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Abstract

This article describes the use of Bayes factors for comparing Dynamic Causal
Models (DCMs). DCMs are used to make inferences about effective connec-
tivity from functional Magnetic Resonance Imaging (fMRI) data. These infer-
ences, however, are contingent upon assumptions about model structure, that
is, the connectivity pattern between the regions included in the model. Given
the current lack of detailed knowledge on anatomical connectivity in the human
brain, there are often considerable degrees of freedom when defining the con-
nectional structure of DCMs. In addition, many plausible scientific hypotheses
may exist about which connections are changed by experimental manipulation,
and a formal procedure for directly comparing these competing hypotheses is
highly desirable. In this article, we show how Bayes factors can be used to
guide choices about model structure, both with regard to the intrinsic connec-
tivity pattern and the contextual modulation of individual connections. The
combined use of Bayes factors and DCM thus allows one to evaluate competing
scientific theories about the architecture of large-scale neural networks and the
neuronal interactions that mediate perception and cognition.

1 Introduction

Human brain mapping has been extensively used to provide functional maps

showing which regions are specialised for which functions [14]. A classic exam-

ple is the study by Zeki et al. (1991) [47] who identified V4 and V5 as being

specialised for the processing of colour and motion, respectively. More recently,

these analyses have been augmented by functional integration studies which

describe how functionally specialised areas interact and how these interactions

depend on changes of context. These studies make use of the concept of ef-

fective connectivity defined as the influence one region exerts over another as
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instantiated in a statistical model. A classic example is the study by Buchel

and Friston [8] who used Structural Equation Modelling (SEM) to show that

attention to motion modulates connectivity in the dorsal stream of the visual

system.

In a recent paper [18] we have proposed the use of Dynamic Causal Mod-

els (DCMs) for the analysis of effective connectivity. DCM posits a causal

model whereby neuronal activity in a given region causes changes in neuronal

activity in other regions, via inter-regional connections, and in its own activity,

via self-connections. Additionally, any of these connections can be modulated

by contextual variables like cognitive set or attention. The resulting neuro-

dynamics of the modeled system then give rise to fMRI time series via local

hemodynamics which are characterised by an extended Balloon model [16, 10].

A DCM is fitted to data by tuning the neurodynamic and hemodynamic

parameters so as to minimise the discrepancy between predicted and observed

fMRI time series. Importantly, however, the parameters are constrained to

agree with a-priori specifications of what range the parameters are likely to lie

within. These constraints, which take the form of a prior distribution, are then

combined with data via a likelihood distribution to form a posterior distribution

according to Bayes’ rule. Changes in effective connectivity can then be inferred

using Bayesian inference based on these posterior densities.

In this paper we apply Bayesian inference not just to the parameters of a

DCM model, as in [18], but to the models themselves. This allows us to make

inferences about model structure, that is, which of several alternative mod-

els is optimal given the data. Such decisions are of great practical relevance

because we still lack detailed knowledge about the anatomical connectivity of

the human brain [34]. Decisions about the intrinsic connectivity of DCMs

are therefore usually based on inferring connections from supposedly equiva-
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lent areas in the Macaque brain for which the anatomical connectivity is well

known [42]. This procedure has many pitfalls, however, including a multitude

of incompatible parcellation schemes and frequent uncertainties about the ho-

mology and functional equivalence of areas in the brains of man and monkey.

This problem may be less severe in sensory systems, but is of particular impor-

tance for areas involved in higher cognitive processes like language [1]. Thus,

there are often considerable degrees of freedom when defining the connectional

structure of DCMs of the human brain. We show how Bayes factors can be

used to guide the modeller in making such choices. A second question con-

cerning model structure is which of the connections included in the model are

modulated by experimentally controlled contextual variables (e.g. attention).

This choice reflects the modeller’s hypothesis about where context-dependent

changes of effective connectivity occur in the modeled system. We demonstrate

how Bayesian model selection can be used to distinguish between competing

models that represent the many plausible hypotheses.

The paper is structured as follows. In section 2 we review Dynamic Causal

Modelling by defining the neurodynamic and hemodynamic models. In section

3 we describe Bayesian estimation and the Bayes factors that are used to weigh

evidence for and against competing scientific hypotheses. Results on simulated

and experimental data are presented in section 4.

1.1 Notation

We use upper-case letters to denote matrices and lower-case to denote vec-

tors. N(m,Σ) denotes a uni/multivariate Gaussian with mean m and vari-

ance/covariance Σ. IK denotes the K × K identity matrix, 1K is a 1 × K

vector of 1s, 0K is a 1 × K vector of zeros, if X is a matrix, Xij denotes the

i, jth element, XT denotes the matrix transpose and vec(X) returns a column

vector comprising its columns, diag(x) returns a diagonal matrix with leading
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diagonal elements given by the vector x, ⊗ denotes the Kronecker product (see

Appendix) and log x denotes the natural logarithm.

2 Dynamic Causal Models

Dynamic Causal Models have recently been proposed [18] as a method for

the analysis of functional integration. The first step in such an analysis is

the identification of a set of i = 1..L regions that comprise the system we

wish to study. These can be found via results of previous imaging studies or

from analyses of functional specialisation using standard General Linear Model

(GLM) approaches [15]. The second step is the specification of a set of j = 1..M

experimental variables that act as inputs to the system. Each input can be of

a driving nature, whereby activity in a given area is directly altered, or of a

modulatory nature, whereby changes in activity occur indirectly via changes in

connection strengths. In Buchel and Friston [8], for example, the driving input

was the experimental variable describing when moving images were presented to

a subject and the modulatory input was a variable describing when that subject

was instructed to attend to possible velocity changes. The neurophysiological

system comprised three regions in the visual pathway.

The effective connectivity in DCM is characterised by a set of ‘intrinsic

connections’ that specify which regions are connected and whether these con-

nections are unilateral or bilateral. We also define a set of input connections

that specify which inputs are connected to which regions, and a set of mod-

ulatory connections that specify which connections can be changed by which

inputs. The overall specification of input, intrinsic and modulatory connectiv-

ity comprise our assumptions about model structure. This in turn represents

a scientific hypothesis about the structure of the large-scale neuronal network

mediating the underlying cognitive function.

Figure 1 shows an example of a DCM network. DCM comprises a bilinear
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model for the neurodynamics and an extended Balloon model [16, 10] for the

hemodynamics. The next two sub-sections cover each of these topics, specifying

what the model parameters are and what are their prior distributions. Section

2.3 then describes the likelihood distribution for a DCM model and specifies

how the neurodynamic and hemodynamic priors are combined into an overall

DCM prior.

2.1 Neurodynamics

The neurodynamic parameters are the intrinsic, modulatory and input con-

nectivity matrices that define the multivariate differential equation governing

neuronal activity

żt =

Au +
M∑

j=1

ut(j)Bj
u

 zt + Cut (1)

where t indexes continuous time and the dot notation denotes a time derivative.

This is known as a bilinear model because the dependent variable, żt, is linearly

dependent on zt and linearly dependent of ut. That ut and zt combine in

multiplicative fashion endows the model with ‘nonlinear’ dynamics that can

be understood as a nonstationary linear system that changes according to ut.

Importantly, because ut is known, parameter estimation is tractable.

The neuronal activity zt is an L × 1 vector comprising activity in each of

the L regions and the input ut is an M × 1 vector comprising the scalar inputs

ut(j) where j = 1..M . The intrinsic connectivity matrix Au and modulatory

connectivity matrix Bj
u are of dimension L × L and the input matrix C is

of dimension L × M . Here, the u subscripts in Au and Bj
u denote that the

matrix elements are ‘unnormalised’ as described below. Later we will describe

‘normalised’ A and Bj matrices.

In the intrinsic and modulatory matrices an entry in row i and column k

denotes a connection from region k to region i. If the regions form a hierarchy

then entries in the lower diagonal therefore constitute forward connections and
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entries in the upper diagonal are backward connections. In the example network

in figure 1 the matrices are

Au =

[
A11 A12

A21 A22

]
(2)

B2
u =

[
B2

11 0
0 B2

22

]

C =

[
C11 0
0 C

]

where, for example, A21 is the forward connection to the higher cortical region,

region 2, from the lower region, region 1.

Following [18], the self-connections are enforced to take on the same value,

σ, in all regions by constraining the connectivity matrices as follows

Au = σ(A− I) (3)

Bj
u = σBj

where the A and Bj matrices on the right are in ‘normalised’ form. The A ma-

trix is defined to have zero entries on the diagonal resulting in diagonal entries

in Au that are identically equal to −σ. This enforces the intrinsic neuronal time

constants to be the same in all regions. Further, the diagonal entries in Bj are

required to be zero so that the intrinsic time constants cannot be modulated

(unlike the example in Fig. 1). The normalised coupling parameters are more

interpretable as they express the strength of a connection between regions rel-

ative to the strength of self-connections. Further, normalised connections are

more robust to slice-timing errors and to regional variations in hemodynamic

response [18].

