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1 Introduction

The General Linear Model (GLM) characterises postulated relationships be-
tween our experimental manipulations and the observed data. These relations
may consist of multiple effects all of which are contained within a specified de-
sign matrix. To test for a specific effect we use a ‘contrast’ which allows us
to focus in on a particular characteristic of the data. The application of many
different contrast vectors to the same design matrix allows us to test for multi-
ple effects without having to re-fit the model. This is important in functional
imaging because model fitting is computationally demanding.

There are often several ways to mathematically model an experimental paradigm.
For example, in a functional imaging experiment the baseline condition can be
modelled explicitly or not at all. This sort of issue generalises to more complex
designs. Contrast specification and the interpretation of results are entirely
dependent on the model specification which in turn depends on the design of
the experiment. The most important step is clearly the specification of the ex-
perimental paradigm since if a design is clearly thought through, the questions
asked of the data are generally easily specified.

In general, it is not very useful to know simply that a specific brain area
was more active during one condition than another. We wish to know whether
this difference is statistically significant. The definition of contrasts is therefore
intimately related to statistical tests. We will therefore review the aspects of
hypothesis testing that relate directly to the specification of contrasts.

This chapter is organised as follow. Section 2 reviews the basics beginning
with some general comments about specification of contrasts and design matri-
ces. In section 3, we review the raw material for the construction of contrasts
namely the parameters of the linear model. In section 4, we describe some
rules for constructing contrasts based on the t-test. In section 5 we discuss
F-contrasts and in section 6 discuss the important issue of correlation between
regressors.

2 Some general remarks

Thinking about which contrasts will be used should start before acquiring the
data. Indeed, most of the problems concerning contrast specification come from
poor design specification. Poor designs may be unclear about what the objective
is or may try to answer too many questions in a single model. This often leads
to a compromise in which it becomes difficult to provide clear answers to the
questions of interest. This may seem obvious but still seems to be one of the
main source of problems in functional imaging data analysis.

This previous remark does not completely preclude the use of a complex
paradigm, in the sense that many conditions can and often should be included
in the design. The process of recruiting subjects and acquiring the data is long
and costly and therefore it is only natural that one would like to answer as
many questions as possible with the same data. However, this requires careful
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thinking about which contrasts will then be specified and whether they actually
answer the question of interest.

Complex designs may also lead to testing many hypotheses at each voxel.
The fact that this will increase the risk of false positives is an issue that is more
often than not overlooked. Indeed, it is somewhat surprising that the problem
of multiple comparisons across voxels has received a large amount of attention
during the last ten years, while the problem of multiple comparisons across
contrasts has not yet been addressed in the brain imaging literature. If there is
no correction for the number of contrasts tested, results should be considered
as exploratory (with an uncontrolled risk of error). Alternatively, Bonferroni
correction can be applied to set a conservative bound on the risk of error.

One of the difficulties in brain imaging is that the form of the signal of
interest is not precisely known because the haemodynamic response varies across
subjects and brain regions. We therefore face a double task : estimation (what
has happened ?) and detection (has anything happened ?).

3 Constructing models

3.1 What should be included in the model ?

Again, it is generally a good idea to think about how the experiment is going
to be modelled and which comparison we wish to make before acquiring the
data. We first review some of the questions often asked at the modelling step
that have an impact on how the comparisons between conditions are going to
be performed.

For a given experiment, different model parameterisations are usually possi-
ble and some of them may allow for an easier specification of contrasts. The spec-
ified model represents the a priori ideas about how the experimental paradigm
influences the measured signal. The less prior information there is about the
form of the induced signal, the larger the number of regressors required by the
model, such that the combination of regressors can account for the possible
signal variation.

To make this point clear, we take the example of an fMRI experiment inves-
tigating signal variation in the motor cortex when a subject is asked to press a
device with four different forces (the “press” condition) interleaved with some
“rest” periods.

The first question to be answered is whether the rest period should be mod-
elled or not. In general, there is no difference whether the rest period is ex-
plicitly modelled or not, the only difference may arise because of edge effects
during the convolution with the expected haemodynamic response function (for
fMRI data). However, it has to be understood that the information contained
in the data corresponds effectively to the difference between the conditions and
the rest period. Therefore it is generally advisable not to model implicit con-
ditions. One may think instead in terms of modelling the difference between
two conditions. However, when the number of conditions is greater than 2, it
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is often easier to model each condition separately and accept that there will
be redundancy in the model and that only some comparisons will be valid (see
section 4.2 on estimability below).

The second question that may arise is how to model the “press” condition.
Here the prior information on neural activity and its metabolic consequence is
essential. One may have very specific prior assumptions, for example, that the
response should be linear with the force developed by the subject. In this case,
one regressor representing this linear increase should be included in the model
with, for instance, a value of one for the smallest force and a value of four for
the greatest. In this design, we might then ask what value should this covariate
take during the “rest” periods ? If zeros are assumed during this period, there
is an explicit hypothesis in the model that the difference between the rest and
the first force level is the same as the difference between the first and the second
force level (or second and third, etc.). To relax this hypothesis, the difference
between the “press” conditions and the rest period must be modelled explicitly.

