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Abstract

This paper presents an empirical assessment of the Bayesian evidence framework for neural networks using four synthetic and four real-
world classification problems. We focus on three issues; model selection, automatic relevance determination (ARD) and the use of
committees. Model selection using the evidence criterion is only tenable if the number of training examples exceeds the number of network
weights by a factor of five or ten. With this number of available examples, however, cross-validation is a viable alternative. The ARD feature
selection scheme is only useful in networks with many hidden units and for data sets containing many irrelevant variables. ARD is also useful
as a hard feature selection method. Results on applying the evidence framework to the real-world data sets showed that committees of
Bayesian networks achieved classification accuracies similar to the best alternative methods. Importantly, this was achievable with a
minimum of human intervention.q 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

H a network structure
w a networks weight vector
D a data set
Hi the ith network structure
W number of weights in a network
G the cross-entropy
C the regularized cost function
A the network Hessian; second derivative of C
k indexes the weight group
K number of weight groups
Ek weight error for thekth group of weights
ak hyperparameter for thekth group of weights
I k a diagonal matrix having 1s along the diagonal that

pick off weights in thekth group
gk the number of well-determined weights in thekth

group

g tot the total number of well-determined weights in the
network

j A j the determinant of matrixA
Nh the number of hidden units in a Multi-Layer

Perceptron network
Wk the number of weights in groupk
s2

j the posterior variance of thejth weight
V the scale of the prior for eachak

r correlation
R ratio of training examples to network weights

1. Introduction

The Bayesian evidence framework proposed by MacKay
(1992a) provides a unified theoretical treatment of learning
in neural networks. Its practical benefits include principled
methods for determining optimal weight decay coefficients,
methods for soft feature selection and methods for model
selection. It also provides a framework for using committees
of networks and for calculating error bars.

Despite these apparent benefits, the evidence framework
has been applied to only a handful of problems; assessing
the fat content of carcasses (Thodberg, 1995), vowel recog-
nition and classification of thyroid disease (Gutjahr &
Nautze, 1997), prediction of energy consumption (MacKay,
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1995a), classification of number plates (Oldfield, 1995) and
classification of EEG data (Sykacek, Dorffner, Rappels-
berger, & Zeitlhofer, 1997).

This paper attempts to find out if there are any inherent
problems with the evidence framework and, in the absence
of these, to promote its wider application. Throughout the
paper, we consider only the original Bayesian evidence
framework described in MacKay (1992a). The more general
Bayesian framework as a result of Neal (1996) is examined
in another work (Husmeier, Penny, & Roberts, 1998).

In evaluating the evidence framework, we focus on three
issues; model selection, soft feature selection and the use of
committees for accurate classification.

Model selection is an important issue, because, if we use a
network which is too simplistic, it will not be able to
adequately represent the input–output mapping underlying
the data. On the other hand, if we use a network which is too
complex, it will extract features from the training set which
are peculiar to that set, and will not generalise well when
faced with new data.

An obvious solution to the model selection problem is the
one offered by cross-validation (see Ripley, 1996): networks
with different structures, and therefore of different complex-
ity, are tested on a validation set (data not used in training),
and the networks which perform best are selected. This does
mean, however, that not all of the data can be used for
training: some of it must be put aside for validation. The
evidence framework offers a different solution. Networks
are selected which have the highest ‘evidence’. This is a
quantity which can be calculated from the training set
only. No validation set is required. This is, potentially, a
great advantage, especially if only small amounts of data
are available.

The complexity of a model can also be constrained by
regularization. This involves training a network on a cost
function that includes, for example, a weight decay term.
This scheme, however, requires the setting of a weight
decay parameter which is often chosen, again, by cross-
validation. A benefit of the evidence framework is that the
weight decay parameters can be set automatically. No vali-
dation set is required. In this paper, we experiment with
schemes where different groups of weights have different
weight decay parameters. This type of regularization culmi-
nates in the Automatic Relevance Determination (ARD)
algorithm which performs a soft feature selection.

In the Bayesian framework, it is natural to consider not
just a single neural network model, but a whole ensemble of
models. This leads to the use of committees of networks
where the overall prediction on a new data point is the
combined prediction of many networks. In this paper, we
use Bayesian committees on a number of real world classi-
fication problems to assess their accuracy in relation to other
approaches.

In Section 2, we briefly explain what the evidence frame-
work is, and how it is applied to neural network classifiers.
In Section 3, we present results from the application of

Bayesian networks to real and synthetic problems, focussing
on the issues of model selection, soft feature selection and
committees.

Throughout the paper, we consider the neural network
models to be perceptrons or multi-layer perceptrons
(MLPs) as described by Bishop (1995); Chapters 3 and 4,
although the evidence framework is applicable to a broad
range of classification and regression models (MacKay,
1992a,b).

2. The evidence framework

This section presents a summary of the key ideas of the
evidence framework in the context of training MLPs on
classification problems. Derivations of formulae are omitted
as they may be found in the work of MacKay (1992b) and
Thodberg (1995). (Readers requiring a full tutorial on the
evidence framework are referred to Bishop (1995); Chapter
10.)

