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1.1 Sines and cosines

Sines and cosines can be understood in terms of the vertical and
horizontal displacement of a fixed point on a rotating wheel; the
wheel has unit length and rotates anti-clockwise. The angle round
the wheel is measured in degrees or radians (0− 2π; for unit radius
circles the circumference is 2π, radians tell us how much of the
circumference we’ve got). If we go round the wheel a whole number
of times we end up in the same place, eg.cos 4π = cos 2π = cos 0 = 1.
Frequency, f , is the number of times round the wheel per second.
Therefore, given x = cos(2πft), x = 1 at t = 1/f, 2/f etc. For
x = cos(2πft+Φ) we get a head start (lead) of Φ radians. Negative
frequencies may be viewed as a wheel rotating clockwise instead of
anti-clockwise.

1.2 Sampling and aliasing

If we assume we have samples of the signal every Ts seconds and
in total we have N such samples then Ts is known as the sampling
period and Fs = 1/Ts is the sampling frequency in Hertz (Hz) (sam-
ples per second). The nth sample occurs at time t[n] = nTs = n/Fs.
The cosine of sampled data can be written

x[n] = cos(2πft[n]) (1)

At a sampling frequency Fs the only unique frequencies are in
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the range 0 to (Fs/2)Hz. Any frequencies outside this range become
aliases of one of the unique frequencies.

For example, if we sample at 8Hz then a -6Hz signal becomes
indistinguishable from a 2Hz signal. More generally, if f0 is a unique
frequency then its aliases have frequencies given by

f = f0 + kFs (2)

where k is any positive or negative integer, eg. for f0 = 2 and Fs = 8
the two lowest frequency aliases, given by k = −1 and k = 1, are
−6Hz and 10Hz.

2 Sinusoidal models

If our time series has a periodic component in it we might think
about modelling it with the equation

x[n] = R0 + Rcos(2πft[n] + Φ) + e[n] (3)

where R0 is the offset (eg. mean value of x[n]), R is the amplitude
of the sine wave, f is the frequency and Φ is the phase. Because of
the trig identity

cos(A + B) = cos A cos B − sin A sin B (4)

the model can be written in an alternative form

x[n] = R0 + a cos(2πft[n]) + b sin(2πft[n]) + e[n] (5)
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Figure 1: Aliases The figure shows a 2Hz cosine wave and a -6Hz cosine wave
as solid curves. At sampling times given by the dotted lines, which correspond
to a sampling frequency of 8Hz, the −6Hz signal is an alias of the 2Hz signal.
Other aliases are given by equation 2. 4



where a = R cos(Φ) and b = −R sin(Φ). This is the form we consider
for subsequent analysis.

2.1 Fitting the model

If we let x = [x(1), x(2), ..., x(N)]T , w = [R0, a, b]T , e = [e1, e2, ..., eN ]T

and

A =


1 cos2πft[1] sin2πft[1]
1 cos2πft[2] sin2πft[2]
1 cos2πft[3] sin2πft[3]
.. .. ..
1 cos2πft[N ] sin2πft[N ]

 (6)

then the model can be written in the matrix form

x = Aw + e (7)

which is in the standard form of a multivariate linear regression
problem. The solution is therefore

w = (AT A)−1AT x (8)

2.2 But sinewaves are orthogonal

We restrict ourselves to a frequency fp which is an integer multiple
of the base frequency

fp = pFb (9)
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where p = 1..N/2 and

fb =
Fs

N
(10)

eg. for Fs = 100 and N = 100 (1 seconds worth of data), fb = 1Hz
and we can have fp from 1Hz up to 50Hz1. The orthogonality of
sinewaves is expressed in the following equations

N∑
n=1

cos 2πfkt[n] =
N∑

n=1

sin 2πfkt[n] = 0 (11)

N∑
n=1

cos 2πfkt[n] sin 2πflt[n] = 0 (12)

N∑
n=1

cos 2πfkt[n] cos 2πflt[n] =
0 k 6= l
N/2 k = l

(13)

N∑
n=1

sin 2πfkt[n] sin 2πflt[n] =
0 k 6= l
N/2 k = l

(14)

The results depend on the fact that all frequencies that appear in the
above sums are integer multiples of the base frequency; see figure 2.