In the abscence of coupling between areas the time-constant of neuronal

transients (ie. the half-life) is given by τ = log 2/σ. A priori we know what

range of time-constants are physiologically plausible and we can put this infor-
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mation into DCM via the prior distribution

p(σ) = N(ησ, Cσ) (4)

where ησ = 1 and Cσ is set so as to render the probability of obtaining negative

σ’s arbitrarily small. In this paper, as in [18], we use a value of Cσ = 0.105 which

makes this probability 0.001. The distribution of time-constants is therefore

given by p(τ) = p(σ)∂σ/∂τ . We note that the expected neuronal time constant,

< τ > , is therefore determined by both ησ and Cσ (note < τ >6= log 2
<σ> as

the transformation between σ and τ is nonlinear [33]). The nature of this

prior distribution can be appreciated by drawing samples from it as shown in

Figure 2. This shows that the expected neuronal time constant is about 900ms.

We can then define a vector of neurodynamic parameters as the neuronal

time constant concatenated with vectorised connectivity matrices. That is

θc =


σ
vec(A)
vec(B)
vec(C)

 (5)

Model structure is defined by specifying which entries in the above matrices are

allowed to take on non-zero values ie. which inputs and regions are connected.

A given model, say model m, is then defined by its pattern of connectivity.

Note that only connections which are allowed to be non-zero will appear in θc.

For a network with Na intrinsic, Nb modulatory and Nc input connections θc

will have Nθ = Na + Nb + Nc + 1 entries.

Priors are placed on the A and Bj matrices so as to encourage parameter

estimates that result in a stable dynamic system (see section 2.3.1 in [18] for a

discussion). For each connection in A and Bj the prior is

p(Aik) = N(0, va) (6)

p(Bj
ik) = N(0, vb)
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where the prior variance va is set to ensure stability with high probability (see

Appendix A.3 in [18] for a discussion of this issue). For each connection in C

the prior is

p(Cim) = N(0, vc) (7)

These priors are so-called ‘shrinkage-priors’ because the posterior estimates

shrink towards the prior mean, which is zero. The size of the prior variance de-

termines the amount of shrinkage. The above information can be concatenated

into the overall prior

p(θc) = N(θc
p, C

c
p) (8)

where the p subscripts denote priors and

θc
p = [ησ, 0Nθ−1]T (9)

Cc
p = diag[Cσ, va1Na , vb1Nb

, vc1Nc ]

This completes our description of the prior distribution of neurodynamic pa-

rameters. For any given θc we can integrate equation 1 and obtain neuronal

time series for each region. These are shown for our example DCM in the bot-

tom panel of figure 1. We can then relate this neuronal activity to an fMRI

time series via the hemodynamic process described in the following section.

2.2 Hemodynamics

In DCM the hemodynamics are described by the Balloon model first described

by Buxton et al. [10] and developed further by Friston et al. [19, 16]. DCM uses

a separate Balloon model for each region. For the ith region, neuronal activity

zi causes an increase in vasodilatory signal si that is subject to auto-regulatory

feedback. Inflow fi responds in proportion to this signal with resulting changes
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in blood volume vi and deoxyhemoglobin content qi

ṡi = zi − κisi − γi(fi − 1) (10)

ḟi = si

τiv̇i = fi − v
1/αi

i

τiq̇i = fi
1− (1− ρi)1/fi

ρi
− v

1/αi

i

qi

vi

where in region i, κi is the rate of signal decay, γi is the rate of flow-dependent

elimination, τi is the hemodynamic transit time, αi is Grubb’s exponent and

ρi is the resting oxygen extraction fraction. The biophysical parameters can

be concatenated into the vector θh = {κi, γi, τi, αi, ρi}, for i = 1..L. Priors are

placed on the biophysical parameters to ensure biological plausibility

p(θh) = N(θh
p , Ch

p ) (11)

where

θh
p = 1L ⊗ hmean (12)

Ch
p = IL ⊗Hcov

and hmean, Hcov are the prior means and covariances which are the same for

each region and ⊗ denotes the Kronecker product (see Appendix). The prior

means and variances are shown in table 1 in [18] and were computed from data

collected during a word presentation fMRI experiment as follows. For each of

128 voxels, hemodynamic parameters were estimated using a nonlinear function

minimization routine [19] and the means and variances of the parameter esti-

mates over these 128 voxels were then used as our prior means and variances.

The predicted BOLD signal in region i is then related to blood volume and

deoxyhemoglobin content as follows

hi = g(vi, qi) (13)
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= 2(7ρi(1− qi) + 2(1− qi

vi
) + (2ρi − 0.2)(1− vi))

For a particular setting of the biophysical parameters, θh, one can take the

neuronal activity in a given region, zi, integrate equation 10 and pass the

resulting blood volume and deoxyhemoglobin content values, vi and qi, through

the nonlinearity in equation 13. This then gives rise to an fMRI time series.

The nature of the prior distribution over hemodynamic parameters can be

appreciated by plotting the hemodynamic response to neuronal transients for

various values of θh sampled from p(θh), as shown in figure 2. The average

hemodynamic response peaks at 4s which perhaps seems a little early. How-

ever, one must bear in mind that these are responses to transients from isolated

regions. Connected regions result in more persistent neuronal dynamics which

have the effect of delaying the peak hemodynamic response as shown for exam-

ple in figure 10 of [18].

2.3 Overall prior and likelihood

We concatenate all neurodynamic and hemodynamic parameters into the over-

all p-dimensional parameter vector

θ =

[
θc

θh

]
(14)

This vector contains all the parameters of a DCM model that we need to esti-

mate. Consequently the prior mean and covariance are given by

θp =

[
θc
p

θh
p

]
(15)

Cp =

[
Cc

p 0
0 Ch

p

]
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The neurodynamics and hemodynamics combine to produce a multivariate time

series of observations as follows

ẋ = f(x, u, θ) (16)

h(θ, u) = g(x)

with states x = {z, s, f, v, q}. For given input u, and DCM parameters θ, model

predictions can be produced by integrating the state equation as described in

[18, 16]. This integration is efficient because most fMRI experiments result in

input vectors that are highly sparse. For a data set with Ns scans we can then

create a LNs × 1 vector of model predictions h(θ, u) covering all time points

and all areas (in the order all time points from region 1, region 2 etc.). The

observed data y, also formatted as an LNs × 1 vector, is then modelled as

y = h(θ, u) + Xβ + w (17)

where w is an LNs×1 vector of Gaussian prediction errors with mean zero and

covariance matrix Ce, X contains effects of no interest and β is an unknown

vector of parameters to be estimated. In [18] the error covariance described both

autoregressive and white noise processes and simulations showed the estimation

was robust to misspecification of the error process. It is sufficient therefore to

characterise the prediction error in each region as a white noise process. That

is, Ce = INs ⊗ Λ where Λ is an L× L diagonal matrix with Λii denoting error

variance in the ith region.

2.4 Modelling bottom-up and top-down effects

Many applications of DCM, both in this article and in previous work [18, 31],

refer to ”bottom-up” and ”top-down” processes in the visual system, and we

envisage that a large number of future applications of DCM will address the

same issue. Some of the possible DCM architectures for modeling these pro-

cesses may, at first glance, seem at odds with traditional cognitive theories that
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relate bottom-up processes to so-called ”forward” connections and top-down

processes to ”backward” connections [45]. This paragraph therefore aims at

clarifying this relationship, using some simple examples from the visual system,

and emphasizes the need for precise terminology when distinguishing between

the levels of anatomical connectivity (forward vs. backward connections) and

cognitive processes (bottom-up vs. top-down).

Classical theories of visual information processing have envisaged a hierar-

chy of cortical areas, each performing a specialized type of analysis and feeding

the results of its computations on to the next (i.e. higher) level (Marr 1982).

The anatomical basis for information transfer from lower to higher areas in this

bottom-up model are so-called ”forward” (or ”feedforward”) connections that

originate in the granular layer (i.e. layer IV) of the source area and terminate in

both supra- and infragranular layers of the target area [13]. Stimulus-dependent

bottom-up processes are not sufficient, however, to explain the effects of con-

textual factors (e.g. cognitive set, expectation, or attention) that can evoke

drastic changes in the information processing within areas. These modulatory

processes are referred to as top-down processes and are mediated anatomically

by so-called ”backward” (or ”feedback”) connections from higher to lower areas

which both originate and terminate in infra- and supragranular layers.

The neurophysiology of top-down processes is complex and not well under-

stood, but comprises at least two different mechanisms (see below). Although

differential laminar patterns cannot currently be represented in DCMs, one can

model simple hierarchies of areas in DCM, and in these hierarchies connections

can be classified as forward or backward based on the relative position of the

two connected areas in the hierarchy (see Fig. 24 in [18]). At first glance, it

may appear natural to assume that in DCM bottom-up effects should always

be modeled by a modulation of these forward connections, and top-down effects
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should always be modeled by a modulation of these backward connections. As

is explained below, this account is oversimplified and partially misleading.