2.1. Model selection

Conventional (maximum likelihood/minimum error)
neural network learning produces a single weight vector,
w. But, given that we have only a finite amount of data,
we cannot really be certain as to what that weight vector
should be; adding or taking away even a single training
pattern would result in a different learnt weight vector.
Thus, there is some uncertainty in the value of the weight
vector. This uncertainty is captured in Bayesian learning by
a probability distribution over weight vectors that expresses
our beliefs concerning how likely the different weight
values are.

To start the Bayesian learning process, we define a
network structure,H, which in this paper specifies the
number of hidden units in a MLP network. We also define
a prior distribution for the weights in networkH, p(w), that
expresses our initial beliefs about the weights before any
data has arrived. When the data,D, is then observed, the
prior distribution is updated to a posterior distribution
according to Bayes’ theorem

p�w j D;H� � p�D j w;H�p�w j H�
p�D j H� : �1�

This posterior distribution combines the likelihood function,
p�D j w;H�, which contains information aboutw from
observation, and the prior, which contains information
about w from background knowledge. The term in the
denominator, p�D j H�, is known as the evidence for
modelH.

Given a set of candidate networks,Hi, which may have
different numbers of hidden units, the posterior probability
of each model can be expressed as

p�Hi j D� � p�D j Hi�p�Hi�
p�D� : �2�
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If the models are considered equiprobable before we see
any data, thenp�Hi� is the same for all models. Sincep�D�
does not depend on the model, then the most probable model
is the one with the highest evidence,p�D j H�. The evidence
can, therefore, be used to select between different MLP
networks.

For a network with weightsw andK weight decay regu-
larizers or ‘hyperparameters’, {a k}, which control the
magnitude of weights inK different weight groups, the log
of the evidence is (Thodberg, 1995)

Log Ev� 2C�w�1 Log�Occw�1 Log�Occa� �3�

C�w� � G�w�1
X

k

akE
k�w� �4�

Log�Occw� � 2
1
2

ln j A j 1ln Nh! 1 Nh ln 2

1
X

k

Wk

2
ln ak

�5�

Log�Occa� �
X

k

1
2

ln
4p
gk

� �
2 K ln�lnV� �6�

The first term in Eq. (3) is the log likelihood. This is equal to
the negative of the regularized cost functionC(w) which is
defined in Eq. (4) as the sum ofG(w), the usual cross-
entropy term (Bishop, 1995; p.237), and a weight decay
term. The termEk�w� is the sum of squares of weights in
the kth group.

The next two terms in Eq. (3) are ‘Occam factors’. An
Occam factor is the ratio of a posterior volume to a prior
volume. Larger volume means greater uncertainty about the
parameters. Large networks have a large prior volume and
thus a small Occam factor. They, therefore, have lower
evidence; the Occam factors act to penalize complex
models. Networks with low posterior volume are also pena-
lized. This may initially seem unreasonable, but is justifi-
able on the grounds that networks with low posterior volume
have had to be finely tuned to the data. This sort of brittle-
ness is undesirable. The evidence is, therefore, seen to
embody a trade-off between accuracy and complexity. For
an expanded discussion of these issues see MacKay (1992a).

The first Occam factor, defined in Eq. (5), is the Occam
factor for the weights. The first term in Eq. (5) is the nega-
tive log determinant of the Hessian matrix,A. This term
measures the posterior volume in weight space. It derives
from the assumption that the posterior distribution,
p�w j D;H�, is Gaussian (a central tenet of the evidence
framework); the inverse Hessian is, therefore, equivalent
to the posterior covariance matrix of weight uncertainties.
The next two terms in Eq. (5) arise from the redundancy of
representation in a single hidden-layer MLP havingNh

hidden units. By this, we mean that the same function can
be represented in a network by permuting the positions of
hidden units (which can be done inNh! ways) and by

reversing the sign of hidden unit outputs (which can be
done in 2Nh ways). These terms act as corrections to the
posterior volume. The last term in Eq. (5) measures the
(negative) prior volume in weight space. It is calculated
by summing the inverse weight variance of a weight in
the kth group,a k (see Section 2.2), over the number of
weights in that group,Wk, and over all groups.

The second Occam factor, defined in Eq. (6), is the
Occam factor for the hyperparameters. The first term in
Eq. (6) captures the posterior uncertainty in the hyperpara-
meters. This is expressed in terms of a parameterg k, which,
as discussed in Section 2.2, is the number of ‘well-deter-
mined’ weights in groupk. The second term in Eq. (6)
captures the prior uncertainty in the hyperparameters. This
is expressed in terms of a parameter which captures our
prior belief in the range of scales, within which we believe
each hyperparameter to lie. This is subjectively set to 103

(Thodberg, 1995), meaning that before any data is seen, we
believe, we know the value of eacha k to within three orders
of magnitude.

Once a network has been trained, Eqs. (3)–(6) can be
used to calculate the (log) evidence for that network. This
is used for model selection.