1To keep things simple we don’t allow fp where p = N/2; if we did allow it we’d get N
and 0 in equations 13 and 14 for the case k = l. Also we must have N even.
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Figure 2: Orthogonality of sinewaves Figure (top) shows cos 2π3fbt[n] and
cos 2π4fbt[n], cosines which are 3 and 4 times the base frequency fb = 1Hz. For
any two integer multiples k, l we get

∑N
n=1 cos2πfkt[n]cos2πflt[n] = 0. This can

be seen from Figure (bottom) which shows the product cos2π3fbt[n]cos2π4fbt[n].
Because of the trig identity cosAcosB = 0.5cos(A+B)+0.5cos(A−B) this looks
like a 7Hz signal superimposed on a 1Hz signal. The sum of this signal over a
whole number of cycles can be seen to be zero; because each cos term sums to
zero. If, however, k or l are not integers the product does not sum to zero and
the orthogonality breaks down.
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This property of sinewaves leads to the result

AT A = D (15)

where D is a diagonal matrix. The first entry is N (from the inner
product of two columns of 1’s of length N ; the 1’s are the coefficients
of the constant term R0) and all the other entries are N/2. A matrix
Q for which

QT Q = D (16)

is said to be orthogonal. Therefore our A matrix is orthogonal.
Hence

w = D−1AT x (17)

which is simply a projection of the signal onto the basis matrix,
with some pre-factor . Given that w = [a, b, R0]

T we can see that,
for example, a is computed by simply projecting the data onto the
second column of the matrix A, eg.

a =
2

N

N∑
n=1

cos(2πft)xt (18)

Similarly,

b =
2

N

N∑
n=1

sin(2πft)xt (19)

R0 =
1

N

N∑
n=1

xt (20)
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We applied the simple sinusoidal model to a ‘sunspot data set’
as follows. We chose 60 samples between the years 1731 and 1790
(because there was a fairly steady mean level in this period). The
sampling rate Fs = 1Year. This gives a base frequency of fb = 1/60.
We chose our frequency f = pfb with p=6; giving a complete cycle
once every ten years. This gave rise to the following estimates;
R0 = 53.64, a = 39.69 and b = −2.36.

2.3 Fourier Series

We might consider that our signal consists of lots of periodic com-
ponents in which case the multiple sinusoidal model would be more
appropriate

x(t) = R0 +
p∑

k=1

Rk cos(2πfkt + Φk) + et (21)

where there are p sinusoids with different frequencies and phases.
In a discrete Fourier series there are p = N/2 such sinusoids having
frequencies

fk =
kFs

N
(22)

where k = 1..N/2 and Fs is the sampling frequency. Thus the fre-
quencies range from Fs/N up to Fs/2. The Fourier series expansion
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Figure 3: Sunspot index (solid line) and prediction of it from a simple sinusoidal
model (dotted line).
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of the signal x(t) is

x(t) = R0 +
N/2∑
k=1

Rk cos(2πfkt + Φk) (23)

Notice that there is no noise term. Because of the trig identity

cos(A + B) = cos A cos B − sin A sin B (24)

this can be written in the form

x(t) = a0 +
N/2∑
k=1

ak cos(2πfkt) + bk sin(2πfkt) (25)

where ak = Rk cos(Φk) and bk = −Rk sin(Φk). Alternatively, we
have R2

k = a2
k + b2

k and Φ = tan−1(bk/ak). Equivalently, we can
write the nth sample as

x[n] = a0 +
N/2∑
k=1

ak cos(2πfkt[n]) + bk sin(2πfkt[n]) (26)

where t[n] = nTs.
The important things to note about the sinusoids in a Fourier

series are (i) the frequencies are equally spread out, (ii) there are
N/2 of them where N is the number of samples, (iii) Given Fs and
N the frequencies are fixed. Also, note that in the Fourier series
‘model’ there is no noise.
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The Fourier coefficients can be computed by a generalisation of
the process used to compute the coefficients in the simple sinusoidal
model.