Let us envisage a very simple example of a DCM that consists of the two

reciprocally connected visual areas V1 and V5, with V1 receiving visual input

(VIS STIM) (Fig. 3A). Let us further imagine that some of the applied visual

stimuli are moving, whereas others are stationary. It is well established that V5

is involved in the processing of various stimulus attributes, but is particularly

sensitive to motion information, i.e. V5 shows increased responses to inputs

from V1 whenever the applied stimulus is moving [4] (Fig. 3B). In DCM, this

bottom-up process would be modeled by modulating the V1 V5 forward con-

nection by a vector that indicates when the stimuli were moving (MOT, Fig.

3A). Importantly, however, not only bottom-up, but also top-down processes

can be modeled through a modulation of forward connections. Let us change

our example slightly and imagine that (i) stimuli are always moving, and (ii)

attention is sometimes directed to the motion of the stimuli and sometimes

to some other stimulus property (e.g. colour). Previous studies have demon-

strated that V5 responses to inputs from V1 are enhanced whenever motion

is attended to [8, 17, 32, 11, 44]. This attentional top-down effect is called

a ”gain control” mechanism and is mediated neurophysiologically by feedback

connections from higher areas (represented by ”X” in Fig. 3D) that (i) influ-

ence those neurons in V5 which receive inputs from V1 via forward connections

[5, 24], such that (ii) the responsiveness of these V5 neurons to simultaneous

inputs from V1 is enhanced, possibly through interactions between dendritic

and somatic postsynaptic potentials [41] (see Fig. 3D). Although this level of

detail cannot currently be modeled in DCMs, we can describe precisely the

same mechanism at a coarser level by allowing the V1 V5 forward connection

to be modulated by attention (Fig. 3C; note that this modeling approach has
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been applied previously to primate single cell data - see [37].

The behaviour of this model then corresponds precisely to the observed

neurophysiology: the magnitude of the stimulus-dependent responses in V5

(i.e. the V5 responses to V1 inputs) is scaled up whenever motion is being

attended to. Compared to the first example, it should thus become obvious

that modulation of forward connections can represent a bottom-up process (if

the modulatory variable refers to a stimulus property; Fig. 3A) as well as a

top-down mechanism (if the modulatory variable represents cognitive context

like attention, Fig. 3C).

In addition to the stimulus-locked, multiplicative gain control mechanism,

attentional top-down modulation can be achieved by at least one more pro-

cess. For example, during attention an enduring shift in the baseline responses

of visual areas has even been observed in the absence of stimuli [28, 27, 11].

Neurophysiologically, this additive baseline shift is believed to be mediated by

backward connections that do not, as in the case of the gain control mecha-

nism, simply sensitize post-synaptic cells to inputs from lower areas, but exert

a more direct, ”driving” effect on neurons in the target area [28]. There are

various ways of modeling this mechanism. If one does not know what area

might represent the source of this attentional top-down effect, one can model

the influence of attention to motion onto V5 as a direct, additive increase in

V5 activity (ATT-MOTION, Fig. 4A). If, however, one has reason to believe

that a particular area, e.g. the superior parietal cortex (SPC) in this example,

mediates this effect, one can also model it as shown by Fig. 4B: here, attention

in general (ATT) influences the SPC whose backward connection onto V5 is

modulated by motion-specific attention (ATT-MOT). This models an increase

in V5 responses to attentional inputs from SPC but only when the attention

is directed to motion. Note that, except for the inclusion of SPC, this model
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is the mirror image of the very first example (i.e. the bottom-up processing of

motion information, Fig. 3A).

Further plausible ways of modeling top-down mechanisms in DCMs exist,

including modulation of self-connections (which would correspond to modeling

a context-dependent change of intra-areal decay of activity), but we will not

go into further details here. The main message of this section is that, depend-

ing on the exact mechanism that one intends to model and the nature of the

modulatory input, top-down effects can be modeled both by modulation of for-

ward and backward connections in DCM. To this end, it is useful to distinguish

between the type of anatomical connections included in the model (forward

vs. backward connections) and the cognitive processes modeled (bottom-up vs.

top-down).

3 Bayesian Estimation and Inference

This section consists of two parts describing how Bayesian inference is used (i)

to estimate the parameters a DCM model and (ii) to compare different models.

These may be thought of as the first and second levels of Bayesian inference.

In the first part we describe how the DCM prior and likelihoods are com-

bined via Bayes rule to form the posterior distribution. Section 3.1 sets out

some notation and section 3.2 describes how the posterior is computed itera-

tively using an Expectation-Maximisation (EM) algorithm.

The second part, starting in section 3.3, describes how to compute the model

evidence. This can be decomposed into two types of term: accuracy terms and

complexity terms. The best model, or one with the highest evidence, strikes an

optimal balance between the two. In section 3.4 we describe how Bayes factors,

ratios of model evidences, are used to compare different models and in section

3.5 suggest how Bayes factors be used to make decisions. We also present a

coding perspective on Bayesian model comparison in section 3.6.
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Readers not familiar with Bayesian modelling are referred to [20]. More

specifically the Laplace approximations, model evidences and Bayes factors

that we shall encounter are described in [25, 26, 36].

3.1 Parameter Priors and Likelihoods

We now set out some notation that both summarises the definitions in section 2

and that will be used to derive further quantities, such as posterior distributions

and model evidences. The parameter prior and likelihood are

p(θ|m) = N(θp, Cp) (18)

p(y|θ, m) = N(h(θ, u), Ce)

These can be expanded as

p(θ|m) = (2π)−p/2|Cp|−1/2 exp(−1
2
e(θ)T C−1

p e(θ)) (19)

p(y|θ, m) = (2π)−Ns/2|Ce|−1/2 exp(−1
2
r(θ)T C−1

e r(θ))

where

e(θ) = θ − θp (20)

r(θ) = y − h(θ, u)−Xβ

are the ‘parameter errors’ and ‘prediction errors’.

3.2 Estimation of Parameter Posteriors

From Bayes’ rule the posterior distribution is equal to the likelihood times the

prior divided by the evidence [20]

p(θ|y, m) =
p(y|θ, m)p(θ|m)

p(y|m)
(21)
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Taking logs gives

log p(θ|y, m) = log p(y|θ, m) + log p(θ|m)− log p(y|m) (22)

The parameters that maximise this posterior probability, the Maximum Pos-

terior (MP) solution, can then be found using a Gauss-Newton optimisation

scheme whereby parameter estimates are updated in the direction of the gra-

dient of the log-posterior by an amount proportional to its curvature (see e.g.

[35]). The model parameters are initialised to the mean of the prior density.

If the proportion of data points to model parameters is sufficiently large,

as is the case with DCM models of fMRI time series, then the posterior is

well approximated with a Gaussian. The aim of optimisation is then to esti-

mate the mean and covariance of this density which can be achieved using an

Expectation-Maximisation (EM) algorithm described in section 3.1 of [16]. In

the E-step, the posterior mean, θ̂, and the posterior covariance, Σ̂, are updated

using a Gauss-Newton step and in the M-step the hyper-parameters of the noise

covariance matrix, Ce, are updated. These steps are iterated until the posterior

distribution

p(θ|y, m) = N(θMP ,ΣMP ) (23)

is reached. The posterior density can be used to make inferences about the size

of connections as shown, for example, in Figure 12.

In statistics, approximation of a posterior density by a Gaussian centred on

the maximum posterior solution is known as a Laplace approximation [25]. The

parameters of no interest, β, can also be estimated by forming an augmented

parameter vector that includes θ and β and an augmented observation model,

as described in Equation 7 of [18].
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3.3 Model Evidence, BIC and AIC

The structure of a DCM model is defined by specifying which regions are con-

nected to each other, via the intrinsic connectivity matrix, and which inputs

can alter which connections, via the modulatory matrix. A given model, say

model m is then defined by this pattern of connectivity. Different models can

be compared using the evidence for each model and this can be thought of as

a second-level of Bayesian inference. The model evidence is computed from

p(y|m) =
∫

p(y|θ, m)p(θ|m)dθ (24)

Note that the model evidence is simply the normalisation term from the first

level of Bayesian inference, given in equation 21. In the appendix we show that,

using the Laplace approximation, this leads to an expression for the log model

evidence consisting of an accuracy and complexity term defined as follows

log p(y|m)L = Accuracy(m)− Complexity(m) (25)

where

Accuracy(m) = −1
2

log |Ce| −
1
2
r(θMP )T C−1

e r(θMP ) (26)

Complexity(m) =
1
2

log |Cp| −
1
2

log |ΣMP |+
1
2
e(θMP )T C−1

p e(θMP ) (27)

Use of base-e or base-2 logarithms leads to the log-evidence being measured in

‘nats’ or ‘bits’ respectively. The first term in Accuracy(m) can be expressed as

the product of the noise variances Λii over all regions and the second term will

be close to unity as the Λii are estimated based on the observed errors r(θMP ).

The complexity terms will be discussed further in section 3.6.

The evidence embodies the two conflicting requirements of a good model,

that it fit the data and be as simple as possible. The requirement that the model

be simple is intuitively appealing and concurs with notions such as Occam’s
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Razor - that one should accept the simplest explanation that fits the data. But

is there a mathematical reason for preferring simple models ? Figure 5, presents

an argument from Mackay [29], which shows that indeed there is.