3.2 Modelling the baseline

Generally the constant offset of the signal has to be modelled (as a column of
ones) since the measured signal has an offset (it is not on average zero even
without stimuli or task). Figure 1 shows this simple design, referred to as
‘Model-1’ which has three regressors1 This is a ‘linear parametric’ model. Some
questions that can then be put to the design would be

1. Is there a positive linear increase ? (testing if the parameter associated
with the first regressor is significantly greater than zero);

2. Is there a difference between the rest and the first force level that is not
the same as the one between other force levels ? In other words, is there
an additive offset for the “press” condition not accounted for by the linear
increase ? This would be tested using the second coefficient.

3. Is the average value of the signal during the rest period different from zero
(positive or negative) ?

Note that in this first example the model could be re-parameterised, for
instance by removing the mean of the first and second regressors to model
only the difference around the mean (in fact, this is done automatically in
SPM). In that case, the first and second questions would still be valid and the
corresponding parameters be unchanged, but the interpretation of the third
parameter would differ. It would take the value of the average of the measured
data, therefore including a potential increase due to the first condition. On the
other hand, if there is no information on whether the “press” condition might
involve some negative response or not (this corresponds to the case where the

1Whilst it is usual to convolve regressors with an assumed haemodynamic response func-
tion, as described in Chapter 7, we have skipped this step so as to focus more keenly on design
issues.

4



only a priori information is the difference between the levels of force) then it is
more reasonable to remove the mean.

The above points are clarified by the following example. Suppose that the
data y come from Model-1. We use parameters values [10 5 100] for the three
regressors respectively. Analysis with a model in which the first two covariates
have been mean centred leads to an estimation of [10 5 115] in the absence of
noise. Clearly, the parameter estimates corresponding to the first two conditions
of interest (now centred) are unchanged, but the parameter modelling the mean
is changed (from 100 to 115). The reason is that it now includes the average of
regressors one and two weighted by their respective parameter estimates.

3.3 Extending our first model

The hypothesis that the response increases linearly is a rather strong one. There
are basically two ways to relax this assumption.

First, the linear increase modelled in the first covariate can be developed in
a Taylor-like expansion, such that not only linear increases but also quadratic
or cubic increases can be modelled. This solution leads to the inclusion of a
new regressor that is simply constructed by the square of values of the linear
increase regressor. This new model, Model-2, is shown in Figure 2. This is a
‘quadratic-parametric model’, a type of parametric modulation that is described
further in Chapters 7 and 10.

The second solution is to have a non-parametric form, leaving the model
completely free to capture any differences between the four force levels. This is
achieved by representing each force level as a separate covariate. This example,
Model-3, is shown in figure 3. This is a ’non-parametric model’. Clearly, mod-
elling the difference between each level and the rest period renders the modelling
of the average “press” versus rest condition redundant, since the average can be
formed from the sum of the different force levels.

Note that what we want to model can be seen as two independent compo-
nents; the differences between levels 1 and 2, levels 2 and 3, and levels 3 and
4 for one part, and the average activation over all levels of force (the main ef-
fect of force) for the other part. Note that the difference between levels 1 and
4 can be created with (1-2)+(2-3)+(3-4). Modelling differences between levels
is similar to modelling interactions in factorial designs (see chapter on exper-
imental design). We therefore have the choice here to model the difference of
each level with the rest condition, or the main effect and the interaction. The
questions that can be put to these two designs are exactly the same, they are
just “rephrased”. The two versions of this model, models 3 and 4, are shown in
figures 3 (difference of each level with rest) and 4 (main effect and interactions).

The choice between parametric and non-parametric models often depends
on the number of parameters that need to be modelled. If this number is large
then parametric models might be preferred. A limited number of parameters
(compared to the number of data points) with little prior information would
generally lead to nonparametric models.

5



In each case, we may be unsure about how to test the effect of the force
levels and which effects to test. Before answering these question more formally
in the next sections, we briefly describe the issues involved. For the parametric
models, we might be interested in the following questions

• Is there a linear increase or decrease in activation with force level (modelled
by the first covariate) ?

• Is there a quadratic increase or decrease in addition to the linear variation
(modelled by the second covariate) ?

• Is there anything that is either linear or quadratic in the response to the
different levels of force (the joint use of the first and second covariate) ?

Should we in this instance centre the quadratic covariate or not ? The
first answer to this is that it generally makes no difference. In general, only
variations around the averaged signal over time are easily interpretable. Not
centering this covariate would only make a difference if one were interested
in the “mean” parameter. Likewise, the quadratic increase shown in Figure
2 can be decomposed into a linear increase and a “pure” quadratic increase
(one decorrelated from a linear trend). Removing the component that can be
explained by the linear increase from the quadratic increase makes the “linear
increase” regressor parameter easier to interpret. But one has to be careful not
to over-interpret a significant linear increase since even a signal equal to the
second regressor in figure 2 may have a significant linear component 2.