ak =
2

N

N∑
n=1

cos(2πfkt[n])x[n] (27)

Similarly,

bk =
2

N

N∑
n=1

sin(2πfkt[n])x[n] (28)

a0 =
1

N

N∑
n=1

x[n] (29)

These equations can be derived as follows. To find, for example, ak,
multiply both sides of equation 26 by cos(2πfkt[n]) and sum over n.
Due to the orthogonality property of sinusoids (which still holds as
all frequencies are integer multiples of a base frequency) all terms
on the right go to zero except for the one involving ak. This just
leaves ak(N/2) on the right giving rise to the above formula.
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Figure 4: Signal (solid line) and components of the Fourier series approximation∑p
k=1 Rkcos(2πfk + Φk) (dotted lines) with (a) p = 1, (b) p = 2, (c) p = 3 and

(d) p = 11 where we have ordered the components according to amplitude. The
corresponding individual terms are (e) R2 = 0.205,f = 3.75 and Φ = 0.437, (f)
R2 = 0.151, f = 2.5 and Φ = 0.743, (g) R2 = 0.069, f = 11.25 and Φ = 0.751
and (h) R2 = 0.016, f = 7.5 and Φ = −0.350.
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3 Complex numbers

3.1 Power series

A function of a variable x can often be written in terms of a series
of powers of x. For the sin function, for example, we have

sin x = a0 + a1x + a2x
2 + a3x

3 + ... (30)

We can find out what the appropriate coefficients are as follows. If
we substitite x = 0 into the above equation we get a0 = 0 since
sin0 = 0 and all the other terms disappear. If we now differentiate
both sides of the equation and substitute x = 0 we get a1 = 1
(because cos 0 = 1 = a1). Differentiating twice and setting x = 0
gives a2 = 0. Continuing this process gives

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ ... (31)

Similarly, the series representations for cosx and ex can be found as

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ ... (32)

and

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ... (33)
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More generally, for a function f(x) we get the general result

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + ... (34)

where f ′(0), f ′′(0) and f ′′′(0) are the first, second and third deriva-
tives of f(x) evaluated at x = 0. This expansion is called a Maclau-
rin series.

So far, to calculate the coefficients in the series we have differen-
tiated and substituted x = 0. If, instead, we substitute x = a we
get

f(x) = f(a)+(x−a)f ′(a)+
(x − a)2

2!
f ′′(a)+

(x − a)3

3!
f ′′′(a)+... (35)

which is called a Taylor series.

3.2 Complex numbers

Very often, when we try to find the roots of an equation, we may end
up with our solution being the square root of a negative number.
For example, the quadratic equation

ax2 + bx + c = 0 (36)

has solutions

x =
−b ±

√
b2 − 4ac

2a
(37)

15



If b2 − 4ac < 0 we need the square root of a negative number. To
handle this, mathematicians have defined the number

i =
√
−1 (38)

allowing all square roots of negative numbers to be defined in terms
of i, eg

√
−9 =

√
9
√
−1 = 3i. These numbers are called imaginary

numbers to differentiate them from real numbers.
Finding the roots of equations, eg. the quadratic equation above,

requires us to combine imaginary numbers and real numbers. These
combinations are called complex numbers. For example, the equa-
tion

x2 − 2x + 2 = 0 (39)

has the solutions x = 1+i and x = 1−i which are complex numbers.
A complex number z = a + bi has two components; a real part

and an imaginary part which may be written

a = Re{z} (40)

b = Im{z}

The absolute value of a complex number is

R = Abs{z} =
√

a2 + b2 (41)

and the argument is

θ = Arg{z} = tan−1

(
b

a

)
(42)
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The two numbers z = a + bi and z∗ = a − bi are known as
complex conjugates; one is the complex conjugate of the other. When
multiplied together they form a real number. The roots of equations
often come in complex conjugate pairs.