Computation of log p(y|m)L requires inversion of the prior covariance matrix

(ie. C−1
p ). To compute this quantity it is therefore recommended to use a full-

rank prior over the hemodynamic parameters. Alternatively, one can use a

lower-rank prior (as in [18]) and compute log p(y|m)L by first projecting the

hemodynamic parameters onto the relevant subspace.

A drawback of the Laplace approximation to the model evidence is its de-

pendence on parameters of the prior density e.g. the prior variance on intrinsic

connections va. This dependence is particularly acute in the context of DCM

where va is chosen to ensure (with high probability) that the optimisation al-

gorithm converges to a stable solution.

We therefore do not employ the Laplace approximation in this paper but

make use of alternative approximations. The first, the Bayesian Information

Criterion [40], is a special case of the Laplace approximation which drops all

terms that don’t scale with the number of data points. In the appendix we

show that for DCM it is given by

BIC = Accuracy(m)− p

2
log Ns (28)

where p is the number of parameters in the model. The second criterion we

use is Akaike’s Information Criterion (AIC) [3]. AIC is maximised when the

approximating likelihood of a novel data point is closest to the true likelihood,

as measured by the Kullback-Liebler divergence (this is shown in [38]). For

DCM, AIC is given by

AIC = Accuracy(m)− p (29)

Though not originally motivated from a Bayesian perspective, model compar-

isons based on AIC are asymptotically equivalent to those based on Bayes

19



factors [2], ie. AIC approximates the model evidence.

Empirically, BIC is observed to be biased towards simple models and AIC

to complex models [25]. Indeed, inspection of Equations 28 and 29 shows that

for values of p and Ns typical for DCM, BIC pays a heavier parameter penalty

than AIC.

3.4 Bayes factors

Given models m = i and m = j the Bayes factor comparing model i to model

j is defined as [25, 26]

Bij =
p(y|m = i)
p(y|m = j)

(30)

where p(y|m = j) is the evidence for model j found by exponentiating the

approximations to the log-evidence in equations 25, 28 or 29. When Bij > 1,

the data favour model i over model j, and when Bij < 1 the data favour model

j.

The Bayes factor is a summary of the evidence provided by the data in

favour of one scientific theory, represented by a statistical model, as opposed

to another. Just as a culture has developed around the use of p-values in

classical statistics (eg. p < 0.05), so one has developed around the use of Bayes

factors. Raftery [36], for example, presents an interpretation of Bayes factors as

shown in Table 1. Jefferys [23] presents a similar grading for the comparison of

scientific theories. These partitionings are somewhat arbitrary but do provide

rough descriptive statements.

Bayes factors can also be directly interpreted as odds ratios where Bij = 100,

for example, corresponds to odds of 100-to-1. Bayes factors can be used to

convert a prior odds ratio into a posterior odds ratio. For equal prior odds

the posterior odds is equal to the Bayes factor. From this we can compute the

equivalent posterior probability of hypothesis i as shown, for example, in Table

1.
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Bayes factors in Bayesian statistics play a similar role to p-values in classical

statistics. In [36], however, Raftery argues that p-values can give misleading

results, especially in large samples. The background to this assertion is that

Fisher originally suggested the use of significance levels (the p-values beyond

which a result is deemed significant) α = 0.05 or 0.01 based on his experience

with small agricultural experiments having between 30 and 200 data points.

Subsequent advice, notably from Neyman and Pearson, was that power and

significance should be balanced when choosing α. This essentially corresponds

to reducing α for large samples (but they did’nt say how α should be reduced).

The relation between p-values and Bayes factors is well illustrated by the

following example due to Raftery [36]. For linear regression models one can use

Bayes factors or p-values to decide whether to include a single extra regressor.

For a sample size of Ns = 50, positive evidence in favour of inclusion (B12 = 3)

corresponds to a p-value of 0.019. For Ns = 100 and 1000 the corresponding

p-values reduce to 0.01 and 0.003. If one wishes to decide whether to include

multiple extra regressors the corresponding p-values drop more quickly.

Importantly, unlike p-values, Bayes factors can be used to compare non-

nested models. They also allow one to quantify evidence in favour of a null

hypothesis. Raftery shows [36] how Bayes factors can be computed for lin-

ear and logistic regression, generalized linear models and Structural Equation

Models. Examples of using Bayes factors for assessing forensic evidence and

in probabilistic models in general are given in Mackay [29], and Raftery [36]

gives applications in sociology. For example, Raftery compared the two hy-

potheses about social mobility (how the occupations of fathers and sons are

related) in industrialised countries; Hypothesis 1, that social mobility patterns

were different in different countries and Hypothesis 2, that frequencies of tran-

sition between occupations were similarly symmetric across countries, the data
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supporting the second hypothesis with B21 > 150.

A possible disadvantage of Bayes factors is their dependence on parameters

of the prior distributions. For this reason we have decided to use AIC and BIC

approximations to the model evidence, as described in the previous section.

3.5 Making decisions

If one wishes to make decisions based on Bayes factors then some cut-off value

is required. In Bayesian decision theory the choice of cut-off is guided by a ‘loss

function’ or ‘utility’ which captures the costs of making false positive and false

negative decisions [6].

In this paper we suggest a conservative strategy which is to compute Bayes

factors based on AIC and BIC and to make a decision only if both factors are

in agreement. In particular, if both AIC and BIC provide Bayes factors of at

least e ( the natural exponent 2.7183) we regard this as ‘consistent’ evidence.

Further, we regard consistent evidence as the basis for decision-making, for

example the decision to fit new models or the decision to regard one of a number

of hypotheses as a ‘working hypothesis’.

The reason for this cut-off is as follows. For a simpler model to be favoured

over a complex one, the limiting factor is due to AIC. If the simpler model has

δp fewer parameters and both models are equally accurate then the change in

log evidence is −δp nats. The smallest value δp = 1 gives a Bayes factor of e.

For a more complex model to be favoured over a simpler one the limiting

factor is due to BIC. In this case we can work out the number of scans required

to achieve a Bayes factor of e by noting that the change in log-evidence is

∆BIC =
Ns

2
log

(
1 +

δs

100

)
+

δp

2
log Ns (31)

where δs is the percentage increase in signal variance. Figure 6, for example,

shows that for δs = 2 which is typical of the fMRI model comparisons in this
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paper, about 400 data points are required. Generally, for smaller δp and δs it

is harder to tell models apart. Overall, we ‘accept’ one model over another if

there is a ‘nats difference’ between them.

For the case of comparing a simpler model to a more complex one with

δp = 1 this cut-off results in a very conservative test. This is because even

if the two models are truly equally accurate, on any given finite data set one

model will appear more accurate than the other. Because this will be the

simpler model for half of such data sets the sensitivity of the test is 50%. This

test does, however, have a high specificity as no decision is made if the cut-off

is not exceeded. As δp increases so does the sensitivity.

Finally, we note that a Bayes factor of e corresponds to a posterior prob-

ability of 73%, ie. there is a 27% probability that our decision is incorrect !

This may seem extraordinarily high but, as indicated in the previous section,

our experience with p-values does not carry over straightforwardly to posterior

probabilities.

If we assume that quantities governing statistical inference, such as the

variance of parameter estimates, scale in DCM as they do in linear regression

then, given typical fMRI sample sizes of 200-400 scans, a Bayes factor of e

would correspond to a p-value of less than 0.01 (see linear regression example

in section 3.4). This seems quite respectable.

3.6 Coding Perspective

In this section we consider Bayesian model comparison from an information

theoretic or ‘coding’ perspective. Imagine one wished to transmit a data set

over a communication channel. This could be done by simply digitizing the

data and transmitting it. It would occupy a certain number of bits of the

channel. Alternatively, one could fit a model to the data and then send the

model parameters and the prediction errors, the total number of bits required
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being the sum of the parameter bits and the error bits. Better models require

fewer bits to be transmitted and for data containing discernible patterns model-

based coding is superior. This is the rationale behind the Minimum Description

Length (MDL) model comparison criterion [46]. In fact, a version of MDL [39]

is equal to the negative of the BIC, ie. MDL=-BIC. The link with Bayesian

inference is that the sender and receiver must agree on the transmission protocol

so that they know how to encode and decode the messages. The choice of coding

scheme for the parameters corresponds to the choice of prior and the choice of

coding scheme for the errors corresponds to the likelihood.

In information theory [12] the ‘information content’ of an event, x, is related

to its probability by

S(x) = log
1

p(x)
= − log p(x) (32)

More precisely, Shannons coding theorem implies that x can be communicated

at a ‘cost’ that is bounded below by − log p(x). Use of base-e or base-2 loga-

rithms leads to this cost being measured in ‘nats’ or ‘bits’ respectively. In what

follows we refer to S(x) as the cost of communicating x.