2.2. Training and regularization

Network training proceeds in the usual manner using
standard optimization algorithms (Bishop, 1995; Chapter
7) with the novelty that training is periodically halted for
the weight decay parameters to be updated. Specifically, a
network with weightsw and K weight decay regularizers,
{a k}, is trained on the cost function in Eq. (4) (the regular-
ization term in this cost function derives from the assump-
tion that, in each weight group, each weight is drawn from a
zero mean Gaussian distribution with a variance 1=ak).

The hyperparameters are initialized to small arbitrary
values. This is important as the network must be allowed
to find interesting structure in the data before any regular-
ization takes place. The network is then trained to find the
maximum posterior weight vector,wMP, by minimising the
cost function. Training is stopped when the training error
tolerance (fractional change in error between epochs) falls
below some pre-specified value. The hyperparameters are
then updated in a re-estimation step. This involves the
calculation of the Hessian matrix (second derivative of the
cost function).

A � 77G 1
X

k

akI k �7�

whereI k is a diagonal matrix having ones along the diagonal
that picks off weights in thekth group. We also need to
calculate the number of ‘well-determined’ weights in each
weight group,g k. This is defined as the number of weights
whose values are determined by the data rather than by the
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prior, and is given by (MacKay, 1992a)

gk �Wk 2 ak

X
j

�I kA
21I k�jj : �8�

The quantityg k is evaluated using theold value ofa k. The
newvalue ofa k is then calculated according to the formula
(MacKay, 1992a)

ak � gk

2Ek�w� : �9�

Once the regularizer has been re-estimated, the network is
trained from where it left off until a specified lower training
error tolerance is achieved. Re-estimation and further train-
ing continue according to some tolerance regime, until a
minimum tolerance is reached. The re-estimation scheme
means that the network is automatically regularized and
so will not overfit the data. Bayesian regularization elimi-
nates the need for a separate validation set for choosing
optimal weight decay values.

The regularization scheme can be used for single or
multiple hyperparameters. A single hyperparameter corre-
sponds to the standard global weight decay scheme.
However, for networks where the number of hidden units
is very different from the number of inputs, this prior is
unsuitable. This is because the weights in the output layer
have to be of a different magnitude than those in the hidden
layer, in order for the node activations to be in the same
range. For these networks, a ‘two-layer’ prior is more suita-
ble. This uses two independent hyperparameters: one for the
hidden-layer weights, and one for the output-layer weights.
A further group could also be used to regularize the bias
weights. Some practitoners consider this desirable, as unre-
gularized parameters constitute values drawn from an
improper prior. This may lead to problems when comparing
models, as the evidence given by these values is zero
(Bishop, 1995). In this paper, however, we do not regularize
the bias weights as they will be regularized indirectly; they
will take on values in proportion to the magnitude of other
weights in their respective nodes in order that the (tanh)
node outputs will on average be zero (if this did not
happen, then the nodes would be either ‘off’ or ‘on’ all
the time). In evaluating the evidence, the bias weights are
ignored.

This scheme can be extended such that the group of
weights leaving each input has its own hyperparameter.
The resulting method, called ARD by MacKay (1995a)
and Neal (1996), performs a soft feature selection; weights
connected to irrelevant inputs are automatically set to small
values. We investigate the ARD method in our experiments.

In this paper, we restrict our experimentation to the use of
(single or multiple) weight-decay regularizers which derive
from the assumption of zero-mean Gaussian priors on the
weights. It is worth noting, however, that other choices of
prior are equally valid, if not more so. Williams (1995), for
example, examines the use of a Laplace prior which results
in an automatic pruning of redundant weights. Gutjahr and

Nautze (1997) consider groups of Gaussian priors with
means which are inferred from the data. This can also imple-
ment a form of weight pruning.

2.3. Committees

In the Bayesian framework, it is natural to consider not
just a single neural network, but a whole ensemble of
networks. This leads to the use of committees of networks
where the overall prediction on a new data point is the
combined prediction of many networks. Models can be
combined by weighting predictions according to the
evidence of each network. In this way, the Bayesian frame-
work provides a natural way of forming committees.
However, if the Gaussian approximation is not valid (see
Section 2.4), then the evidence will not be accurately deter-
mined. In practice, therefore, the evidence is used to select
the best networks, which are then used in an unweighted
committee (Thodberg, 1995). The question then arises as to
how many networks to use in the committee. This issue is
addressed in our experiments.

2.4. Practical issues

The Gaussian approximation to the posterior distribution
is central to the evidence framework. Walker (1969) has
shown that in the limit of an infinite training set, the poster-
ior distribution does, in fact, become Gaussian. With a finite
number of data points, however, the approximation breaks
down. MacKay (1992a) notes that the approximation can be
tested by looking at the correlation between evidence and
test error. This will be investigated in our experiments.

A second issue is the choice of prior. Sometimes a single
Gaussian prior will be adequate. In other cases, a two-layer
prior or an ARD prior may be more suitable. The correct
choice of prior may be made by looking at the correlation
between the evidence and classification error on a validation
set. In practice, however, we would always use an ARD
prior unlessWk, the number of weights per weight group
(an upper limit ong k), is less than three (MacKay, 1994).

