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Abstract

Bayesian inference for the multivariate Normal is most simply instanti-
ated using a Normal-Wishart prior over the mean and covariance. Predic-
tive densities then correspond to multivariate T distributions, and the
moments from the marginal densities are provided analytically or via
Monte-Carlo sampling. We show how this textbook approach is applied
to a simple two-dimensional example.

1 Introduction

This report addresses the following question. Given samples of multidimensional
vectors drawn from a multivariate Normal density with mean m and precision
Λ, what are the likely values of m and Λ ? Here, the precision is simply the
inverse of the covariance i.e. Λ = C−1. Whilst it is simple to compute the
sample mean and covariance, for inference we need the probability distributions
over these quantities. In a Bayesian conception of this problem we place prior
distributions over all quantities of interest and use Bayes rule to compute the
posterior. We follow the formulation in Bernardo and Smith [1] (tabularised on
page 441).

2 Preliminaries

2.1 Multivariate T distribution

The multivariate T distribution over a d-dimensional random variable x is

p(x) = T (x;µ,Λ, v) (1)

with parameters µ, Λ and v. The mean and covariance are given by

E(x) = µ (2)

V ar(x) =
v

v − 2
Λ−1

The multivariate T approaches a multivariate Normal for large degrees of free-
dom, v, as shown in Figure 1. For v = 1, T is a multivariate Cauchy distribution.
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For d = 1, we have a univariate t-distribution

p(x) = t(x;µ, λ, v) (3)

A side issue here relates to the marginal one-dimensional distributions produced
e.g. by applying a contrast matrix to a multivariate vector x. Generally, such
linear contrasts are not univariate t-distributions. However, the multivariate
T ’s that are defined in [4] (in terms of correlation rather than precision ma-
trices) do have this property. Nevertheless, this issue is not vitally important
as quantities based on the marginals (moments, exceedances) can be computed
using sampling, as we show in the Results section.

2.2 Wishart Distribution

The Wishart distribution, as defined in Bernardo and Smith (p. 435), over a
[d× d] matrix Λ is

p(Λ) = W(Λ; a,B) (4)

E(Λ) = aB−1

where B is a symmetric, nonsingular matrix and 2a > d− 1. For d = 1, B = 1
it reduces to a χ2 distribution with a degrees of freedom. In Bayesian statistics
the Wishart is the conjugate prior of the precision matrix.

For d = 1, the Wishart reduces to a Gamma distribution [2](p. 693)

p(λ) = Ga(λ; a, b) (5)

E(λ) =
a

b

V ar(λ) =
a

b2

For a = 1 we have the exponential distribution (Bishop p. 688) However,
the marginals p(λi) of p(Λ) are not Gamma densities [4]. Again, this is not
terribly important as we can use sampling to compute quantities based on the
marginals (moments, exceedances). Samples can be drawn from the Wishart
density using the wishrnd.m function in the matlab statistics toolbox. They can
also be generated directly, as described in Gelman [3] (page 481), by generating
v Gaussian random vectors, xn with zero mean and precision 2B and letting
Λ =

∑2a
n=1 xnx

T
n .

3 Multivariate Normal Model

3.1 Priors

Following Bernardo and Smith (p. 441) the prior is chosen to have the following
form

p(wn|m,Λ) = N (wn;m,Λ) (6)

p(m|Λ) = N (m;m0, β0Λ)

p(Λ) = W(Λ; a0, B0)
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with mean m and precision matrix Λ. The samples are wn with n = 1..N
and each is d-dimensional. We have also specified a Normal-Wishart prior over
{m,Λ} which is specified by the parameters m0, β0, a0, B0.

In the above formulation wn varies around m with precision Λ, whereas m
varies about m0 with precision β0Λ. Thus the value of β0 specifies the prior
precision of the mean relative to that of the parameters. The overall generative
model is shown in Figure 2.

3.1.1 Marginal Prior Precision

As the precision is at the top of the hierarchy in the generative model, its
marginal prior distribution is exactly as written above

p(Λ) =W(Λ; a0, B0) (7)

The mean prior precision matrix is the mean of a Wishart density

Λ̄ = a0B
−1
0 (8)

C̄ =
1

a0
B0

We have also written the equivalent mean prior covariance matrix of C̄ = Λ̄−1.
The parameter matrix B0 is set to reflect our prior beliefs. For example, if
the data points are a priori believed to be independent, B0 can be set to an
appropriate diagonal matrix.

3.1.2 Marginal Prior Mean

The marginal distribution over m corresponds to a multivariate T-distribution
(Bernardo and Smith, p435)

p(m) = T (m;µm0,Λm0, vm0) (9)

µm0 = m0

Λm0 = β0a0B
−1
0

vm0 = 2a0 − d+ 1

where the covariance C0 = Λ−1
0 . We have

V ar(m) =

[
vm0

vm0 − 2

]
Λ−1
m0 (10)

=

[
1

β0(a0 − 1)

]
B0

3.1.3 Prior Predictive Density

The prior predictive density, or sample density, is also given by a multivariate
T-distribution

p(w) = T (w;µw0,Λw0, vw0) (11)

µw0 = m0

Λw0 =
β0[a0 − 0.5(d− 1)]

β0 + 1
B−1

0

vw0 = 2a0 − d+ 1
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We have

V ar(w) =

[
vw0

vw0 − 2

]
Λ−1
w0 (12)

=

[
2(1 + β0)

β0(vw0 − 2)

]
B0

If we sum up the sample density over the N observations we get the marginal
likelihood, or model evidence.