By looking at the appropriate terms in the log-evidence one can read off

the cost of coding the prediction errors region by region and the cost of coding

each type of parameter. For the Laplace approximation we can equate

− log p(y|m) =
∑

i

Se(i) +
∑
k

Sp(k) + Sd (33)

with equation 25 where Se(i) is the cost of prediction errors in the ith region,

Sp(k) is the cost of the kth parameter and Sd is the cost of the dependency

between parameters (captured in the posterior covariance matrix). We see that

Se(i) = 0.5 log Λii + 0.5
1

Λii
ri(θMP )T ri(θMP ) (34)

Sp(k) = 0.5 log
σ2

prior(k)
σ2

posterior(k)
+ 0.5

1
σ2

prior(k)
ek(θMP )T ek(θMP )
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where Λii denotes the error variance in the ith region (defined in section 2.3),

σ2
posterior(k) is the posterior variance of the kth parameter taken from the rele-

vant diagonal in the posterior covariance matrix ΣMP and σ2
prior(k) is the prior

variance of the kth parameter and is taken from the appropriate diagonal en-

try in Cp. For example, if k refers to an intrinisic connection σ2
prior(k) = va.

Equation 34 shows that the costs of archetypal intrinsic, modulatory and input

connections are determined by va,vb and vc. This again highlights the depen-

dence of the Laplace approximation on these quantities. In contrast, the AIC

and BIC criteria assume that the cost of coding a parameter is the same re-

gardless of which parameter it is. For AIC this cost is 1 nat and for BIC it is

0.5 log Ns nats.

For a given fitted DCM model we can decompose the model evidence into

the costs of coding prediction errors, region by region, and the cost of coding

the parameters. It is also possible to decompose Bayes factors into prediction

error and parameter terms and this will give an indication as to why one model

is being favoured over another.

4 Results

In this section we describe fitting DCM models to fMRI data from an Attention

to Motion experiment and a Visual Object Categorisation experiment. We also

describe fitting models to simulated data so as to demonstrate the face validity

of the model comparison approach. This data was generated so as to have

similar Signal to Noise Ratios (SNRs) to the fMRI data, where SNR is defined

as the ratio of signal amplitude to noise amplitude [33]. For regions receiving

driving input the SNRs were approximately 2 for the Attention data and 0.5 for

the Visual Object data. These SNRs were computed by dividing the standard

deviation of the DCM predictions by the estimated observation noise standard

deviation. We typically chose the SNR of the simulated data to be unity.
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4.1 Comparing Intrinsic Connectivity

In this section, we use Bayes factors to compare DCMs with different intrinsic

connectivity patterns. The ability to determine the most likely intrinsic connec-

tivity pattern of a model given the observed functional data is highly relevant

in practice because there still is very little detailed knowledge about anatomical

connections in the human brain [34]. Definitions of human brain models there-

fore usually rely on inferring connections from supposedly equivalent areas in

the Macaque brain where the connectivity pattern is known at a great level of

detail [42]. The difficulties associated with this approach have been described

in the Introduction. Additional uncertainty is due to the problem that even if

one knew all anatomical connections between a given set of areas, the question

would remain whether all of these connections are functionally relevant within

the given functional context.

To demonstrate how Bayes factors can help to decide in cases of uncertainty

about the intrinsic connectivity of the modeled system, we have investigated

the example of two simple models with hierarchically arranged regions. These

two models differed in their connectional structure by the presence or absence

of reciprocal connections. Specifically, we used DCMs comprising three regions

and three input variables and generated 360 data points from the two models

shown in Figure 7. Model 1 had a feedforward structure and model 2 a re-

ciprocal structure. We used the connectivity parameters shown in the Figure,

hemodynamic parameters set to the prior expectation and an interval between

scans of TR = 2s. The inputs u1, u2 and u3 are the boxcar functions shown in

Figure 8. These inputs are identical to the input variables from the Attention to

Visual Motion analysis described in a later section. The simulated time series

were created by integrating the state equations (Equation 16). We then added

observation noise to achieve an SNR of unity in the regions receiving driving
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input and repeated this procedure to generate ten data sets from each model

structure.

For each data set we then fitted two models, one having feedforward struc-

ture and the other having reciprocal structure. We then computed Bayes factors

using the AIC and BIC approximations to the model evidence. The results,

in Table 2, provide consistent evidence (in the sense defined in section 3.5) in

favour of the correct model in all cases. The results in this table show average

Bayes factors where averaging took place in log-space (eg. < log B12 >).

Table 3 shows a breakdown of the Bayes factor for a typical run on simulated

data from the model with feedforward connectivity. The ‘cost’, S, column gives

the cost in bits of coding each prediction or parameter error, and the overall cost

is given by the sum of the individual costs. The Bayes factor column shows the

corresponding components of the Bayes factor, given by 2−S , with the overall

value given by the product of individual components. Any apparent discrepancy

between individual entries and overall values is due to the fact that entries are

only displayed to two decimal places. Bayes factor components larger than 1

contribute to model 1 being favoured. In the remainder of this paper, there are

several tables showing a breakdown of a Bayes factor and they all share this

format.

Table 3 shows that the feedfoward model is favoured because the number of

bits required to code the errors is about the same, but fewer bits are required

to code the parameters. That is, the feedforward model is equally accurate but

more parsimonious.

Table 4 shows a breakdown of the Bayes factor for a typical run on simulated

data from the model with reciprocal connectivity. Here, the reciprocal model

is favoured as it is more accurate, especially in regions R1 and R2, that is, in

the regions which receive direct feedback.
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Overall, these results show that Bayes factors can indeed be used to compare

models with different intrinsic connectivities.

4.2 Comparing Modulatory Connectivity

In this section, we use simulated data and a simple model of hemispheric special-

ization (lateralization) to demonstrate the practical relevance of Bayes factors

for comparing models with different modulatory connectivity. Traditionally,

lateralization has often been envisaged to result merely from differences in the

local computational properties of homotopic areas in the two hemispheres. Re-

cent studies have indicated, however, that asymmetries in the intra-hemispheric

functional couplings may be an equally important determinant of hemispheric

specialization (Friston 2003) [30, 43]. This section demonstrates the ability of

DCM to correctly identify asymmetries of modulatory intra-hemispheric con-

nectivity despite the presence of reciprocal inter-hemispheric connections be-

tween homotopic regions.

We generated 256 data points (TR = 2s) from model 1 shown in the top

panel of Figure 9, where modulation of connectivity takes place in the left

hemisphere. We used the connectivity parameters shown in the figure and

hemodynamic parameters were set equal to their prior expectation. The driv-

ing input u1 consisted of delta functions with interstimulus intervals drawn

from a uniform distribution with minimum and maximum values of 2 and 8s.

The modulatory input u2 consisted of a boxcar function with period 40s. The

simulated time series were created by integrating the state equations (Equa-

tion 16). We then added observation noise so as to achieve an SNR of unity

in the region receiving driving input. This procedure was repeated to generate

ten data sets.

For each data set we then fitted two DCM models, model 1 assuming that

connectivity is modulated in the left hemisphere and model 2 assuming that
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it is modulated in the right. Deciding which is the best model is not a trivial

task as information can pass between hemispheres via the lateral connections.

Informally, however, one should be able to infer which model generated the data

for the following reason. Both models predict that L2 and R2 activity will be

modulated indirectly by the contextual input u2. For data generated from the

left-hemisphere model, L2 will be modulated more than R2 (vice-versa for the

right-hemisphere model). Thus if model 2 does a reasonable job of predicting

R2 activity it will necessarily do a poor job of predicting L2 activity (and vice-

versa). Formally, the hypotheses embodied in the networks can be evaluated by

fitting the models and computing the Bayes factor, B12. For our ten data sets

both AIC and BIC gave, on average, B12 = 17 providing consistent evidence

in favour of the correct hypothesis. This same value would have resulted (but

this time for B21) had we fitted the models to right hemisphere data. This is

because model 2 is equivalent to model 1 after a relabelling of regions.

We can then ask why the Bayes factors favour the left-hemisphere model

? The short answer is that it is the correct model ! A more detailed answer

can be provided by showing the breakdown of the Bayes factor in table 5 which

was computed for a typical run. This breakdown clearly shows that the domi-

nant reason why model 1 is favoured is because it predicts activity in L2 more

accurately. Model 2 does a good job of predicting activity in R2 but a poor

job in L2. The AIC and BIC criteria produce the same Bayes factor because

both networks have the same number of connections. The models are therefore

compared solely on the basis of accuracy.

We also considered a model, model 3, with both left and right modulatory

connections. This was fitted to simulated data generated from model 1. For

our ten data sets AIC gave, on average, a Bayes factor B13 of 1.78 and BIC

gave 10.50. Thus the Bayes factors tell us that, overall, we can’t be confident
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that the data came from model 1. On exactly 5 data sets, however we obtained

B13 > e, so in these 5 cases we would correctly conclude that the data came

from model 1. On the other 5 data sets we would draw no conclusion. This

gives an indication as to the conservativeness of the ‘consistent’ evidence rule.

We then compared Bayes factors for data generated from model 3, where the

modulatory effect was the same on both sides. For ten data sets AIC gave, on

average a Bayes factor B31 of 2.39 and BIC gave 0.40. Thus the Bayes factors

tell us we can’t be confident that the data came from model 3. The reason for

this uncertainty is that we are asking quite a subtle question - the increase in

percentage of signal variance explained by model 3 over model 1 simply isn’t

large enough to produce consistent Bayes factors.