For the nonparametric models, interesting questions might be

• Is there an overall difference between force levels and the rest condition
(average difference between force levels and rest) ? This would involve the
average of the first four regressors in model 3 and the first regressor in
model 4.

• Are there differences between force conditions ? This is resolved by looking
conjointly at all differences in force levels versus rest in model 3 and at
regressors 2 to 4 in model 4.

• Would it be possible to test for a linear increase of the signal as a function
of the force level ? Because any difference between condition levels has
been modelled, it would not be easy to test for a specific linear increase.
However, one can inspect the shape of the increase post-hoc by displaying
the parameter estimates.

The re-parameterisation question is often framed in the following form.
Should conditions A and B be modelled separately, or should the common part
of A and B (A+B) be modelled as well as the difference (A-B) ? Note that if

2Since there is a common part to these two regressors, it is really a matter of interpretation
whether this common part should be attributed to one or the other component. See section
6 and [1] for further discussion of this matter.
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there is no third condition (or implicit condition as a null event or baseline)
only (A-B) can be estimated from the data.

Another example often considered is the case where the data acquired during
a period of time correspond to several factors in an experiment. For instance,
consider an experiment comprising two factors, for instance, a modality factor
where stimuli are presented either auditorily or visually, and a word factor where
stimuli are either names, verbs or non-words. Rather than trying to model the
factors (and possibly their interaction), it is often easier to model each level of
the factor (here 2 by 3, yielding six conditions). If there is no further implicit or
explicit rest (or baseline) then the questions of interest can be framed in terms
of differences between these conditions. We return to this example in section 5.

4 Constructing and testing contrasts

4.1 Parameter estimation

We now turn to the issue of parameter estimation. As thoroughly reviewed in
Chapter 7, the model considered is

Y = Xβ + ε (1)

simply expressing that the data Y (here Y is any time series of length n at a
given location in the brain, see section A for notation), can be approximated
with a linear combination of time series in X. The matrix X of dimension
(n, p), therefore, contains all effects that may have an influence on the acquired
signal. The quantity ε is additive noise and has a normal distribution with zero
mean and covariance σ2Σi. The parameters β can then be estimated using least
squares.

The most important thing to realise about model (1) is that it states that
the expectation of the data Y is equal to Xβ. If this is not the case then the
model is not appropriate and statistical results are likely to be invalid. This
will occur if X does not contain all effects influencing the data, or contains too
many regressors not related to the data.

A second important remark is that least squares estimation is a “good”
estimation only under the assumption of normally distributed noise. This means
that if there are outliers, the estimate β̂ may be biased. The noise in functional
imaging seems however close to normal and many aspects of the data processing
stream, eg. spatial smoothing, have “normalising” properties 3. The (true)
parameters β are estimated from the data using

β̂ = (XT X)−XT Y (2)

where X− denotes the (Moore-Penrose) pseudo inverse of X. The fitted
data Ŷ are defined as

Ŷ = Xβ̂ (3)
3If the original noise properties are well known the most efficient way to analyse the data

is the maximum likelihood procedure that would whiten the noise.
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and represent what is predicted by the model. The estimated noise is

Y − Ŷ = RY = r (4)

where
R = In −XX− (5)

The noise variance is estimated with

σ̂2 = Y T RY/tr
[
RΣi

]
(6)

Looking at formula (2) we realise that

• Parameters are dependent on the scaling chosen for the regressors in X.
This scaling will not be important when the parameter estimate is com-
pared to its standard deviation, but is important if regressors are entered
“by hand” and then compared to each other in the same design. When
entered through the dedicated interface in SPM , the regressors are ap-
propriately scaled to yield sensible comparisons.

• Not all parameters may be estimable. This is the subject of the following
subsection.

4.2 Estimability

One can appreciate that not all parameters may be estimable by taking the
rather unlikely model that contains the same regressor twice, say x1 and x2 = x1

having corresponding parameters β1 and β2. Clearly, there is no information in
the data on which to base the choice of β̂1 compared to β̂2. In this specific case,
any solution of the form β̂1 + β̂2 = constant will provide the same fitted data,
the same residuals, but an infinity of possible β̂1 and β̂2.

To generalise this argument we consider linear functions of the parameter
estimates

λ1β̂1 + λ2β̂2 + ... = λT β̂ (7)

The constants λi are the coefficients of a function that ‘contrasts’ the parameter
estimates. The vector λT = [λ1λ2...λp], where p is the number of parameters
in X, is referred to as the contrast vector. The word contrast is used for the
result of the operation λT β̂. A contrast is therefore a random variable, since β̂
is estimated from noisy data.