3.3 Complex vectors

The transpose, xT , becomes a ‘Hermitian’ transpose, xH , which
is the usual transpose but the elements become conjugates. This
means that the length of a vector (squared) is now xHx instead of
xT x.

3.4 Complex exponentials

If we take the exponential function of an imaginary number and
write it out as a series expansion, we get

eiθ = 1 +
iθ

1!
+

i2θ2

2!
+

i3θ3

3!
+ ... (43)

By noting that i2 = −1 and i3 = i2i = −i and similarly for higher
powers of i we get

eiθ =

[
1 − θ2

2!
+ ...

]
+ i

[
θ

1!
− θ3

3!
+ ...

]
(44)
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Comparing to the earlier expansions of cos θ and sin θ we can see
that

eiθ = cos θ + i sin θ (45)

which is known as Euler’s formula. Similar expansions for e−iθ give
the identity

e−iθ = cos θ − i sin θ (46)

We can now express the sine and cosine functions in terms of com-
plex exponentials

cos θ =
eiθ + e−iθ

2
(47)

sin θ =
eiθ − e−iθ

2i

3.5 DeMoivre’s theorem

By using the fact that
eiθeiθ = eiθ+iθ (48)

(a property of the exponential function and exponents in general eg.
5353 = 56) or more generally

(eiθ)k = eikθ (49)

we can write

(cosθ + i sin θ)k = coskθ + isinkθ (50)
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which is known as DeMoivre’s theorem.

3.6 Argand diagrams

Any complex number can be represented as a complex exponential

a + bi = Reiθ = R(cosθ + i sin θ) (51)

and drawn on an Argand diagram. Multiplication of complex num-
bers is equivalent to rotation in the complex plane (due to DeMoivre’s
Theorem).

(a + bi)2 = R2ei2θ = R2(cos2θ + i sin 2θ) (52)

4 Discrete Fourier Transform

Fourier series can be expressed in terms of complex exponentials.
This representation leads to an efficient method for computing the
coefficients. We can write the cosine terms as complex exponentials

ak cos(2πfkt[n]) = ak
exp(i2πfkt[n]) + exp(−i2πfkt[n])

2
(53)

where i2 = −1. Picture this as the addition of two vectors; one
above the real axis and one below. Together they make a vector on
the real axis which is then halved.
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We can also write the sine terms as

bk sin(2πfkt[n]) = bk
exp(i2πfkt[n]) − exp(−i2πfkt[n])

2i
(54)

Picture this as one vector above the real axis minus another vec-
tor below the real axis. This results in a purely imaginary (and
positive) vector. The result is halved and then multiplied by the
vector exp(3π/2) (−i, from multplying top and bottom by i) which
provides a rotation to the real axis.

Adding them (and moving i to the numerator by multiplying bk

top and bottom by i) gives

1

2
(ak − bki) exp(i2πfkt[n]) +

1

2
(ak + bki) exp(−i2πfkt[n]) (55)

Note that a single term at frequency k has split into a complex
combination (the coefficients are complex numbers) of a positive
frequency term and a negative frequency term. Substituting the
above result into equation 26 and noting that fkt[n] = kn/N we get

x[n] = a0+
1

2

N/2∑
k=1

(ak−bki) exp(i2πkn/N)+
1

2

N/2∑
k=1

(ak+bki) exp(−i2πkn/N)

(56)
If we now let

X̃(k) =
N

2
(ak − bki) (57)
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and note that for real signals X̃(−k) = X̃∗(k) (negative frequencies
are reflections across the real plane, ie. conjugates) then the (ak +
bki) terms are equivalent to X̃(−k). Hence

x[n] = a0+
1

2N

N/2∑
k=1

X̃(k) exp(i2πkn/N)+
1

2N

N/2∑
k=1

X̃(k) exp(−i2πkn/N)