When calculating the hyperparameters and when evalu-
ating the evidence, the Hessian matrixA should first be
reconstructed using the positive eigenvalues only. This is
because, if the network is not exactly at a local minima ofC,
then some eigenvalues ofA may be negative. This implies
that the posterior variance in some directions of weight
space is negative. This is handled by ignoring these proble-
matic directions and just considering the distribution in the
non-negative directions. A second related problem is due to
a numerical round-off error in the evaluation of the determi-
nant and, therefore, of the evidence. In networks with redun-
dant weights, it is possible that the Hessian is singular or
nearly singular. In these cases, some eigenvalues will be of
the order of machine precision and the calculation of the
determinant, which involves the product of eigenvalues,
will be unreliable. For this reason, Thodberg (1995) consid-
ers reconstructing the Hessian using only those eigenvalues
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above a certain threshold. He then considered the depen-
dence of the evidence on this threshold. In this paper, we
simply reconstruct the Hessian using all positive eigen-
values.

A fourth issue is the choice of subjective prior when
determining the Occam factor for the hyperparameters;
why do we setV to 103 and not say 104. In practice,
however, this term tends to be only a minor factor in the
overall evidence calculation.

Estimation of hyperparameters and the evidence requires
the evaluation and storage of the Hessian matrix. For
problems of even moderate size, say 300 weights, this
becomes problematic. Furthermore, to estimate the hyper-
parameters requires evaluation of the trace of the inverse
Hessian (Eq. (9)), and to evaluate the evidence requires the
determinant of the Hessian (Eq. (5)). For large matrices,
these computations become a bottleneck. This burden can
be eased with the use of the Lanczos methods, which gener-
ate a low-dimensional tri-diagonal representation of a larger
matrix (Oldfield, 1995; p. 57).

3. Results

All networks are trained with the conjugate gradient algo-
rithm as described by Press, Teukolsky, Vetterling and Flan-
nery (1992). We use this training method, because it is
orders of magnitude faster than gradient descent, and it
does not require a learning rate parameter—the learning
rate is determined automatically by the local curvature of
the error surface. The only parameter it does require is the
convergence criterion.

We define the error tolerance as the fractional change in
error from one epoch to the next. If the error tolerance falls
below some specified value, the network is deemed to have
converged. The regularizers are then re-estimated using
Eqs. (7)–(9). Because each new value ofa k gives rise to a
new value ofA (Eq. (7)), Eqs. (7)–(9) are applied a number
of times to ensure convergence ofA anda k. In this paper,
this number is arbitrarily set to ten. Each network is then
trained, with the hyperparameters now kept fixed, until a
lower error tolerance value is reached.

The error tolerance is reduced according to the following
regime: the initial error tolerance is 1023 which is reduced

by a factor of two after each re-estimation. Training and re-
estimation is finally stopped at a tolerance of 1026.

We need to calculate the Hessian matrix in order to re-
estimate the regularizers and evaluate the evidence. This is
evaluated by an exact formula of Bishop (1995; p. 154).

For each data set, we train an ensemble of single-hidden
layer MLPs. For each classifier structure, ten systems are
trained in order to examine the effect of local minima on
solutions and to construct committees. Networks with a
single hidden unit,Nh � 1, are functionally equivalent to
a single perceptron (logistic regression unit). In the experi-
ments that follow we, therefore, use logistic regression in
their place.

3.1. Description of data sets

We examine a total of eight data sets; four synthetic and
four real. The synthetic data sets are ‘XOR’, ‘Yin-Yang’,
‘Neal’ and ‘Ripley’. The real data sets are ‘Diabetes’,
‘Tremor’, ‘Ionosphere’ and ‘Vowel’.

The XOR data set is a continuous version of the exclusive
or logic function. The Yin-Yang data set is a synthetic two-
class problem generated by the authors. It is a continuous
version of a data set investigated by Coetzee and Stonick
(1996). The Neal (1997) and Ripley (1994) data sets are
synthetic problems. The Neal data contains two useful
inputs and two noise inputs.

The Diabetes data describes a population of women of
Pima Indian heritage who were tested for diabetes. The data
were collected by the US National Institute of Diabetes and
Digestive and Kidney Diseases, and are described more
fully in Ripley (1996). The Tremor data set is a two-class
medical classification problem. The data set was collected
by Spyers-Ashby, Bain, and Roberts (1998) and consists of
two input features derived from measurements of arm
muscle tremor and a class label representing patient or
non-patient. The Ionosphere data contains information
collected by a radar system, and previously analysed by
Sigillito, Wing, Hutton, and Baker (1989). It is a two-
class classification problem; positive radar returns are
those showing evidence of some type of structure in the
ionosphere, negative returns are those that do not. The
Vowel data set is a classification problem containing eleven
classes, each of which corresponds to an English vowel. The
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Table 1
Description of data sets

Data set Origin Inputs Outputs Training examples Test examples

XOR Synthetic 2 2 100 100
Yin-Yang Synthetic 2 2 500 500
Neal Synthetic 4 3 400 600
Ripley Synthetic 2 2 250 1000
Diabetes Real 7 2 200 332
Tremor Real 2 2 179 178
Ionosphere Real 34 2 200 150
Vowel Real 10 11 528 462



data was generated by 15 different speakers and character-
ized with a linear predictive filter to form ten input features
(Robinson & Fallside, 1988).