This situation generalises each time a regressor can be constructed with a
linear combination of the others. The matrix X is said to be rank deficient or
degenerate if (some of) the parameter estimates are not unique and therefore
do not convey any meaning by themselves. At first sight, this situation seems
unlikely. However, especially for PET data, most design models are degenerate.
This is because of the joint modelling of a constant term for the mean and of
all the differences between any condition and the remaining scans.

A contrast is estimable if (and only if) the contrast vector can be written as
a linear combination of the rows of X. This is because we get the information
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about a contrast through combinations of the rows of Y . If no combination of
of rows of X is equal to λT , then the contrast is not estimable4.

In more technical terms, the contrast λ has to lie within the space of XT ,
denoted by λ ⊂ C(XT ), or, equivalently, that λ is unchanged when projected
orthogonally onto the rows of X (ie, that PXT λ = λ with PXT being the ‘pro-
jector’ onto XT (see appendix C).

The SPM interface ensures that any specified contrast is estimable, hence
offering a protection against contrasts that would not make sense in degenerate
designs. A further possible difficulty is that a contrast may be estimable but
may be misinterpreted. One of the goals of this chapter is to improve the
interpretation of contrasts.

4.3 Constructing and testing t-contrasts

If it is clear what the parameter estimates represent, then specification of con-
trasts is simple, especially in the case of t-contrasts. These contrasts are of the
form described above ie. univariate linear combinations of parameter estimates.
For instance, for model 1 we can ask if there is a linear increase by testing
β1 using the combination 1β1 + 0β2 + 0β3, that is, with the contrast vector
λT = [1 0 0]. A linear decrease can be tested with λT = [−1 0 0].

To test for the additive offset of the “press” condition, not accounted for by
the linear increase, we use λT = [0 1 0]. Note here that the linear increase is
starting with a value of one for the first force level, up to 4 for the fourth level
(see figure 1).

When testing for the second regressor, we are effectively removing that part
of the signal that can be accounted for by the first regressor. This means that
the second regressor is not giving the average value of the difference between
the “press” conditions and the rest condition. To obtain this, we would have
to construct a re-parameterisation of model 1 and replace the first regressor
so that it models only difference of “force levels” around an average difference
between “press” and rest. This is achieved by orthogonalising the first regressor
with respect to the second. This new model, model-5, is shown in figure 5. The
parameter estimates of this new model are [10 30 100] as compared to [10 5
100] for model 1. This issue is detailed in [1] and the same effect can be seen
in F-tests (see section 5). In other words, one should have clearly in mind not
only what is but also what is not tested by the constructed statistics.

Another solution (useful in neuroimaging where estimating the parameters
can be time consuming) is to work out the equivalent contrast (see section 6.2).

The contrast vector λT = [1 1 0] is valid but difficult to interpret. For
example, the individual effects may be strong but because they can have different
signs the overall effect may be weak.

4Strictly, as we have described in Chapter 7, all contrasts are estimable by definition. If
a linear combination of parameter estimates is not estimable then that linear combination is
not a contrast. In this chapter, however, we often use the expression ’estimable contrast’ for
purposes of emphasis and because this term is used in the neuroimaging community.
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For model 3 the average amplitude of the “press” condition compared to rest
would be tested with λT = [1 1 1 1 0]. For model 4 the same effect can be tested
with λT = [1 0 0 0 0]. The two contrasts give exactly the same t-maps. Note
that in both cases, it is the average over levels that is tested, and this could be
significant just because of the impact of one level.

An interesting question is whether we can easily test the linearity of the
response to the four levels in those models. For model 3 the intuitive contrast
to enter would be λT = [1 2 3 4 0]. This would indeed test for a linear increase
of the force level, but in a very unspecific manner, in the sense that the test
might be significant in a situation where only the fourth condition has a greater
signal than in rest condition. This is because we are testing for the weighted
sum of the related parameters. The test is therefore valid, but certainly does
not ensure that the signal has a linear change with force levels. In other words,
the model is flexible and we are testing a very restricted hypothesis, such that
the shape of the predicted signal may be far away from the shape of the tested
component.

4.4 Computing t-statistics

Whatever contrast is used, the contrast t-statistics are produced using [4, 6]

tdf = λT β̂/SD(λT β̂) (8)

where SD(z) denotes the standard deviation of z and is computed from the
variance

var
[
λT β̂

]
= σ̂2λT (XT X)−XT ΣiX(XT X)−λ (9)

For Gaussian errors tdf follows approximately a Student distribution with de-
grees of freedom given by df = tr

[
RΣi

]2
/tr

[
RΣiRΣi

]
. At the voxel level, the

value tdf is tested against the likeliness of this value under the null hypothesis.
The important point here is that the standard deviation of the contrast

of parameter estimates depends on the matrix X. More specifically, when re-
gressors are correlated, the variance of the corresponding parameter estimates
increase. In other words, the stability of the estimation for one component is
greater when other components included in the model are decorrelated. The
dependence of the covariance of the estimated effects and the correlation within
the model can be used, for instance, to optimise event related designs.