(58)
Now, because X̃(N−k) = X̃(−k) (this can be shown by considering
the Fourier transform of a signal x[n] and using the decomposition
exp(−i2π(N − k)n/N) = exp(−i2πN/N) exp(i2πkn/N) where the
first term on the right is unity) we can write the second summation
as

x[n] = a0+
1

2N

N/2∑
k=1

X̃(k) exp(i2πkn/N)+
1

2N

N−1∑
k=N/2

X̃(k) exp(−i2π(N−k)n/N)

(59)
Using the same exponential decomposition allows us to write

x[n] = a0 +
1

N

N−1∑
k=1

X̃(k) exp(i2πkn/N) (60)

If we now let X(k + 1) = X̃(k) then we can absorb the constant a0

into the sum giving

x[n] =
1

N

N∑
k=1

X(k) exp(i2π(k − 1)n/N) (61)
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which is known as the Inverse Discrete Fourier Transform (IDFT).
The terms X(k) are the complex valued Fourier coefficients. We
have the relations

a0 = Re{X(1)} (62)

ak =
2

N
Re{X(k + 1)}

bk =
−2

N
Im{X(k + 1)}

The complex valued Fourier coefficients can be computed by first
noting the orthogonality relations

N∑
n=1

exp(i2π(k − 1)n/N) =
N k = 1,±(N + 1),±(N + 2)
0 otherwise

If we now multiply equation 61 by exp(−i2πln/N), sum from 1 to
N and re-arrange we get

X(k) =
N∑

n=1

x(n) exp(−i2π(k − 1)n/N) (63)

= DFT (x)

which is the Discrete Fourier Transform (DFT).
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4.1 Power Spectral Density

The power in a signal is given by

Px =
N∑

n=1

|x[n]|2 (64)

We now derive an expression for Px in terms of the Fourier coeffi-
cients. If we note that |x[n]| can also be written in its conjugate form
(the conjugate form has the same magnitude; the phase is different
but this does’nt matter as we’re only interested in magnitude)

|x[n]| =
1

N

N∑
k=1

X∗(k) exp(−i2π(k − 1)n/N) (65)

then we can write the power as

Px =
N∑

n=1

|x[n]
1

N

N∑
k=1

X∗(k) exp(−i2π(k − 1)n/N)| (66)

If we now change the order of the summations we get

Px =
1

N

N∑
k=1

|X∗(k)
N∑

n=1

x(n) exp(−i2π(k − 1)n/N)| (67)

where the sum on the right is now equivalent to X(k). Hence

Px =
1

N

N∑
k=1

|X(k)|2 (68)

23



We therefore have an equivalence between the power in the time
domain and the power in the frequency domain which is known as
Parseval’s relation. The quantity

Px(k) = |X(k)|2 (69)

is known as the Power Spectral Density (PSD).

4.2 Filtering

The filtering process

x[n] =
∞∑

l=−∞
x1(l)x2(n − l) (70)

is also known as convolution

x[n] = x1(n) ∗ x2(n) (71)

We will now see how it is related to frequency domain operations. If
we let w = 2π(k − 1)/N , multiply both sides of the above equation
by exp(−iwn) and sum over n the left hand side becomes the Fourier
transform

X(w) =
∞∑

n=−∞
x[n] exp(−iwn) (72)

and the right hand side (RHS) is
∞∑

n=−∞

∞∑
l=−∞

x1(l)x2(n − l) exp(−iwn) (73)
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Now, we can re-write the exponential term as follows

exp(−iwn) = exp(−iw(n − l)) exp(−iwl) (74)

Letting n′ = n − l, we can write the RHS as

∞∑
l=−∞

x1(l) exp(−iwl)
∞∑

n′=−∞
x2(n

′) exp(−iwn′) = X1(w)X2(w) (75)

Hence, the filtering operation is equivalent to

X(w) = X1(w)X2(w) (76)

which means that convolution in the time domain is equivalent to
multiplication in the frequency domain. This is known as the con-
volution theorem.

