then XTX is equivalent to the co-

variance matrix C. If we therefore decompose X using
SVD, the principal components will apear in Q2 and the
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square roots of the corresponding eigenvalues will appear
in D.

Therefore we can implement PCA in one of two ways
(i) compute the covariance matrix and perform an eigen-
decomposition or (ii) use SVD directly on the (normalised)
data matrix.

See eg. alan_svd.m.
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2.3 PET verbal fluency data

Subject scanned under two alternating conditions (i) word
generation and (ii) word shadowing. Six repetitions of
each. GLM analysis to select voxels showing significant
variation over the 12 scans. Zero mean voxel activities
over scans.

Create matrix M of dimension Nscans × Nvoxels. Ap-
plication of SVD

USV T = M (53)

places temporal components (eigenvariates) in columns
of U and spatial components (eigenimages) in columns of
V . Diagonal elements in S show that first mode accounts
for 64% variance, second 16%.

First eigenimage has positive loadings in anterior cin-
gulate, left DLPFC, Broca’s area, thalamic nuclei and
cerebellum (regions showing higher activity in genera-
tion than shadowing). Negative loadings bitemporally
and in posterior cingulate.
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2.4 Summarising regional activity

See region_svd.m
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3 Structural Equation Modelling

Structural Equation Models (SEMs) comprise a set of
regions and a set of directed connections. Importantly, a
causal semantics is ascribed to these connections where
an arrow from A to B means that A causes B. Causal
relationships are thus not inferred from the data but are
assumed a-priori [2].

We consider networks comprising N regions in which
the activity at time t is given by the N × 1 vector yt. If
there are T time points and Y is an N × T data matrix
comprising t = 1..T such vectors then the likelihood of
the data is given by

p(Y |θ) =
T∏

t=1
p(yt|θ) (54)

where θ are the parameters of an SEM.
The second SEM equation specifies the generative model

at time t

p(yt|θ) = N (yt; 0, Σ(θ)) (55)
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which denotes that the activities are zero mean Gaussian
variates with a covariance, Σ(θ), that is a function of the
connectivity matrix θ. The form of this function is spec-
ified implicitly by the regression equation that describes
how activity in one area is related to activity in other
areas via a set of path coefficients, M , as

yt = Myt + et (56)

where et are zero mean Gaussian innovations or errors of
covariance R. Typically R will be a diagonal matrix and
we write the error variance in region i as σ2

i . Regions are
connected together via the N×N path coefficient matrix
M where the Mij denotes a connection from region j to
region i. The parameters of an SEM, θ, are the unknown
elements of M and R. Re-write as

yt = (IN −M)−1et (57)

This form is particularly useful as it shows us how to
generate data from the model. Firstly, we generate the
Gaussian variates et and then pre-multiply by (IN −
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M)−1. This is repeated for each t. This form also al-
lows us to express the covariance of yt as a function of
θ

Σ(θ) = (IN −M)−1R(IN −M)−T (58)

3.1 Estimation

Given a set of parameters θ we can compute the likeli-
hood of a data set from equations 54, 55 and 58. Given
a data set one can therefore find the connectivity ma-
trix that maximises the (log) likelihood using standard
optimisation methods [3].

L(θ) = −T

2
log |Σ(θ)| − NT

2
log 2π − 1

2

T∑
t=1

yT
t Σ(θ)−1yt

(59)
If we define the sample covariance as

S =
1

T

T∑
t=1

yty
T
t (60)
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then, by noting that the last term is a scalar and that
the trace of a scalar is that same scalar value, and using
the circularity property of the trace operator (that is,
Tr(AB) = Tr(BA)), we can write

L(θ) = −T

2
log |Σ(θ)|−NT

2
log 2π−T

2
Tr(SΣ(θ)−1) (61)

If we use unbiased estimates of the sample covariance
matrix then we replace T ’s in the above equation by
T − 1’s. If we now also drop those terms that are not
dependent on the model parameters we get

L(θ) = −T − 1

2

(
log |Σ(θ)|+ Tr(SΣ(θ)−1)

)
(62)

Maximum likelihood estimates can therefore be obtained
by maximising the above function.
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3.2 Inference

Statistical inference is based on the likelihood ratio for
comparing models i and j is

Rij =
p(Y |θ,m = i)

p(Y |θ,m = j)
(63)

If L(θi) and L(θj) are the corresponding log-likelihoods
then the log of the likelihood ratio is

log Rij = L(θi)− L(θj) (64)

Under the null hypothesis that the models are identical,
and for large T, −2 log Rij is distributed as a chi-squared
variable having degrees of freedom equal to the difference
in number of parameters between the models (see p.265
in [1]). This only applies to nested models.

A special case of the above test arises when one wishes
to evaluate the goodnees of fit of a single model. We
will denote this as ‘model 1’. This can be achieved by
comparing the likelihood of model 1 to the likelihood
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of the least restrictive (most complex) model one could
possibly adopt (‘model 0’) with covariance equal to the
sample covariance ie. Σ(θ) = S. The has likelihood

L0 = −T − 1

2

(
log |S|+ Tr(SS−1)

)
(65)

= −T − 1

2
(log |S|+ N)

(66)

The corresponding (log) likelihood ratio is

log R10 = −T − 1

2

(
log |Σ(θ)|+ Tr(SΣ(θ)−1)− log |S| −N

)
(67)

which in turn has a corresponding chi-squared value

χ2 = (T − 1)F (θ) (68)

where

F (θ) = log |Σ(θ)|+ Tr(SΣ(θ)−1)− log |S| −N (69)

The corresponding degrees of freedom are equal to the
degrees of freedom in model 0, k, minus the degrees of
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freedom in model 1, q. For an N-dimensional covariance
matrix there are k=N(N+1)/2 degrees of freedom. For
model 1, q equals the total number of connectivity and
variance parameters to be estimated. The associate χ2

test provides a way of assessing if an SEM fits the data
sufficiently.

For more general model comparisons the χ2 statistic
associated with the LR test can be written as

χ2 = (T − 1)(F (θ1)− F (θ2)) (70)

3.3 Attention to visual motion fMRI data

We first use a feedforward architecture. The null model
has all parameters fixed between conditions giving k = 8
(two path coefficients and six error variance parameters).
The alternative model allows V1-V5 to change giving
q = 9. The alternative model fits better (p = 0.003).

But in comparison to the sample covariance, where
k = N(N +1)/2 = 6 degrees of freedom per data set and
two data sets (two conditions) ie. k = 12, the alternative
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model is sig. different (p < 1e− 5). It is therefore not a
good model of the data.
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We now use a recpirocal architecture. The null model
has all parameters fixed between conditions giving k =
10. The alternative model allows V1-V5 to change giving
q = 11. The alternative model fits better (p = 9e− 6).

In comparison to the sample covariance, where k = 12,
the alternative model is not sig. different (p = 0.05)
(well, its borderline !). It is therefore an acceptable
model of the data.

As compared to the feedforward model, the correla-
tions between V1 and SPC are modelled more accurately
(at a minor cost of not modelling V1-V5 and V5-SPC
correlations quite so accurately).
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