The test of tdf is one-tailed when testing for positivity only or negativity only
and two-tailed when jointly testing for positive or negative effects (see section
5).

5 Constructing and testing F-contrasts

In this section, we will consider an experiment with two event-related conditions
using the simple case of right and left motor responses. In this experiment, the
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subject is asked to press a button with the right or left hand depending on a vi-
sual instruction (involving some attention). The events arrive pseudo-randomly
but with a long inter-stimulus interval. We are interested in finding the brain
regions that respond more to the right than to the left motor movement.

Our first model supposes that the shape of the haemodynamic response
function (HRF) can be modelled by a ‘canonical HRF’ (see Chapter 10 for
details). This model is shown in figure 6. To find the brain regions responding
more to the left than to the right motor responses we can use λT = [1 −
1 0]. Application of this contrast produces the SPM-t map shown in figure 7.
This clearly shows activation of contralateral motor cortex plus other expected
regions such as ipsilateral cerebellum.

Because there is an implicit baseline, the parameters are also interpretable
on their own and when tested (SPM t-maps not shown), they show responses
not only for the motor regions but also the expected visual regions 5. Instead of
having the two regressors being one for the left response and one for the right
response, an equivalent model would have two regressors, the first modelling
the response common to right and left and the second modelling the difference
between these responses.

The fact that the HRF varies across brain regions and subjects can be ac-
commodated as follows. A simple extension of the model of figure 6 is presented
in figure 9, for which each response is modelled with three basis functions.
These functions are able to model small variations in the delay and dispersion
of the HRF, as described in Chapter 10. They are mean centred, so the mean
parameter will represent the overall average of the data.

For this new model, how do we test for the effects of, for instance, the right
motor response ? The most reasonable approach in the first instance is to test
for all regressors modelling this response. This does not mean the sum (or
average) of the parameter estimates since the sign of those parameter estimates
is not interpretable, but rather the (weighted) sum of squares of those parameter
estimates. The appropriate F-contrast is shown in figure 10.

One interpretation of the F-contrast is of the specification of a series of one
dimensional contrasts, each of them testing against the null hypothesis that the
parameter is zero. Because parameters are tested against zero one would have
to reconstruct the fitted data and check the positive or negative aspects of the
response.

To test for the overall difference between right and the left responses we use
the contrast shown in figure 11. Note that multiplying the F-contrast coeffi-
cients by -1 does not change the value of the test. To see if the tested difference
is “positive” or “negative” (if this makes sense since the modelled difference
could be partly positive and partly negative) one has to look at the fitted signal
corresponding to the extra sum of squares tested. The F-test image correspond-
ing to this contrast is shown in figure 12. This image is very similar to the
corresponding image for the simpler model (figure 8). Finally, figure 13 shows

5Interestingly, there is some ipsilateral activation in the motor cortex such that the “left-
right” contrast is slightly less significant in the motor regions than the “left” [1 0 0] contrast.
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that the more complex model provides a better fit to the data.
To conclude this section, we give a few more examples using the design

described at the end of section 3. We suppose a 2 by 3 factorial design consisting
of words presented either visually (V) or aurally (A) and belonging to 3 different
categories (C1, C2, C3). The way the design is constructed is to model all the 6
event types in the following order in the design matrix; V-C1 (presented visually
and in category one), V-C2, V-C3, A-C1, A-C2, A-C3. We can then test for
the interaction between the modality and category factors. We suppose that
the experiment is a rapid event related design with no implicit baseline, such
that only comparisons between different kinds of event are meaningful (and not
events in themselves). In a first example the events are modelled using only one
basis function. A test for the main effect of modality would be the one presented
in figure 14(a). Figure 14(b) shows the test for the main effect of categories.
Note that because there is no implicit baseline here, the main effects of factors
are differences between the levels. Finally, the interaction term would be tested
for as in figure 14(c).

The number of rows in an interaction contrast (without implicit baseline) is
given by

Nrows =
N∏

i=1

(li − 1) (10)

where N is the number of factors and li the number of levels of factor i.