3.2 Posteriors

Given w, the posterior distribution over m,Λ is a Normal-Wishart density

p(m|Λ, w) = N (m;mN , βNΛ) (13)

p(Λ|w) = W(Λ; aN , BN )

where

mN = (β0m0 +Nw̄)/βN (14)

βN = β0 +N

aN = a0 +
N

2

BN = B0 +
N

2

[
Σ̄ +

β0
βN

(w̄ −m0)(w̄ −m0)T
]

and

w̄ =
1

N

N∑
n=1

wn (15)

Σ̄ =
1

N

N∑
n=1

(wn − w̄)(wn − w̄)T

In the equation for BN we see that β0 determines the relative weight given
to the term describing the covariation about the prior mean versus the term
relating to the sample covariance, Σ̄. In the equation for aN we see that 2a0
can be interpreted as the number of pseudo data points that have been used to
construct B0. The least informative prior is given by a0 = d.

3.2.1 Marginal Posterior Precision

The marginal posterior precision matrix is distributed as p(Λ|w) as shown above.
The mean posterior precision and covariance matrices are

Λ̄N = aNB
−1
N (16)

C̄N =
1

aN
BN
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3.2.2 Marginal Posterior Mean

The marginal posterior distribution overm corresponds to a multivariate T (Bernardo
and Smith, p441)

p(m|w) = T (m;µmN ,ΛmN , vmN ) (17)

µmN = mN

ΛmN = βNaNB
−1
N

vmN = 2aN − d+ 1

= vm0 +N

We have

V ar(m|w) =

[
vmN

vmN − 2

]
Λ−1
mN (18)

=

[
1

βN (aN − 1)

]
BN

The mean posterior covariance used in drawing m is then C̄N/βN . The
square roots of the diagonals of this latter quantity are analagous to the Stan-
dard Error of the Mean (SEM). As βN = β0+N , this shows that the uncertainty
regarding m decreases in proportion to the number of data points. Notice that
the posterior variance has the same mathematical form as the prior variance
(equation 10), as we expect from the use of conjugate priors.

3.2.3 Posterior Predictive Density

The posterior predictive density for a new sample w̃ is a multivariate T distri-
bution

p(w̃|w) = T (w̃;µwN ,ΛwN , vwN ) (19)

µwN = mN

ΛwN =
βN [aN − 0.5(d− 1)]

βN + 1
B−1

N

vwN = 2aN − d+ 1

= vw0 +N

We have

V ar(w̃|w) =

[
vwN

vwN − 2

]
Λ−1
wN (20)

=

[
2(1 + βN )

βN (vwN − 2)

]
BN

Notice that the posterior variance has the same mathematical form as the prior
variance (equation 12), as we expect from the use of conjugate priors.

4 Two-Dimensional Example

We generate samples wn, n = 1..32, from a multivariate Normal density with
mean µ = [10, 7]T and covariance C = [4,−0.7;−0.7, 0.25] (underlying correla-
tion r = −0.7).
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We then fitted the multivariate Normal model to the data using values for
the priors of: m0 = [0, 0]T , β0 = 0.01 and a0 = 2. The sufficient statistics of the
posterior distributions were computed as in equations 13 to 15. Figure 3 (left
panel) shows (log of) the posterior predictive density computed using parameters
from equation 19. For comparison, we plot the (log of) the Normal density
computed using maximum likelihood values of the mean and covariance (using
the usual formulae).

Marginal distributions over quantities of interest are readily computed using
a sampling approach as follows. Figure 4 plots samples from the posterior
distribution over p(σ1, σ2|w). These were computed by drawing 1000 samples
from the posterior precision p(Λ|w) shown in Equation 13. For each sample, we
inverted to get the covariance matrix and recorded the σ1 and σ2 values. For
each sample, we also computed the correlation r12. These samples were then
used to construct the posterior correlation p(r12|w) shown in Figure 5.
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A Densities

The gamma density

Ga(x; a, b) =
1

Γ(a)
baxa−1 exp(−bx) (21)

is implemented in the function p=spm_Gpdf(x,a,b).
The multivariate T

T (x;µ,Λ, v) =
1

Z

(
1 +

1

v
(x− µ)T Λ(x− µ)

)−(v+d)/2

(22)

Z =
Γ((v + d)/2)

Γ(v/2)(vπ)d/2
|Λ|1/2

is implemented in the function p=spm_mvtpdf(x,\mu,\Lambda,v).
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Figure 1: The multivariate T approaches a multivariate Normal for large degrees
of freedom, v. The above plots show the log probability density of a bivariate
T with mean µ = [10, 7]T and covariance C = [9, 1.2; 1.2, 0.25] (underlying
correlation r = 0.8) for degrees of freedom v = 1, 16, 64. The bottom right
panel plots the log probability of a multivariate Normal with the same mean
and covariance. The scales are the same on all plots. For v = 1 (top left) T is
a multivariate Cauchy distribution.
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Figure 2: The graphical model shows that the overall joint density can be
written p(w,m,Λ) = p(Λ)p(m|Λ)

∏N
n=1 p(wn|m,Λ). The quantity 2a0 can be

interpreted as the number of pseudo data points that have been used to construct
B0. The least informative prior is given by a0 = d/2. Here m0 is the prior mean
and β0 determines the strength of the prior covariation about the prior mean.

Figure 3: Data points (N = 32) and log predictive density of Normal model
(left panel). This is a T distribution specified by equation 19. We also show
a Normal distribution with maximum likelihood estimates of the mean and
covariance (right panel).
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Figure 4: Samples from the posterior distribution p(σ1, σ2|w) given N = 32 data
points, true values (red cross), maximum likelihood estimates (green cross).
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Figure 5: Posterior distribution over correlation p(r12|w) given N = 32 data
points, true value (red line), maximum likelihood estimate (green line).
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