Table 1 shows the dimensions of each problem and the
number of examples available. The two-input data sets are
shown in Figs. 1–5 along with decision boundaries from
MLP networks trained on them.

3.2. Evidence as a model selection criterion

Fig. 6 shows the relative importance of the different
factors which contribute to the evidence for different

networks trained on the XOR problem. As the number of
hidden units increases the likelihood increases, but the
Occam factor for the weights decreases. This trend was
the same for all the data sets, as expected. The Occam factor
for the hyperparameters was negligible. This is also true of
all the other data sets.

3.2.1. Effect of number of hidden units
Fig. 7 shows plots of evidence versus number of hidden

units for each of the data sets. For each plot, there is a
number of hidden units (or range of) for which the evidence
is a maximum. We note, however, that the position of this
maximum depends not only on the nature of the data set, but
also on the number of training examples available; with
more data the maximum occurs at a larger number of hidden
units. In the XOR data, for example, networks with two
hidden units have the highest average evidence. This

makes sense as two hidden units are sufficient to solve the
XOR problem. If, however, the number of training examples
is increased from 100 to 500, this maximum shifts to
Nh � 3, andNh � 4;5 networks have higher evidence.2

For the Yin-Yang data set, MLPs with nine-hidden units
have the highest average evidence. This seems to be a
reasonable choice given the geometry of the problem (see
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Fig. 1. XOR data: the solid lines show the orientation of each hidden unit in
a two-hidden-unit MLP.

Fig. 2. Yin-Yang data: the straight solid lines show the orientation of each hidden unit in a nine-hidden-unit MLP. The curvy solid lines show the overall
decision boundary. The shade of gray codes, the output of the network with dark grey being zero and light gray being one.

2 For the XOR data, there is another effect of increasing the number of
training examples; the average evidence of two-hidden unit networks
decreases. This is because some of the two-hidden unit MLPs reach a
poor local minima solution. As the number of hidden units is increased,
to sayNh � 3, the sub-optimal solutions are more easily avoided.
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Fig. 3. Tremor data: crosses represent data points from patients, zero indicate data points from normal subjects. The solid line shows the overall decision
boundaries formed by a MLP with three hidden units. The shade of grey codes the output.
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Fig. 4. Neal’s synthetic three-class problem: the data are plotted against the two useful (non-noise) inputs. The solid lines show the orientation ofeach of the
three hidden units in an MLP.



Fig. 2). Out of all the classifiers trained on the Ripley data
set, those with three and four hidden units had the highest
evidence. This concurs with Ripley (1994) who found that
MLPs with three hidden units had the lowest test error. For
the Diabetes data, the logistic model (plotted atNh � 1 in
Fig. 7(e)) has the highest evidence. This concurs with
Ripley (1996), who found that MLPs were no better than
logistic regression on this data. This is the because, the data,
like many real classification problems (Penny & Frost,
1996), is intrinsically linearly separable. The Tremor data,
as can be seen from Fig. 3, is however clearly nonlinear, and
networks with three hidden units have the highest average
evidence.

All the plots in Fig. 7 were obtained from networks
trained with a single regularizer, except for networks trained
on the Ionosphere data. This is because, for all but the Iono-
sphere data, the number of network inputs was not signifi-
cantly different from the number of hidden units. In these
cases, a single regularizer is sufficient (see Section 2.2). In
the case of the Ionosphere data, however, there are many
more inputs than hidden units, and it was also believed that
not all of the inputs were relevant. We also note that, for the
other data sets, plots of evidence versus number of hidden
units using networks trained with ARD priors were not
significantly different from those shown in Fig. 7.

3.2.2. Relation to test error
Fig. 8 shows plots of test error (percentage of test data

misclassified) versus evidence for each of the data sets. The
expected trend that networks with higher evidence tend to
have lower generalization error, is only generally observed
for two of the data sets; Yin-Yang and Vowel (Fig. 8(b) and

(h)). It is no coincidence that these data sets also have the
largest number of training examples. For some of the other
data sets, the correlation between evidence and test error,r,
is good, when the number of hidden units is low: XOR
(Nh � 2, r � 20:95); Neal (Nh � 3, r � 20:94; Nh � 4,
r � 20:90; Nh � 5, r � 20:88) for example. For the
XOR and Tremor data sets, there is a more fundamental
reason why a strong correlation is not generally observable.
For the XOR data, nearly all of theNh . 2 networks have a
very low test error. Thus, it is not possible to observe a
graded decline of test error with increasing evidence. For
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Fig. 5. Ripley’s synthetic data: the solid line shows the overall decision boundary formed by a MLP with three hidden units. The shade of grey codes the output.