5.1 Interpretations of F-contrasts

There are two equivalent ways of thinking about F-contrasts. For example, we
can think about the F-contrast in figure 10 as fitting a reduced model that does
not contain the “right motor response” regressors. This reduced model would
have a design matrix X0 with zero entries where the “right motor response”
regressors were in the ‘full’ design matrix X. The test then looks at the variance
of the residuals (see section 4.1) as compared to that of the full model X. The
F-test simply computes the extra sum of squares that can be accounted for by
the inclusion in the model of the three “right hand” regressors. Following any
statistical textbook (e.g. [2]) and the work of [6, 4], this is expressed by testing
the following quantity :

Fdf1,df2 =
(Y T (I − PX0)Y − Y T (I − PX)Y )/ν1

Y T (I − PX)Y/ν2
(11)

with

ν1 = tr ((R0 −R)Σi) (12)
ν2 = tr (RΣi)

and

df1 = tr ((R0 −R)Σi(R0 −R)Σi)/tr((R0 −R)Σi)2 (13)
df2 = tr(RΣiRΣi)/tr (RΣi)2 (14)
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where R0 is the projector onto the residual space of X0 and PX is the orthogonal
projector onto X (see appendix for a definition of a ‘projector’.) We also have
6

Fdf1,df2 ∼ F (df1, df2) (15)

Such a test can be implemented by specifying the columns of the design matrix
that should be kept for the reduced model.

The second interpretation of the F-test is of the specification of a series of
one dimensional contrasts, each of them testing against the null hypothesis that
the parameter is zero. Note that in this case, parameters are tested against zero
and therefore, to interpret this test one would have to reconstruct the fitted
data and check the positive or negative aspects of the response.

We now formally show how the two interpretations of the F-test are linked.
The model in equation (1), Y = Xβ + ε, is restricted by the test cT β = 0 where
c is now a ‘contrast matrix’. If c yields an estimable function then we can define
a matrix H such that c = HT X. Therefore, HT Xβ = 0 which, together with
equation (1), is equivalent to Y ⊂ C(X) and Y ⊂ C(H⊥), the space orthogonal
to H. It can be shown that the reduced model corresponding to this test can
be chosen to be X0 = PX − PH . This is a valid choice if and only if the space
spanned by X0 is the space defined by C(H)⊥

⋂
C(X) and it is easy to show

that it is indeed the case.
If C(H) ⊂ C(X), the numerator of equation 11 can be rewritten as

Y T (R0 −R)Y = Y T (X0 −R)Y = Y T (PX −X0)Y = Y T (PH)Y (16)

We choose H such that it satisfies the condition above with H = (XT )−c, which
yields

Y T (PH)Y = Y T X(XT X)−XT H(HT H)−HT X(XT X)−XT Y (17)

= β̂T c(HT H)−cT β̂

The above rewriting of the F-test is important for several reasons. First it
makes the specification and computation of F-tests feasible in the context of
large data sets. Specifying a reduced model and computing the extra sum of
squares using equation 11 would be too computationally demanding. Second,
it helps to make the link between a t-test and the test of a reduced model and
therefore helps to recall that what is tested is only the “extra” variability that
cannot be explained by the reduced model. Third, it makes the test of complex
interactions using F-tests more intuitive.

The F-contrast that looks at the total contribution of all the ‘right regressors’
is, however, quite a nonspecific test. One may have a specific hypothesis about
the magnitude or the delay of the response and would like to test specifically
for this. In the first instance, it can be thought that a reasonable test would be
to use a t-test with contrast [0 0 0 1 0 0 0 0], testing for a positive parameter on
the regressor modelling the standard HRF. This is perfectly valid, but it has to

6This is an approximate result with good properties when the number of points is not too
small or if Σi is close to the identity matrix.
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be remembered that what is tested here is the amount of adequacy of the BOLD
response with this regressor, not the magnitude of the response. This means, for
instance, that if the response has the shape of the one supposed by the standard
model but is significantly delayed, the test might produce poor results even if
the delay is appropriately taken into account by the other regressors. This might
be quite important when comparing the magnitude of responses between two
conditions : if this magnitude is the same but the delays are different across
conditions, the test comparing simply the standard response regressors might be
misinterpreted : a difference of delay might appear as a difference of magnitude
even if the basis function is decorrelated or orthogonal. A related problem, the
estimation of the delay of the HRF has been considered in an earlier chapter.

Note that the simplest F-contrasts are uni-dimensional, in which case the
F-statistic is simply the square of the corresponding t-statistic. To visually
differentiate between unidimensional F-contrasts and t-contrasts in the SPM
interface, the former are displayed in terms of images and the latter as bars.

An important remark is that generally speaking, if we are confident about
the shape of the expected response, F-tests are often less sensitive than t-tests.
The reason is that the greater the flexibility of the tested space, the greater
is the possibility of finding a signal that can have an important part of its
variability explained by the model, and there is an implicit correction for this
in the numerator of equation 11.

6 Correlation between regressors and other is-
sues

Correlation between model regressors makes the tests more difficult to interpret.
Unfortunately, such correlation is often imposed by the brain’s dynamics, exper-
imental design or external measurements. The risks of mis-interpretation have
been extensively discussed in [1, 5]. To summarise, one could miss activations
when testing for a given contrast of parameters if there is significant correlation
with the rest of the design. An important example of this situation is when the
response to a stimulus is highly correlated with a motor response.