4.3 Autocovariance and Power Spectral Density

The autocovariance of a signal is given by

σxx(n) =
∞∑

l=−∞
x(l)x(l − n) (77)

Using the same method that we used to prove the convolution the-
orem, but noting that the term on the right is x(l− n) not x(n− l)
we can show that the RHS is equivalent to

X(w)X(−w) = |X(w)|2 (78)
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which is the Power Spectral Density, Px(w). Combining this with
what we get for the left hand side gives

Px(w) =
∞∑

n=−∞
σxx(n) exp(−iwn) (79)

which means that the PSD is the Fourier Transform of the autoco-
variance. This is known as the Wiener-Khintchine Theorem. This is
an important result. It means that the PSD can be estimated from
the autocovariance and vice-versa. It also means that the PSD and
the autocovariance contain the same information about the signal.

It is also worth noting that since both contain no information
about the phase of a signal then the signal cannot be uniquely con-
structed from either. To do this we need to know the PSD and the
Phase spectrum which is given by

Φ(k) = tan−1(
bk

ak

) (80)

where bk and ak are the real Fourier coefficients.
We also note that the Fourier transform of a symmetric function

is real. This is because symmetric functions can be represented en-
tirely by cosines, which are themselves symmetric; the sinewaves,
which constitute the complex component of a Fourier series, are no
longer necessary. Therefore, because the autocovariance is symmet-
ric the PSD is real.
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4.4 The Periodogram

The periodogram of a signal xt is a plot of the normalised power in
the kth harmonic versus the frequency, fk of the kth harmonic. It
is calculated as

I(fk) =
Ts

N
(a2

k + b2
k) (81)

=
Ts

N
|

N∑
n=1

x(n) exp(−i2π(k − 1)n/N)|2

where ak and bk are the Fourier coefficients.
The periodogram is a low bias (actually unbiased) but high vari-

ance 2 estimate of the power at a given frequency. This is therefore
a problem if the number of data points is small; the estimated spec-
trum will be very spiky.

To overcome this, a number of algorithms exist to smooth the
periodogram ie. to reduce the variance. The Bartlett method,
for example, takes an N -point sequence and subdivides it into K
nonoverlapping segments and calculates I(fk) for each. The final
periodogram is just the average over the K estimates. This results
in a reduction in variance by a factor K at the cost of reduced
spectral resolution (by a factor K).

2It is an inconsistent estimator, because the variance does’nt reduce to zero as the number
of samples tends to infinity.
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4.5 Modified periodograms

Other methods modify the periodogram by using a time domain
window, h, also known as a data taper, such that the modified
periodogram is given by

I(fk) =
Ts

N
(a2

k + b2
k) (82)

=
Ts

N
|

N∑
n=1

h(n)x(n) exp(−i2π(k − 1)n/N)|2

For example, the matlab psd function chooses h to be a Hanning
window.

Welch’s method (pwelch.m in matlab) takes overlapping seg-
ments, and averages modified periodograms. unreliable.

4.6 Multi-tapering

This uses multiple data tapers. The tapers are orthogonal to each
other. Given a length N sequence

• Choose the desired spectral resolution, W , eg. ±2Hz

• Get corresponding Slepian sequences, hi, i = 1..2NW − 1.
These provide an eigenbasis in local frequency space (±W ) for
finite length data sequences.

• Sum modified periodograms
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Figure 5: Periodogram (top) and Welch’s modified Periodogram (bottom).
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This is implemented in eg. matlab’s pmtm.m function. For theory
see [6], and for application to brain imaging data see [5].

See eg. sunspot_spectra.m.

4.7 MEG data

Bauer et al. [1] estimate spectral density of MEG data during a
delayed match-to-sample task. For each subject they computed
spectra during periods when non-matching stimuli were correctly
rejected. Spectra in range 40-180Hz, were computed using a mul-
titaper method with 200ms windows and a spectral resolution of
W = 10Hz.

They then computed z-scores for each time frequency bin by com-
paring with a baseline period. These z-scores were then averaged
over subject.