Fig. 6. Terms in the evidence for the XOR problem versus number of
hidden units; total evidence (solid line), log likelihood (dash-dotted line),
log Occam factor for the weights (dotted line), log Occam factor for the
hyperparameters (dashed line). Each point is averaged over ten networks.
Networks with two hidden units have the highest average evidence.
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Fig. 7. Evidence versus number of hidden units for: (a) XOR; (b) Yin-Yang; (c) Neal; (d) Ripley; (e) Diabetes; (f) Tremor; (g) Ionosphere;and (h) Voweldata
sets. The solid line shows the evidence averaged over the ten networks in each committee. The error bars are at plus or minus one standard deviation.
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Fig. 8. Test error rate versus evidence for: (a) XOR; (b) Yin-Yang; (c) Neal; (d) Ripley; (e) Diabetes; (f) Tremor; (g) Ionosphere;and (h) Vowel data sets.
Different symbols represent networks with different numbers of hidden units,Nh. In each plot, every symbol appears ten times, once for each of the ten
networks trained, except for the Logistic classifiers (marked ‘Log’ in the legends) which, though also trained ten times, always converged to the samesolution.



the Tremor data, the situation is similar; logistic models
generalize poorly, but all the MLP models generalize
well. Plots of the test log likelihood (instead of test error)
versus evidence are somewhat smoother, but a strong corre-
lation is not observed. The same is true for the log likelihood
of marginalized outputs, where each marginalized output is
obtained by integrating over the posterior weight distribu-
tion (MacKay, 1992a).

3.2.3. Effect of training set size
We now turn to the important issue of training set size by

looking at three of the synthetic data sets (Yin-Yang, Neal
and Ripley) and measuring the correlation between test error
and evidence as the size of the training set is increased. Fig.
9 shows that the correlation becomes significantly non-zero
whenR, the ratio of number of training examples to number
of network weights, exceeds five or ten.

Our results, so far indicate that the evidence is a good
model selection criterion, provided sufficient examples are
available. Although this is indeed the case, we note that the
training error is also a good model selection criterion at
similarly large values ofR. This is demonstrated in Fig. 10.

Thus, although correlations between evidence and gener-
alization error are observable, we need a disappointingly
large number of training examples; with this number of
examples cross-validation error, for example, is a realistic
alternative model selection criterion.

3.3. Automatic relevance determination for feature selection

We now compare networks trained with and without
ARD priors on a number of data sets. Networks trained
without an ARD prior use a two-layer Gaussian prior, that
is, with independent hyperparameters for each layer (see
Section 2.2).

3.3.1. Effect of training set size
Firstly, we look at artificial data sets to assess the depen-

dence of ARD on the training set size. The Neal data set
contains two useful inputs and two noise inputs. We also
consider two extensions of this data set; ‘Neal-5’ and ‘Neal-
12’. The ‘Neal-5’ data set consists of the two useful inputs
plus three extra variables, each one being equal to the origi-
nal first input variable plus additive Gaussian noise of an
increasing variance. Thus, in this new data set, inputsx1, x3,
x4 andx5 are of gradually decreasing relevance to the clas-
sification problem. Inputx2 is the same as in the original data
set. The ‘Neal-12’ data set consists of the two original useful
inputs plus ten extra noisy input variables.

We then trained a number of four-hidden unit MLPs on
each data set with varying amounts of training data. For
each different training set size, ten networks were trained.
Fig. 11 shows plots of the inferred weight decay parameters
versusR. The plots show that irrelevant inputs are assigned
large weight decay coefficients, as expected, and that this is
observable even forRas low as one. This was also observed

on other data sets (Ripley, Yin-Yang) where we added spur-
ious noisy input variables. In contrast, effective evidence-
based model selection requires a much larger value ofR.
This is understandable because the calculation of each
weight in the network is based onNd=gtot ‘effective’ data
points whereNd is the number of training data points andg tot

is the total number of well-determined weights in the
network (

P
k gk). The calculation of each hyperparameter,

however, is based onWk·Nd=gtot ‘effective’ data points,
whereWk is the number of weights in thekth group. The
calculation of the hyperparameters is therefore statistically
more reliable than the calculation of the evidence—because
Wk times as many effective data points are used. It is also
computationally more reliable. This is because the evalua-
tion of the trace of a matrix, upon which the hyperpara-
meters are based, is less prone to numerical round-off
error than the evaluation of its determinant, upon which
the calculation of the evidence is based. The Bayesian regu-
larization is, therefore, tenable with a small number of train-
ing examples whereas evidence-based model selection is
not.

3.3.2. Relation to test error
For the Neal and Neal-5 data sets, however, the impact of

the ARD scheme on the test error was negligible. There are
two main reasons for this. Firstly, ARD is only effective in
networks having many hidden units. This is because, the
evaluation of each ARD hyperparameter is based on
Nh·Nd=gtot effective data points (for an ARD weight group
Wk � Nh). Secondly, ARD can only show an improvement,
if non-ARD networks pick up spurious correlations in the
data. This is more likely to happen if there are many irrele-
vant inputs. This last point is illustrated in Fig. 12 which
shows that for the Neal-12 data set, which has ten spurious
inputs, there is a marginal but consistent reduction in test
error over a range ofR values.3 This was not observed on
the original Neal data set which has only two irrelevant
inputs.