If one believes that a region’s activity will not be influenced by the motor
response, then it is advisable to test this specific region by first removing from
the motor response regressor all that can be explained by the stimulus. This is
of course a “dangerous” action since if in fact the motor response does influence
the signal in this region, then the test result will be overly significant. That is,
experimental variance will be wrongly attributed to the stimulus.

6.1 Moving the variance across correlated regressors

If one decides that a regressor, or indeed several regressors or combination of
those, should be orthogonalised with respect to some part of the design matrix
before performing a test, it is not necessary to reparametrise and fit the model
again. Once the model has been fitted, all the information needed to test some
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effects can be found in the fitted parameter estimates. For instance, instead of
testing the additional variance explained by a regressor, one may wish to test
for all the variance that can be explained by this regressor. Using the definitions
given in section 5.1, if c is the contrast testing for the extra sum of squares, it
is easy to show that the contrast matrix

cFull space = XT Xc (18)

tests for all the variance explained by the subspace of X defined by Xc since
we then have H = Xc.

6.2 Contrasts and reparametrised models

The above principle can be generalised as follows. If the design matrix contains
three subspaces say (S1, S2, S3), one may wish to test for what is in S1, having
removed what could be explained by S2 (but not by S3). Other examples are
conjunction analyses in which a series of contrasts can be modified such that the
effects they test are orthogonal. This involves orthogonalising the subsequent
subspaces tested. Therefore, results may differ depending on the order in which
these contrasts are entered.

The principle to compute the contrast testing for various subspaces from
parametrised versions of the model is simple. If X and Xp are two differently
parametrised versions of the same model then we can define a matrix T such
that Xp = XT . If cp is a test expressed in Xp while the data have been fitted
using X, the equivalent of cp using the parameter estimates of X is

c = cp(TT XT XT )−TT XT X (19)

One should be careful using this sort of transformation, for instance, not putting
variance of “no interest” in the space tested. Such transformations are often
very useful, however, as the models do not require re-fitting. See [1] for further
examples.

6.3 The estimation-detection dilemma

A crucial point when analysing functional imaging data (PET and fMRI alike)
is that in general the model is not well known. The larger the model, the better
in general would be the estimation of the signal, as long as the model is not
starting to capture noise components. This often leads to less specific questions
and to less sensitive tests compared to situations where the difference is known
with better precision. There are two extreme choices:

• the use of a simple model with the danger of not having modelled some
effects properly, a situation that may lead to biased results

• the use of a very flexible model with less sensitive tests and difficulties in
the interpretation of the results
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In other words, it is difficult to estimate the signal and at the same time test
for this signal. A possible strategy would consist in using part of the data in
an estimation phase that is separate from a testing phase. This will, however,
involve ”losing” some data. For an instance of such a strategy see [3].

6.4 FIR and random effects analyses

A typical example of a flexible model is Finite Impulse Response (FIR) mod-
elling of event-related fMRI data, as described in Chapter 10. The model in
this case is as flexible as possible since the haemodynamic response function
is allowed to take any shape. A classic difficulty with this approach, however,
is how to implement a random effects analysis (see Chapter 12). The diffi-
culty arises because, usually, one takes a single contrast image per subject up
to the second-level. With an FIR characterisation, however, one has multiple
parameter estimates per subject and one must therefore take into account the
covariance structure between parameters. Whilst this was prohibited in SPM99
it is now possible in SPM2, by making use of the ‘non-sphericity’ options as
alluded to in Chapters 9, 12 and 17.

7 Summary

In a functional imaging experiment it is often the case that one is interested in
many sorts of effects eg. the main effects of various conditions and the possible
interactions between them. To investigate each of these effects one could fit
several different GLMs and test hypotheses by looking at individual parameter
estimates. Because functional imaging data sets are so large, however, this
approach is impractical. A more expedient approach is to fit larger models and
test for specific effects using specific contrasts.

In this chapter we have shown how specification of the design matrix is inti-
mately related to the specification of contrasts. For example, it is often the case
that main effects and interactions can be set up using parametric or nonpara-
metric designs. These different designs lead to the use of different contrasts.
Parametric approaches are favoured for factorial designs with many levels per
factor. For contrasts to be interpretable they must be estimable and we have
described the conditions for estimability.

In fMRI one can model haemodynamic responses using the canonical HRF.
This allows one to test for activations using t-contrasts. To account for the
variability in haemodynamic response across subjects and brain regions one
can model the HRF using the canonical HRF plus its derivatives with respect
to time and dispersion. Inferences about differences in activation can then be
made using F-contrasts. We have shown that there are two equivalent ways of
interpreting F-contrasts, one employing the extra-sum-of-squares principle to
compare the model and a reduced model and one specifying a series of one-
dimensional contrasts. Designs with correlation between regressors are less effi-
cient and correlation can be removed by orthogonalising one effect with respect
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to other effects. Finally, we have shown how such orthogonalisation can be
applied retrospectively, ie. without having to refit the models.