This motivated the generation of data from a fourth model where the mod-

ulatory effect on the left side was as before, an increase in connection strength

between L1 and L2 from 0.3 to 0.9 (mediated with an intrinsic connection of

0.3 and a modulatory connection of 0.6), but the modulation on the right side

was a decrease in connection strength from 0.9 to 0.3 (mediated via an intrinsic

connection of 0.9 and a modulatory connection of -0.6). Over ten data sets

AIC and BIC gave Bayes factors B41, on average, of 2330 and 396 indicating

consistent evidence in favour of the correct hypothesis.

Overall, these simulations show that Bayes factors can be used to make

inferences about modulatory connections. As predicted by theory (see section

3.5) the sensitivity of the model comparison test increases with larger differences

in the number of model parameters or increasing differential signal strength.

Put simply, models with greater structural or predictive differences are easier

to tell apart.
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4.3 Attention to Visual Motion

In previous work we have established that attention modulates connectivity

in a distributed system of cortical regions mediating visual motion processing

[8, 17]. These findings were based on data acquired using the following exper-

imental paradigm. Subjects viewed a computer screen which displayed either

a fixation point, stationary dots or dots moving radially outward at a fixed

velocity. For the purpose of our analysis we can consider three experimental

variables. The ‘photic stimulation’ variable indicates when dots were on the

screen, the ‘motion’ variable indicates that the dots were moving and the ‘at-

tention’ variable indicates that the subject was attending to possible velocity

changes. These are the three input variables that we use in our DCM analyses

and are shown in Figure 8.

In this paper we model the activity in three regions V1, V5 and superior

parietal cortex (SPC). The original 360-scan time series were extracted from

the data set of a single subject using a local eigendecomposition and are shown

in Figure 10.

We initially set up three DCMs each embodying different assumptions about

how attention modulates connectivity between V1 and V5. Model 1 assumes

that attention modulates the forward connection from V1 to V5, model 2 as-

sumes that attention modulates the backward connection from SPC to V5 and

model 3 assumes attention modulates both connections. These models are

shown in Figure 11. Each model assumes that the effect of motion is to mod-

ulate the connection from V1 to V5 and uses the same reciprocal hierarchical

intrinsic connectivity. Later we will consider models with different intrinsic

connectivity.

We fitted the models and the Bayes factors are shown in Table 6. These show

that the data provide consistent evidence in favour of the hypothesis embodied
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in model 1, that attention modulates solely the bottom-up connection from V1

to V5.

We now look more closely at the comparison of model 1 to model 2. The

estimated connection strengths of the attentional modulation were 0.23 for the

forward connection in model 1 and 0.55 for the backward connection in model 2.

The posterior distribution of this first connection is shown in Figure 12. The

posterior probabilities of these connections being greater than the threshold

γ = (log 2)/4 (ie. the probabilities that the modulatory effects occur within 4

seconds) are 0.78 and 0.97.

A breakdown of the Bayes factor B12 in table 7 shows that the reason

model 1 is favoured over model 2 is because it is more accurate. In particular,

it predicts SPC activity much more accurately. Thus, although model 2 does

show a significant modulation of the SPC-V5 connection, the required change

in its prediction of SPC activity is sufficient to compromise the overall fit of

the model. If we assume models 1 and 2 are equally likely apriori then our

posterior belief in model 1 is 78The two models can only be compared by

computing the evidence for each model. It is not sufficient to compare the values

of single connections. This is because changing a single connection changes

overall network dynamics and each hypothesis is assessed (in part) by how well

it predicts the data, and the relevant data are the activities in a distributed

network.

We now focus on model 3 that has both modulation of forward and backward

connections. Firstly we make a statistical inference to see if, within model 3,

modulation of the forward connection is larger than modulation of the backward

connection. For this data the posterior distribution of estimated parameters

tells us that this is the case with probability 0.75. This is a different sort

of inference to that made before. Instead of inferring which is more likely,
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modulation of a forward or backward connection, we are making an inference

about which effect is stronger when both are assumed present.

However, the above inference is contingent on the assumption that model

3 is a good model. The Bayes factors in Table 6, however, show that the data

provide consistent evidence in favour of the hypothesis embodied in model 1,

that attention solely modulates the bottom-up connection. Table 8 shows a

breakdown of B13. Here the dominant contribution to the Bayes factor is the

increased parameter cost for model 3.

So far, our models have all assumed a reciprocal intrinsic connectivity. We

examine the validity of this assumption by also fitting a model having a purely

feedforward intrinsic connectivity (model 4) and a model having a full intrinsic

connectivity (model 5). These models are otherwise identical to model 1. Ta-

ble 9 shows Bayes factors of the fitted models that provide consistent evidence

favouring model 1 over model 4. But between models 1 and 5 there is no consis-

tent evidence either way. We can therefore be confident that our assumption of

reciprocally and hierarchically organised intrinsic connectivity is a reasonable

one.

4.4 Visual Object Categories

Functional imaging studies have reported the existence of discrete cortical re-

gions in occipito-temporal cortex that respond preferentially to different cate-

gories of visual object such as faces, buildings and letters. In previous work [31]

we have used DCM to explore whether such category-specificity is the result

of modulation of backward connections from parietal areas or modulation of

forward connections from primary visual areas.

In this section we focus on a single area in Mid-Occipital (MO) cortex which

responded preferentially to images of faces. We set up DCM models comprising

the three regions, V3, MO and superior-parietal cortex (SPC). Full descriptions
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of the experimental design, imaging acquisition and extraction of regional time

series are available in [31]. Our analyses used the data from ‘subject 1’ and our

regions are those used in the DCM analysis in figure 1 of [31]. The time series

consist of 1092 scans. Additionally, the original data files can be obtained from

the National fMRI Data Center (http://www.fmridc.org) and their acquisition

is described in Ishai et al. [22].

The aim of our analyses was to find out if the specificity of the face-

responsive area could be better attributed to increased connectivity from V3

or from SPC. To this end we fitted three models to the data which are shown

in Figure 13. These models postulate modulation of the forward connection

to MO (model 1), modulation of the backward connection to MO (model 2)

and modulation of both connections (model 3). All three models assume a re-

ciprocal and hierarchically organised intrinsic connectivity. Later we will look

at models with different intrinsic connectivity. We fitted the models and the

Bayes factors are shown in Table 10. These provide evidence in favour of the

hypothesis embodied in model 1, that the processing of faces modulates solely

the bottom-up connection from V3 to MO.

We now turn to the assumption of reciprocal and hierarchically organised

intrinsic connectivity and test its validity by fitting a model with purely feed-

forward intrinsic connections (model 4) and full intrinsic connectivity (model

5). These models are otherwise identical to model 1. The Bayes factors of the

fitted models are shown in Table 11 and provide consisten evidence in favour

of model 1 over model 4. Between models 1 and 5, however, there is no consis-

tent evidence either way. We can therefore be content that our assumption of

reciprocal connectivity is sufficient.

We now look in more detail at two of the pairwise model comparisons.

Table 12 shows a breakdown of the Bayes factor for model 1 versus model 2.
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This shows that the largest contributions to the Bayes factors are the better

model fits in V3 and MO. Because both models have the same number of

connections the relative BIC and AIC parameter costs are zero. The models

are therefore compared solely on the basis of which is more accurate. Table 13

shows a breakdown of the Bayes factor for model 1 versus model 4, showing

that the increased accuracy of the model with reciprocal intrinsic connectivity

more than compensates for its lack of parsimony, with respect to the model

with purely feedforward intrinsic connectivity.

5 Discussion

We have described Bayesian inference procedures in the context of Dynamic

Causal Models. DCMs are used in the analysis of effective connectivity and

posterior distributions can be used, for example, to assess changes in effective

connectivity caused by experimental manipulation. These inferences, however,

are contingent on assumptions about the intrinsic and modulatory structure of

the model ie. which regions are connected to which other regions and which

inputs can modulate which connections.

To date, the specification of intrinsic connectivity has been based on our

knowledge, for example, of anatomical connectivity in the Macaque. Whilst this

approach may be tenable for sensory sytems it is more problematic for higher

cognitive systems. Moreover, even if we knew the anatomical connectivity

the question would remain as to whether these connections were functionally

relevant in a given functional context. The use of Bayes factors to guide the

choice of intrinsic connectivity is therefore of great practical relevance. In this

paper we have shown how they can be used, for example, to decide between

feedforward, reciprocal and fully connected structures. We have also shown

how Bayes factors can be used to compare models with different modulatory

connectivity. This is important as it is the changes in connectivity that are of
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paramount scientific interest.

The use of Bayes factors for model comparison is somewhat analagous to

the use of F-tests in the General Linear Model. Whereas t-tests are used to

assess individual effects, F-tests allow one to assess the significance of a set of

effects. Bayes factors play a similar role but additionally allow inferences to

be constrained by prior knowledge. Moreover, it is possible to simultaneously

entertain a number of hypotheses and compare them using Bayesian evidence.