3.3.3. Hard feature selection
An alternative use of ARD is as a hard feature selection

method, where inspection of the hyperparameters leads to
selection of a subset of variables which is used to train a new
ARD network. In these smaller networks, the calculation of
evidence will be more accurate. This approach, which we
call ‘hard-ARD’, was found to be useful on the Ionosphere
data. Inputs 1, 5, 7, 8, 9, 16, 21, 23, 25, 27 and 31 were
selected after a subjective cut-off value was chosen. The
subjective choice of this cut-off value is, however, a major
drawback of the hard-ARD method. Nevertheless, an
evidence-ranked committee of ARD networks trained on

W.D. Penny, S.J. Roberts / Neural Networks 12 (1999) 877–892 887

3 The data sets forR � 4,5 required more than the 400 data points
available in the original Neal data set. The extra data points were generated
according to the method described in Neal (1997).
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Fig. 9. Square of correlation between evidence and test error versusR, the
ratio of training examples to network weights for: (a) Yin-Yang data learnt
by a five-hidden unit MLP; (b) Neal data learnt by a four-hidden unit MLP;
and (c) Ripley data learnt by a three-hidden unit MLP. At each value ofR,
the correlations were calculated from a committee composed of ten
networks. Ten such committees were trained giving rise to ten estimates
of correlation. The solid lines show the median correlation and the error
bars show the 30th and 70th percentiles.
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Fig. 10. Square of correlation between training error and test error versusR,
the ratio of training examples to network weights for: (a) Yin-Yang data
learnt by a five-hidden unit MLP; (b) Neal data learnt by a four-hidden unit
MLP; and (c) Ripley data learnt by a three-hidden unit MLP. At each value
of R, the correlations were calculated from a committee composed of ten
networks. Ten such committees were trained giving rise to ten estimates of
correlation. The solid lines show the median correlation and the error bars
show the 30th and 70th percentiles.



this reduced data set achieved the lowest test error of all
methods.

Table 2 compares classification results on four of the data
sets with and without ARD. ARD is only seen to be bene-
ficial for the Ionosphere data. For the other data sets the
number of spurious inputs was not sufficient to upset non-
ARD methods.

3.4. Committees of networks

The error made by a classifier may be split up into two
components; a bias component and a variance component
(Breiman, 1996). If the classifiers are of a sufficient
complexity, such as MLPs with large numbers of hidden
units, then the bias component will be small. The variance
component, however, will be large. But if the networks are

used in committees the variance component can be reduced,
thus reducing the overall prediction error.

3.4.1. Effect of committee size
In this section, we consider the procedure of forming

unweighted committees from theM networks with the high-
est evidence. We call this an ‘evidence-ranked’ committee
of sizeM. Fig. 13 shows the effect ofM on test error.

Only for the Ionosphere data, is there a sensitive depen-
dence onM; a committee composed of ten networks has the
minimum test error. Larger committees, unusually, have a
larger test error. The optimal ten network committee is
composed mainly of two hidden unit networks (see Fig.
8(g)). As the committee size is increased, three and four
hidden unit networks are included which have a higher
test error. These networks which have relatively few hidden
units and a large test error, introduce an incorrect bias into
the committee. This bias component results in an overall
increase in prediction error. For the Vowel data, the predic-
tion error decreases significantly as the size of the commit-
tee is increased. The networks in this committee have more
hidden units than for the Ionosphere problem, and the reduc-
tion in variance is therefore the dominant effect of an
increasing committee size. For the other data sets, there
seems little benefit in using a committee.

3.4.2. Comparison with other methods
Table 3 summarizes the percentage classification error of

committees on five of the data sets. For all the data sets, the
results are quoted for networks using two-layer Gaussian
priors, except for the Ionosphere data where we quote the
result from networks with soft-ARD priors. The first column
(MaxEv) is the error of the single network with the highest
evidence. The second column (MaxEvH) is the error from a
committee formed from all h-hidden unit networks, where
h-hidden unit networks have the highest average evidence
on that problem. The third and fourth columns show the
median and minimum test errors over all values ofM for
the evidence-ranked committees. The last column indicates
the classification error obtained with ‘Other’ classifiers.
This covers a broad spectrum of methods. The result on
the Tremor data set was obtained with a committee of
Radial Basis Function classifiers (Roberts & Penny,
1997). The result on the Neal data set is from a Gaussian
Process classifier (Neal, 1997). The result on the Ripley data
set was obtained with a three-hidden unit MLP, trained with
a single weight decay regularizer (Ripley, 1994). The result
on the Ionosphere data is with a nearest-neighbour classi-
fier.4 The result on the Vowel data set was obtained with an
88-hidden unit MLP, trained with early stopping (Robinson
& Fallside, 1988).
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Fig. 11. Effect of training set size on ARD. A plot of the inferred weight
decay parameters,ak, versusR, the ratio of training examples to network
weights for (a) the original Neal data set containing two relevant inputs
(solid lines) and two irrelevant inputs (dotted lines) and for (b) the Neal-5
data containing inputsk � 1; 3; 4;5 of decreasing relevance indicated by
solid, dotted, dash-dotted and dashed lines, respectively. The Bayesian
regularization assigns larger weight decay parameters to less relevant
inputs.