A Notation

Y : Data The (n, 1) time series, where n is the number of time points or
scans.

c or λ : Contrast weights of the parameter estimates used to form the (numerator)
of the statistics

X : Design matrix
or design model

the (n, p) matrix of regressors .

β : Model parame-
ters

The true (unobservable) coefficients such that the weighted sum
of the regressors is the expectation of our data (if X is correct)

β̂ : Parameter esti-
mates

The computed estimation of the β using the data Y : β̂ =
(XT X)X Y

R : Residual form-
ing matrix

Given a model X, the residual forming matrix R = In − XX−

transforms the data Y into the residuals r = RY .
σ2Σi : scan (time) co-

variance
This (n, n) matrix describes the (noise) covariance between scans

B Subspaces

Let us consider a set of p vectors xi of dimension (n, 1) (with p < n), such
as regressors in fMRI. The space spanned by this set of vectors is formed of
all possible vectors (say u) that can be expressed as a linear combination of
the xi : u = α1x1 + α2x2 + ...αpxp. If the matrix X is formed with the xi :
X = [x1x2...xp], we note this space as C(X).

Not all the xi may be necessary to form C(X). The minimal number needed
is called the rank of the matrix X. If only a subset of the xi are selected, say
that they form the smaller matrix X0, the space spanned by X0, C(X0) is called
a subspace of X. A contrast defines two subspaces of the design matrix X : one
that is tested and one of “no interest”, corresponding to the reduced model.

C Orthogonal projection

The orthogonal projection of a vector x onto the space of a matrix A is the
vector (for instance a time series) that is the closest to what can be predicted
by linear combinations of the columns of A. The closest here is in the sense of
a minimal sum of square errors. The projector onto A, denoted PA, is unique
and can be computed with PA = AA−, with A− denoting the Moore-Penrose
pseudo inverse7 of A. For instance, in section 4.1, the fitted data Ŷ can be
computed with

Ŷ = PXY = XX−Y = X(XT X)−XY = Xβ̂ (20)
7Any generalised inverse could be used.
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Most of the operations needed when working with linear models only involve
computations in the parameter space, as is shown in equation 17. For a further
gain, if the design is degenerate, one can work in an orthonormal basis of the
space of X. This is how the SPM code is implemented.
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Figure 1: Model-1: Simple linear increase design showing the three regressors
constituting the design matrix for the experiment described in section 3.2. The
regressors, from top to bottom, model (i) the effects of a linear increase in force,
(ii) the effect of force itself and (iii) the baseline response.
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Figure 2: Model-2: Linear and quadratic increase covariates. Note the scale
of the second covariate.
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Figure 3: Model-3 Different force levels are modelled using separate covariates.
Black is 0 and white is 1 on this panel.
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Figure 4: Model-4 The main effect of force is modelled with the first regressor
and the interactions are modelled with regressors 2 to 4
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Figure 5: Model-5 This is the same as model 1 but the main effect of force has
been removed from the first regressor. This changes the interpretation of the
second regressor.
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Figure 6: The left panel shows the design matrix for analysing two event related
conditions (left or right motor responses) versus an implicit baseline in the case
where the shape of the HRF is assumed known up to a scaling factor. This
’canonical’ HRF is shown on the right panel. This HRF has been convolved
with the series of Dirac functions, which occur at event onset times, to form the
two leftmost regressors in the design matrix on the left.
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Figure 7: SPM-t image corresponding to the overall difference between the left
and right responses. This map was produced using the [1 −1 0] contrast on the
design matrix shown in figure 6.
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Figure 8: SPM-F image corresponding to the overall difference (positive or
negative) from the left and right responses. This map was produced using the
F-contrast [1 0 0; 0 1 0] on the design matrix shown in figure 6.
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Figure 9: This is the same model as in figure 6, but we use 3 regressors to
model each condition. The first three columns model the first condition (left
motor response) while columns 4 to 6 model the second condition (right motor
response). The three basis functions are the canonical HRF and its derivatives
with respect to time and dispersion.
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Figure 10: This figure shows a simple ’F-contrast’ testing for the regressors
modelling the right motor response. This corresponds to constructing the re-
duced model that does not contain the regressors that are ”marked” with the
F-contrast.
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Figure 11: This figure shows the F-contrast used to test the overall difference
(across basis functions) between the left and right responses.

Figure 12: SPM-F image corresponding to the overall difference between the
left and right responses. This map was produced using the F-contrast in figure
11 applied to the design matrix in figure 9.
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Figure 13: These plots show the haemodynamic response at a single voxel (the
maxima of the SPM-F map in figure 12). The left plot shows the HRF as
estimated using the simple model in figure 6 and demonstrates a certain lack of
fit. This lack of fit is corrected (right panel) by using the more flexible model
of figure 9.

Figure 14: F-contrasts testing respectively for (a) the main effect of modality
(b) the main effect of categories and (c) the interaction modality × category.
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