Importantly, these hypotheses are not constrained to be nested.

In this paper we have used AIC and BIC approximations to the model

evidence and defined a criterion of ‘consistent’ evidence on which decisions can

be based. This was motivated by the fact that the AIC approximation is known

to be biased towards complex models and BIC to simpler models. In future we

envisage improved approximations, perhaps based on Laplace approximations

where the prior variances are inferred using Empirical Bayes. We are also aware

of a number of improvements to the AIC criterion [7].

Model comparison of effectivity connectivity models has previously been

explored in the context of SEM by Bullmore et al. [9]. This work has established

the usefulness of such approaches for comparing nested structural equation

models which are most suitable for the analysis of PET data. In our work, we

compare DCM models which are currently most suited for the analysis of fMRI

data. Moreover, the model comparison approaches we have explored employ a

Bayesian perspective enabling the comparison of non-nested models.

Currently, we are using Bayesian model comparison over a limited set of

models defined by the modeller. This allows the user to compare a handful of

working hypotheses about the large-scale organisation of their neurocognitive

system of interest. Future work may develop automatic model search pro-

cedures. These would embody standard Bayesian procedures whereby model
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search proceeds by considering only those models in an ‘Occam window’ [36].

Similar model search procedures have been previously explored in the context of

SEM by Bullmore et al. [9]. Another future research avenue is to use Bayesian

model averaging [21], where instead of choosing the ‘best’ model, models are

combined using the evidence as a weighting factor.

The combined use of Bayes factors and DCM provides us with a formal

method for evaluating competing scientific theories about the forms of large-

scale neural networks and the changes in them that mediate perception and

cognition.
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A The Kronecker Product

If A is an m1 × m2 matrix and B is an n1 × n2 matrix, then the Kronecker

product of A and B is the (m1n1)× (m2n2) matrix

A⊗B =

 a11B ... a1m2B
...
am11B am1m2B

 (35)

B Approximating the model evidence

B.1 Laplace approximation

The model evidence is given by

p(y|m) =
∫

p(y|θ, m)p(θ|m)dθ (36)

This can be approximated using Laplace’s method

p(y|m)L ≈ p(y|m) (37)

= (2π)−p/2|Cp|−1/2(2π)−Ns/2|Ce|−1/2I(θ)

where

I(θ) =
∫

exp(−1
2
r(θ)T C−1

e r(θ)− 1
2
e(θ)T C−1

p e(θ))dθ (38)

Substituting e(θ) = (θ−θMP )+(θMP−θp) and r(θ) = (y−h(θMP ))+(h(θMP )−

h(θ)) into the above expression, and removing terms not dependent on θ from
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the integral, then gives

I(θ) =
[∫

exp(−1
2
(θ − θMP )T Σ−1

MP (θ − θMP ))dθ

]
(39)

.

[
exp(−1

2
r(θMP )T C−1

e r(θMP )− 1
2
e(θMP )T C−1

p e(θMP ))
]

(40)

where the first factor is the normalising term of the multivariate Gaussian

density. Hence

I(θ) = (2π)p/2|ΣMP |1/2 exp(−1
2
r(θMP )T C−1

e r(θMP ) (41)

− 1
2
e(θMP )T C−1

p e(θMP ))

Substituting this expression into Eq 37 and taking logs gives

log p(y|m)L = −Ns

2
log 2π − 1

2
log |Ce| −

1
2

log |Cp|+
1
2

log |ΣMP | (42)

− 1
2
r(θMP )T C−1

e r(θMP )− 1
2
e(θMP )T C−1

p e(θMP )

When comparing the evidence for different we can ignore the first term as it

will be the same for all models. Dropping the first term and rearranging gives

log p(y|m)L = Accuracy(m)− 1
2

log |Cp|+
1
2

log |ΣMP | −
1
2
e(θMP )T C−1

p e(θMP )

(43)

where

Accuracy(m) = −1
2

log |Ce| −
1
2
r(θMP )T C−1

e r(θMP ) (44)

is the accuracy of model m.

B.2 Bayesian Information Criterion

Substituting Eq. 41 into Eq. 37 gives

p(y|m)L = p(y|θMP ,m)p(θMP |m)(2π)p/2|ΣMP |1/2 (45)
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Taking logs gives

p(y|m)L = log p(y|θMP ,m) + log p(θMP |m) +
p

2
log 2π +

1
2

log |ΣMP |(46)

The dependence of the first three terms on the number of scans is O(Ns), O(1)

and O(1). For the 4th term entries in the posterior covariance scale linearly

with N−1
s

lim
Ns→∞

1
2

log |ΣMP | =
1
2

log |ΣMP (0)
Ns

| (47)

= −p

2
log Ns +

1
2

log |ΣMP (0)|

where ΣMP (0) is the posterior covariance based on Ns = 0 scans. This last

term therefore scales as O(1). Schwarz [40] notes that in the limit of large Ns

equation 46 therefore reduces to

BIC = lim
Ns→∞

log p(y|m)L (48)

= log p(y|θMP ,m)− p

2
log Ns

This can be re-written as

BIC = Accuracy(m)− p

2
log Ns (49)
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Table 1: Interpretation of Bayes factors. Bayes factors can be interpreted as
follows. Given candidate hypotheses i and j a Bayes factor of 20 corresponds to
a belief of 95% in the statement ‘hypothesis i is true’. This corresponds to strong
evidence in favour of i.

Bij p(m = i|y)(%) Evidence in favour of model i

1 to 3 50-75 Weak
3 to 20 75-95 Positive
20 to 150 95-99 Strong
≥ 150 ≥ 99 Very Strong

Table 2: Comparing Intrinsic Connectivity The table shows the Bayes factor B12

averaged over 10 runs of feedforward data (from model 1), and B21 averaged over 10
runs of reciprocal data (from model 2). AIC and BIC consistently provide between
positive and very strong evidence in favour of the correct model.

B12 B21

AIC 4.7 2 ×108

BIC 230 4 ×106

Table 3: Comparing Intrinsic Connectivity The table shows the contributions to
the Bayes factor B12 for a typical feedforward data set. The largest single contribution
is the cost of coding the parameters. The overall Bayes factors provide positive (AIC)
and very strong (BIC) evidence in favour of the true model.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

R1 error 0.03 0.98
R2 error -0.12 1.09
R3 error 0.20 0.87
Parameters (AIC) -2.89 7.39
Parameters (BIC) -8.49 360
Overall (AIC) -2.77 6.84
Overall (BIC) -8.38 330
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Table 4: Comparing Intrinsic Connectivity The table shows contributions to the
Bayes factor B21 for a typical reciprocal data set ie. model 2 is true. The largest
single contribution to the Bayes factor is the cost of coding the prediction errors. The
overall Bayes factors provide very strong evidence in favour of the true model.

Source Model 2 vs. Model 1 Bayes Factor
Relative Cost (bits) B21

R1 error -24.8 2 × 107

R2 error -6.94 123
R3 error -0.81 1.75
Parameters (AIC) 2.89 0.14
Parameters (BIC) 8.49 0.003
Overall (AIC) -29.66 8× 108

Overall (BIC) -24.06 2× 106

Table 5: Comparing Modulatory Connectivity Breakdown of contributions to
the Bayes factor for model 1 with ‘left-hemisphere’ modulation versus model 2 having
‘right-hemisphere’ modulation for a typical left-hemisphere data set. The largest
single contribution to the Bayes factor is the increased model accuracy in region L2,
where 2.97 fewer bits are required to code the prediction errors. The overall Bayes
factor of 8.74 provides positive evidence in favour of the left-hemisphere hypothesis.
Because both network structures have the same number of connections the relative
cost of parameters under both AIC and BIC is zero.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

L1 error -0.47 1.38
L2 error -2.97 7.82
R1 error -0.19 1.14
R2 error 0.49 0.71
Parameters (AIC) 0.00 1.00
Parameters (BIC) 0.00 1.00
Overall (AIC) -3.13 8.74
Overall (BIC) -3.13 8.74

Table 6: Attention Data - comparing modulatory connectivities Bayes factors
provide consistent evidence in favour of the hypothesis embodied in model 1, that
attention modulates (solely) the bottom-up connection from V1 to V5. Model 1 is
preferred to models 2 and 3.

B12 B13 B32

AIC 3.56 2.81 1.27
BIC 3.56 19.62 0.18
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Table 7: Attention Data: Breakdown of contributions to the Bayes factor for model
1 versus model 2. The largest single contribution to the Bayes factor is the increased
model accuracy in region SPC, where 5.64 fewer bits are required to code the predic-
tion errors. The overall Bayes factor B12 of 78 provides strong evidence in favour of
model 1.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

V1 error 7.32 0.01
V5 error -0.77 1.70
SPC error -8.38 333.36
Parameters (AIC) 0.00 1.00
Parameters (BIC) 0.00 1.00
Overall (AIC) -1.83 3.56
Overall (BIC) -1.83 3.56

Table 8: Attention Data: Breakdown of contributions to the Bayes factor for model
1 versus model 3. The largest single contribution to the Bayes factor is the cost of
coding the parameters. The table indicates that both models are similarly accurate
but model 1 is more parsimonious. The overall Bayes factor B13 provides consistent
evidence in favour of the (solely) bottom-up model.