4 In their original paper, Sigillito et al. (1989) quote a test error of 4%.
We did not include this in the table, however, as minimum test error was
used as a stopping criterion in an ‘early-stopping’ training scheme. This,
therefore, constitutes a biased result.



We note that these ‘Other’ results were obtained after
a good deal of experimentation by the respective
authors, and generally speaking, the best results were
reported. By focussing on our best results, the MinErr
column in Table 3, we could conclude that committees
of MLPs trained according to the evidence framework
were the most accurate classifiers on every data set
(except Neal’s). This would, however, be misleading.
The MedianErr and MaxEvH results are more represen-
tative and indicate that committees of networks trained
according to the Bayesian evidence framework, provide
similar classification accuracies as the best alternative
methods. Importantly, this is achievable with a minimum
of human intervention.

4. Conclusion

The Bayesian evidence framework provides a unified
theoretical treatment of learning in neural networks. To
date, however, it has been applied to only a handful of

problems. In order to find out whether this is due to inherent
flaws in the paradigm or to lack of awareness of the meth-
ods, we have provided an empirical assessment of the tech-
nique. We have focussed on three particular issues; model
selection, feature selection using ARD and the use of
committees of networks.

Experiments on synthetic data have shown that the corre-
lation between training error and test error is as good as the
correlation between the evidence and test error. We
conclude that it is, therefore, unnecessary to calculate the
evidence to decide between models—this can be done using
the training error alone. Model selection using the evidence
or training error is only tenable, however, if the number of
training examples exceeds the number of network weights
by a factor of five or ten. With this number of available
examples, cross-validation is a viable alternative.

The ARD feature selection scheme was able to pick out
relevant inputs and to correctly rank them in order of rele-
vance on a number of synthetic data sets. ARD only had an
impact on test error, however, in networks having many
hidden units and when there were many irrelevant network
inputs. ARD will only be beneficial for data sets and
networks satisfying these constraints. ARD was also
shown to be useful as a hard feature selection method. Over-
all, only one of our four real-world data sets benefitted from
the use of ARD.

Results on applying the evidence framework to the real-
world data sets showed that committees of Bayesian
networks achieved similar classification rates to the best
alternative methods. Although the classification results
were no better, they were achieved with a minimum of
intervention by the authors. Our overall conclusion is that
the evidence framework is useful for precisely this reason;
no parameters have to be hand-crafted to ensure that the
classifiers work well. This is due to the automatic regular-
ization scheme.

The overhead of Bayesian regularization is the calcula-
tion, storage and inversion of Hessian matrices. In all of the
networks we investigated this calculation was not found to
be a bottleneck; the optimization algorithms took orders of
magnitude more computer time.
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Fig. 12. Test error versusR, the ratio of training examples to network
weights on the ‘Neal-12’ data set which contains ten spurious inputs. The
networks have eight hidden units. The solid lines are for nets with an ARD
prior and the dotted lines for no ARD. The reduction in test error using
ARD at each point is of the order of one standard deviation. However, as the
ARD test errors are this much lower at every point, this reduction is
significant.

Table 2
The median percentage test error of evidence-ranked committees. In these
tests, the Tremor and Ripley data sets each contained two extra noisy input
variables

Problem No ARD Soft ARD Hard ARD

Neal 14.5 15.2 15.2
Ripley 10.2 10.2 9.3
Tremor 15.7 16.3 16.3
Ionosphere 7.0 7.3 4.0

Table 3
Percentage test error for: MaxEv (single network with the highest
evidence); MaxEvH (a committee formed from all h-hidden unit networks
where h-hidden unit nets have the highest average evidence for that
problem); MedianErr (the committee with median test error); MinErr (the
committee with minimum test error); and other methods

Problem MaxEv MaxEvH MedianErr MinErr Other

Neal 14.6 15.0 15.0 14.5 13.0
Ripley 9.3 9.4 9.3 8.9 9.4
Tremor 16.3 15.2 16.3 14.6 15.5
Ionosphere 7.3 3.3 7.3 7.3 7.3
Vowel 70.1 50.9 48.7 46.1 49.0



W.D. Penny, S.J. Roberts / Neural Networks 12 (1999) 877–892 891

0 10 20 30 40 50
0

2

4

6

8

10

Te
st

 e
rr

or

0 10 20 30 40 50
0

2

4

6

8

10

Te
st

 e
rr

or

0 10 20 30 40 50
10

12

14

16

18

20

Te
st

 e
rr

or

0 10 20 30 40 50
5

10

15

Te
st

 e
rr

or

0 10 20 30 40 50
15

20

25

Te
st

 e
rr

or

0 10 20 30 40 50
10

12

14

16

18

20

Te
st

 e
rr

or

0 10 20 30 40 50
0

2

4

6

8

10

Te
st

 e
rr

or

0 20 40 60 80
45

50

55

60

65

70

75

Te
st

 e
rr

or

(a)

(c)

(b)

(d)

(e) (f)

(g) (h)

Fig. 13. Committee test error versus number of networks in an evidence-ranked committee for: (a) XOR; (b) Yin-Yang; (c) Neal; (d) Ripley; (e) Diabetes; (f)
Tremor; (g) Ionosphere; and (h) Vowel data sets.
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