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2 Bayes Factors

Bayes rule for data y and ‘model’ or ‘hypothesis’ i

p(m = i|y) =
p(y|m = i)p(m = i)

p(y)

In this context, p(y|m = i), is known as the evidence for
model i. Similarly for model j

p(m = j|y) =
p(y|m = j)p(m = j)

p(y)

Dividing one by the other gives

p(m = i|y)

p(m = j|y)
=

p(y|m = i)

p(y|m = j)
× p(m = i)

p(m = j)

This is the fundamental relationship

PosteriorOdds = BayesFactor × PriorOdds

The Bayes factor is a ratio of model evidences. It tells
you how the odds have changed. It can be written BFij.
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2.1 Inferring cognitive processes

Poldrack[3] considers the relationship between engage-
ment of cognitive processes, m, and activation of brain
regions y. For example, using the BrainMap database, the
frequency of language studies, L, that give rise to Broca
activations (20mm ROI at x = −37, y = 18, z = 18mm)
can be used to estimate

p(y = B|m = L) =
p(y = B, m = L)

p(m = L)
(1)

=
166

869
= 0.191

Simiarly, given the number of non-language studies, L̄,
that also activate Broca’s area

p(y = B|m = L̄) =
p(y = B, m = L̄)

p(m = L̄)
(2)

=
199

2353
= 0.085
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Figure 1: Cognitive processes, m, described in BrainMap database.
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This gives rise to a Bayes factor

BFL,L̄ =
p(y = B|m = L)

p(y = B|m = L̄)
(3)

=
0.191

0.085
= 2.3

That is, after seeing a Broca activation, the odds that a
language process has been engaged are larger by a factor
2.3.

For equal prior odds p(m = L) = p(m = L̄) = 0.5, the
posterior probability of language processes given a Broca
activation is

p(m = L|y = B) =
p(y = B|m = L)p(m = L)

p(y = B|m = L)p(m = L) + p(y = B|m = L̄)p(m = L̄)

=
0.191

0.191 + 0.085
= 0.69
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Figure 2: Effect of ROI size on posterior probability. Power of reverse inference
is increased using smaller, more selective regions.6



3 Making inferences about models
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Figure 3: Hierarchical generative model in which members of a model class, in-
dexed by m, are considered as part of the hierarchy. Typically, m indexes the
structure of the model. This might be the connectivity pattern in a dynamic
causal model or set of anatomical or functional constraints in a source recon-
struction model. Once a model has been chosen from the distribution p(m), its
parameters are generated from the parameter prior p(θ|m) and finally data is
generated from the likelihood p(y|θ, m).
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Figure 4: In Bayesian Model Selection (BMS), the posterior model probability
p(m|y), is used to select a single ‘best’ model. In Bayesian Model Averaging
(BMA), inferences are based on all models and p(m|y) is used as a weighting
factor. Only in BMA, are parameter inferences based on the correct marginal
density p(θ|y).
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4 Evidence for Bayesian GLMs

For a Bayesian GLM

y = Xβ + e1 (4)

β = µ + e2

with linear covariance constraints

C1 =
∑
i

λiQi (5)

C2 =
∑
j

λjQj

From lecture 6 we know that the posterior distribution
over regression coefficients is

Σ−1 = X̄TV −1X̄ (6)

β̂ = Σ(X̄TV −1ȳ)

where

X̄ =

 X

I

 (7)
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V =

 C1 0
0 C2


ȳ =

 y

µ



where we’ve augmented the data matrix with prior ex-
pectations.

We’ll assume that we’ve run PEB and so have esti-
mated parameters, β̂, and hyperparameters, λ̂. We now
wish to compute the model evidence p(y|m).

From lecture 5 we know that

p(y|λ, m) = (2π)−N/2|V |−1/2 (8)

× exp

(
1

2
(ȳ − X̄β̂)TV −1(ȳ − X̄β̂)

)

× |X̄TV −1X̄|−1/2
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By substuting in the expressions for V , ȳ and X̄ and
taking logs we can write the log evidence as

log p(y|λ, m) = Accuracy(m)− Complexity(m) (9)

where

Accuracy(m) = −1

2
log |C1| −

1

2
(y −Xβ̂)TC−1

1 (y −Xβ̂)

Complexity(m) =
1

2
log |C2| −

1

2
log |Σ|+ 1

2
(µ− β̂)TC−1

2 (µ− β̂)

The second term is referred to as ‘complexity’ because
eg. the quadratic term scales with the number of param-
eters in the model. A model with high evidence must
therefore provide a good trade-off between accuracy and
complexity.