5 Multiple time series

5.1 Cross-correlation

Given two time series xt and yt we can delay xt by T samples and
then calculate the cross-covariance between the pair of signals. That
is

σxy(T ) =
1

N − 1

N∑
t=1

(xt−T − µx)(yt − µy) (83)
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Figure 6: Delayed match-to-sample task.
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Figure 7: Spectra for attended and unattended side, averaged over electrode set
shown in (C) for left finger stimulation and (B) right finger stimulation.
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where µx and µy are the means of each time series and there are
N samples in each. The function σxy(T ) is the cross-covariance
function. The cross-correlation is a normalised version

rxy(T ) =
σxy(T )√

σxx(0)σyy(0)
(84)

where we note that σxx(0) = σ2
x and σyy(0) = σ2

y are the variances
of each signal. Note that

rxy(0) =
σxy

σxσy

(85)

which is the correlation between the two variables. Therefore unlike
the autocorrelation, rxy is not, generally, equal to 1.

The cross-correlation is a normalised cross-covariance which, as-
suming zero mean signals, is given by

σxy(T ) =< xt−T yt > (86)

and for negative lags

σxy(−T ) =< xt+T yt > (87)

Subtracting T from the time index now gives

σxy(−T ) =< xtyt−T > (88)
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which is different to σxy(T ). To see this more clearly we can subtract
T once more from the time index to give

σxy(−T ) =< xt−T yt−2T > (89)

Hence, the cross-covariance, and therefore the cross-correlation, is
an asymmetric function (the autocorrelation is symettric).

To summarise: moving signal A right (forward in time) and mul-
tiplying with signal B is not the same as moving signal A left and
multiplying with signal B; unless signal A equals signal B.

5.2 Cross Spectral Density

Just as the Power Spectral Density (PSD) is the Fourier transform of
the auto-covariance function we may define the Cross Spectral Den-
sity (CSD) as the Fourier transform of the cross-covariance function

P12(w) =
∞∑

n=−∞
σx1x2(n) exp(−iwn) (90)

Note that if x1 = x2, the CSD reduces to the PSD. Now, the cross-
covariance of a signal is given by

σx1x2(n) =
∞∑

l=−∞
x1(l)x2(l − n) (91)
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Figure 8: Top plot: Signals xt (top curve) and yt (bottom curve). Bottom plot:
Cross-correlation function rxy(T ). A lag of T denotes the top series, x, lagging
the bottom series, y. Notice the big positive correlation at a lag of 25.
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Substituting this into the earlier expression gives

P12(w) =
∞∑

n=−∞

∞∑
l=−∞

x1(l)x2(l − n) exp(−iwn) (92)

By noting that

exp(−iwn) = exp(−iwl) exp(iwk) (93)

where k = l − n we can see that the CSD splits into the product of
two integrals

P12(w) = X1(w)X2(−w) (94)

where

X1(w) =
∞∑

l=−∞
x1(l) exp(−iwl) (95)

X2(−w) =
∞∑

k=−∞
x2(k) exp(+iwk)

For real signals X∗
2 (w) = X2(−w) where * denotes the complex

conjugate. Hence, the cross spectral density is given by

P12(w) = X1(w)X∗
2 (w) (96)

This means that the CSD can be evaluated in one of two ways (i)
by first estimating the cross-covariance and Fourier transforming or
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(ii) by taking the Fourier transforms of each signal and multiplying
(after taking the conjugate of one of them). A number of algo-
rithms exist which enhance the spectral estimation ability of each
method. These algorithms are basically extensions of the algorithms
for PSD estimation, for example, for type (i) methods we can per-
form Blackman-Tukey windowing of the cross-covariance function
and for type (ii) methods we can employ Welch’s algorithm for av-
eraging modified periodograms before multiplying the transforms.
See Carter [2] for more details.

The CSD is complex because the cross-covariance is asymmetric
(the PSD is real because the auto-covariance is symmetric; in this
special case the Fourier transorm reduces to a cosine transform).