This trade-off is also employed in other more ad-hoc
model selection schemes eg. AIC and BIC have complex-
ity terms embodying fixed costs for each parameter of 1
(AIC) and 1

2 log N . See eg. [2] for more details.
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4.1 Integrating out hyperparameters

To get the evidence p(y|m) we must integrate out the
uncertainty in the hyperparameters λ.

p(y|m) =
∫

p(y|λ, m)dλ (10)

To do this we’ll assume that the hyperparameters have
a Gaussian distribution about their estimated value, λ̂.
As the hyperparameters must be positive we’ll assume
that this distribution is in log space. If we have a single
hyperparameter then

p(y|λ, m) = p(y|λ̂, m) exp

−(log λ− log λ̂)2

2σ2
log λ

 (11)

where σ2
log λ is our uncertainty (variance) in the (log) es-

timated hyperparamater. We can then evaluate the in-
tegral to give

p(y|m) = p(y|λ̂, m)(2π)1/2σlog λ (12)

The last terms are just the normalising constant for the
Gaussian density. This expression for the evidence takes
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Figure 5: Approximating the hyperparameter uncertainty with a Gaussian in log
space.
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into account uncertainty in the estimation of the hypepa-
rameters. If we have H hyperparameters then we get

p(y|m) = p(y|λ̂, m)(2π)H/2
H∏

h=1
σlog λh

(13)

5 Multimodal Imaging

Source reconstruction of EEG using fMRI location priors
[1]. To ‘reconstruct’ EEG data at a single time point use
the model

y = Xβ + e1 (14)

β = µ + e2

where X is a lead-field matrix transforming Current Source
Density (CSD) β at V voxels in brain space into EEG
voltages y at S electrodes. We use µ = 0.

C1 =
∑
i

λiQi (15)

C2 =
∑
j

λjQj
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where Qi defines structure of sensor noise, and Qj source
noise ie. uncertainty in sources. In the application that
follows we use Qi = I and Qj = L, a ‘Laplacian’ or
‘smoothness’ matrix set up so that we expect the squared
difference between neighboring voxels to be λj. Also con-
sider extra Qj’s to incorporate valid and invalid location
priors from eg. fMRI [1].
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Figure 6: Inflated cortical representation of (a) two simulated source locations
(‘valid’ prior) and (b) ‘invalid’ prior location.
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Figure 7: Inflated cortical representation of representative source reconstructions
using (a) smoothness prior, (b) smoothness and valid priors and (c) smoothness,
valid and invalid priors. The reconstructed values have been normalised between
-1 and 1.
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6 Nonlinear source reconstruction

Trujillo-Barreto et al. [4] describe a nonlinear source re-
construction algorithm based on combining reconstruc-
tions from a very large number of different models m =
1..M , using Bayesian Model Averaging (BMA)

p(β|y) =
∑
m

p(β|y, m)p(m|y) (16)

where p(β|y, m) is the estimated CSD from model m and
p(m|y) is the posterior probability of model m. If all
models are equilikely apriori then p(m|y) = p(y|m). We
therefore need to

• Fit model m to get CSD estimates

• Estimate model evidence p(y|m)

• Search model space M

Model space contains M = 271 models. There’s no point
fitting models that will have a low evidence. Use a greedy
search strategy where eg. at search iteration i our model
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contains regions 13, 40-45 and 62. Add/delete a region
chosen uniformly at random and select it for iteration
i+1 if evidence is higher. Keep all models with evidence
greater than 1/20th of max so far - this is Occam’s win-
dow of models.
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Figure 8: 3D segmentation of 71 structures of the Probabilistic MRI Atlas
developed at the Montreal Neurological Institute. As shown in the color scale,
brain areas belonging to different hemispheres were segmented separately.
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Figure 9: Different arrays of sensors used in the simulations. EEG-19 represents
the 10/20 electrode system; EEG-120 is obtained by extending and refining the
10/20 system; and MEG-151 corresponds to the spatial configuration of MEG
sensors in the helmet of the CTF System Inc.
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Figure 10: Spatial distributions of the simulated primary current densities. A)
Simultaneous activation of two sources at different depths: one in the right
Occipital Pole and the other in the Thalamus (OPR+TH). B) Simulation of a
single source in the Thalamus (TH).
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Figure 11: 3D reconstructions of the absolute values of BMA and cLORETA
solutions for the OPR+TH source case. The first column indicates the array of
sensors used in each simulated data set. The maximum of the scale is different
for each case.
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Figure 12: 3D reconstructions of the absolute values of BMA and cLORETA
solutions for the TH source case. The first column indicates the array of sensors
used in each simulated data set.
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