5.3 PSD matrix

The frequency domain characteristics of a multivariate time-series
(eg. two or more) may be summarised by the power spectral density
matrix (Marple, 1987[4]; page 387). For d time series

P (f) =


P11(f) P12(f) · · · P1d(f)
P12(f) P22(f) · · · P2d(f)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
P1d(f) P2d(f) · · · Pdd(f)

 (97)

where the diagonal elements contain the spectra of individual
channels and the off-diagonal elements contain the cross-spectra.
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The matrix is called a Hermitian matrix because the elements are
complex numbers.

5.4 Coherence and Phase

The complex coherence function is given by (Marple 1987; p. 390)

rij(f) =
Pij(f)√

Pii(f)
√

Pjj(f)
(98)

The coherence, or mean squared coherence (MSC), between two
channels is given by

r2
ij(f) =| rij(f) |2 (99)

The phase spectrum, between two channels is given by

θij(f) = tan−1

[
Im(rij(f))

Re(rij(f))

]
(100)

The MSC measures the linear correlation between two time series at
each frequency and is directly analagous to the squared correlation
coefficient in linear regression. As such the MSC is intimately related
to linear filtering, where one signal is viewed as a filtered version
of the other. This can be interpreted as a linear regression at each
frequency. The optimal regression coefficient, or linear filter, is given
by

H(f) =
Pxy(f)

Pxx(f)
(101)
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This is analagous to the expression for the regression coefficient
a = σxy/σxx (see first lecture). The MSC is related to the optimal
filter as follows

r2
xy(f) = |H(f)|2Pxx(f)

Pyy(f)
(102)

which is analagous to the equivalent expression in linear regression
r2 = a2(σxx/σyy).

At a given frequency, if the phase of one signal is fixed relative
to the other, then the signals can have a high coherence at that
frequency. This holds even if one signal is entirely out of phase with
the other (note that this is different from adding up signals which
are out of phase; the signals cancel out. We are talking about the
coherence between the signals).

At a given frequency, if the phase of one signal changes relative
to the other then the signals will not be coherent at that frequency.
The time over which the phase relationship is constant is known as
the coherence time. See [?], for an example.

5.5 Welch’s method for estimating coherence

Algorithms based on Welch’s method (such as the cohere function
in the matlab system identification toolbox) are widely used [2] [7].
The signal is split up into a number of segments, N , each of length
T and the segments may be overlapping. The complex coherence
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estimate is then given as

r̂ij(f) =

∑N
n=1 Xn

i (f)(Xn
j (f))∗√∑N

n=1 Xn
i (f)2

√∑N
n=1 Xn

j (f)2
(103)

where n sums over the data segments. This equation is exactly the
same form as for estimating correlation coefficients (see chapter 1).
Note that if we have only N = 1 data segment then the estimate of
coherence will be 1 regardless of what the true value is (this would
be like regression with a single data point). Therefore, we need a
number of segments.

Note that this only applies to Welch-type algorithms which com-
pute the CSD from a product of Fourier transforms. We can trade-
off good spectral resolution (requiring large T ) with low-variance
estimates of coherence (requiring large N and therefore small T ).
We can also overlap segments.

6 Source reconstruction of MEG Gamma activ-
ity

Specify frequency-domain model, and reconstruct using maximum
likelihood estimator

yf = Lrf + ef (104)

r̂f = (LT P−1
f L)−1LT P−1

f yf
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Figure 9: Coherence estimates using (bottom) Welch’s method and (top) MAR
model

41



where L is the lead-field and Pf is the PSD matrix over sensors
computed for time-period of interest.

This can be augmented to a Bayesian estimator in the usual
way. This leads to the Dynamic Imaging of Coherent sources (DICs)
algorithm [3].

We can write the reconstructed activity as

r̂f = wrfyf (105)

The power is then given by

prf = w∗
rfPfwrf (106)

7 Further topics

• AR/MAR - parametric

• Subspace methods - small number of modes

• Wavelets - nonstationarity
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Figure 10: Source analysis of gamma power (60-95Hz) versus baseline
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