Source Model 1 vs. Model 3 Bayes Factor
Relative Cost (bits) B13

V1 error -0.01 1.01
V5 error 0.02 0.99
SPC error -0.05 1.04
Parameters (AIC) -1.44 2.72
Parameters (BIC) -4.25 18.97
Overall (AIC) -1.49 2.81
Overall (BIC) -4.29 19.62

Table 9: Attention Data - comparing intrinsic connectivities There is consis-
tent evidence in favour of model 1 over model 4, but, between models 1 and 5, there
is no consistent evidence either way.

B14 B15

AIC 1× 1020 0.06
BIC 1× 1019 3.13
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Table 10: Visual Object Data - comparing modulatory connectivity. Bayes
factors provide evidence in favour of the hypothesis embodied in model 1, that the
processing of faces modulates (solely) the bottom-up connection from V3 to M0.
Model 1 is preferred to models 2 and 3, and model 3 is preferred to model 2.

B12 B13 B32

AIC 7950 2.75 2890
BIC 7950 33.47 237

Table 11: Visual Object Data - comparing intrinsic connectivities Bayes
factors provide evidence in favour of model 1 over model 4, but between models 1
and 5 there is no consistent evidence either way.

B14 B15

AIC 2280 0.01
BIC 15.4 2.00

Table 12: Visual Object Category Data Breakdown of contributions to the Bayes
factor for model 1 versus model 2. The largest contributions to the Bayes factor are
the better model fits in V3 and MO. The overall Bayes factor B12 of 7950 provides
very strong evidence in favour of model 1.

Source Model 1 vs. Model 2 Bayes Factor
Relative Cost (bits) B12

V3 error -10.59 1545
MO error -6.01 64.6
SPC error 3.65 0.08
Parameters (AIC) 0.00 1.00
Parameters (BIC) 0.00 1.00
Overall (AIC) -12.96 7950
Overall (BIC) -12.96 7950
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Table 13: Visual Object Category Data Breakdown of contributions to the Bayes
factor for the DCM with reciprocal and hierarchically organised intrinsic connectivity
(model 1) versus the DCM with feedforward intrinsic connectivity (model 4). The
increased accuracy of model 1 more than compensates for its lack of parsimony.

Source Model 1 vs. Model 4 Bayes Factor
Relative Cost (bits) B14

V3 error -8.10 274
MO error -2.97 7.83
SPC error -2.97 7.83
Parameters (AIC) 2.89 0.14
Parameters (BIC) 10.09 0.0009
Overall (AIC) -11.15 2280
Overall (BIC) -3.95 15.4
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Figure 1: DCM Neurodynamics. The top panel shows a Dynamic Causal Model
comprising L = 2 regions and M = 2 inputs. The input variable u1 drives neuronal
activity z1. Informally, neuronal activity in this region then excites neuronal activity
z2 which then re-activates activity in region 1. Formally, these interactions take
place instantaneously according to equation 1. The time constants are determined
by the values of the intrinsic connections A11, A12, A21 and A22. Input 2, typically a
contextual input such as instructional set, then acts to change the intrinsic dynamics
via the modulatory connections B2

11 and B2
22. In this example, the effect is to reduce

neuronal time-constants in each region as can be seen in the neuronal time series in
the bottom panel.

Figure 2: Samples from priors. These distributions characterise our expectations
about what the neuronal transients and hemodynamic responses should look like.
For each value of σ, sampled from p(σ), we generated the neuronal response to a unit
impulse, this response being a neuronal transient. Then, for each neuronal transient
we drew a sample θh from p(θh) and generated a hemodynamic response. The figures
show samples of (a) neuronal transients, (b) hemodynamic responses, (c) a histogram
of time constants of neuronal transients (mean=880ms), and (d) a histogram of peak
hemodynamic response times (mean=4.1s). The histograms in (c) and (d) are made
up from 10,000 samples and the plots in (a) and (b) consist of the first 100 samples.

Figure 3: DCM models of modulatory processes. A: A simple DCM that
includes visual areas V1 and V5. Visual stimuli drive activity in V1 that is reciprocally
connected to V5. The strength of the forward connection V1 V5 depends on whether
stimuli are moving or stationary, i.e. V1 V5 is modulated by a vector MOT indicating
the presence of motion in the visual input. B: The bottom-up process modeled by
A is shown schematically at a synaptic level. The strength of the input from the
V1 neuron to the dendritic tree of the V5 neuron is enhanced for moving stimuli.
The strength of the synaptic transmission (green circle) simply follows the strength
of the input from V1. C: Same DCM as in A, except that this model allows for
modulation of the V1 V5 forward connection by attention to motion (ATT-MOT).
D: Same schema as in B, but showing the top-down gain control process modeled by
C at a synaptic level. Here, the strength of the synaptic response of the V5 neuron to
inputs from the V1 neuron (green circle) is modulated by simultaneous inputs from
a higher attention-related area X to the same V5 neuron (red circle). These inputs
change the biophysical properties of the dendritic tree of the V5 neuron, rendering it
more susceptible to inputs from V1 neurons. Various potential mechanisms for this
modulation exist, e.g. see Siegel et al. 2000.
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Figure 4: DCM models of additive processes. A: Same basic DCM as in Fig.
3, but without a modulation of either connection. Instead, attention to motion leads
to a direct (additive) increase of V5 activity, independent of the presence and nature
of visual input. This represents a simple model of top-down baseline shift processes
without specifying which areas represent the physiological source of the top-down
influence. B: In addition to A, this DCM includes the superior parietal cortex (SPC)
as a putative source of attentional top-down influences onto visual areas. In this
model, SPC is generally driven by attention (ATT), regardless of its nature. In
contrast, the strength of the SPC V5 backward connection is enhanced only when
attention is motion-specific (ATT-MOT). Thus, independent of stimulus input, there
is an additive increase in V5 activity that is proportional to SPC activity but is only
present under attention to motion.

Figure 5: Why simple models are preferable. The figure plots the evidence for
model 1, p(y|m1), and the evidence for model 2, p(y|m2), against y, the space of all
possible data sets. Here, a data set yi would be fMRI time series from regions of
interest. The complex model, model 2, can ‘explain’ more data sets than the simple
model, model 1. If one observes y3, a data set that both models can explain, then by
virtue of the densities p(y|m) having to integrate to unity, p(y3|m1) will be larger than
p(y3|m2). Thus, the simple model is preferred. This figure is adapted from Mackay
[29].

Figure 6: Dependence of BIC on number of samples. The figure plots the
Bayes factor B12 computed from BIC versus the number of scans Ns where model 1
has one more parameter than model 2 and the relative increase in signal variance is
(a) 1% and (b) 2%, the latter being typical of fMRI data used in this paper. The
horizontal line shows a Bayes factor of e.

Figure 7: Comparing intrinsic connectivity structures. Synthetic DCM models
comprising the three regions R1, R2 and R3. Model 1 (left panel) has a purely
feedforward connectivity and model 2 (right panel) has a reciprocal connectivity.
In both networks activity is driven by input u1 and feedforward connections are
modulated by inputs u2 and u3. These inputs are shown in Figure 8.

Figure 8: Comparing intrinsic connectivity: inputs. The plots bottom to top
show the driving input u1 and modulatory inputs u2 and u3. These inputs were used
together with the network structures in Figure 7 to produce simulated data. These
inputs are also identical to the ‘Photic’, ‘Motion’ and ‘Attention’ variables used in
the analysis of the Attention to Visual Motion data (see Figures 10 and 11).
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Figure 9: Comparing modulatory connectivity. Synthetic DCM models com-
prising four regions: L1 and L2 in the ‘left-hemisphere’ and R1 and R2 in the ‘right
hemisphere’. The networks have driving input entering the ‘lower’ areas L1 and R1,
and an intrinsic connectivity comprising within-hemisphere feedforward connections
and reciprocal lateral connections between hemispheres. In model 1 (top panel),
feedforward connectivity is modulated in the left hemisphere and in model 2 (bottom
panel) feedforward connectivity is modulated in the right hemisphere.

Figure 10: Attention data. fMRI time series (rough solid lines) from regions V1, V5
and SPC and the corresponding estimates from DCM model 1 (smooth solid lines).

Figure 11: Attention models. In all models photic stimulation enters V1 and the
motion variable modulates the connection from V1 to V5. Models 1, 2 and 3 have
reciprocal and hierarchically organised intrinsic connectitivty. They differ in how
attention modulates the connectivity to V5, with model 1 assuming modulation of
the forward connection, model 2 assuming modulation of the backward connection and
model 3 assumes both. Models 4 and 5 assume modulation of the forward connection,
but have a purely feedforward intrinsic connectivity (model 4) or a fully connected
intrinsic architecture (model 5).

Figure 12: Attention model - posterior distribution. The plot shows the poste-
rior probability distribution of the parameter B1

21. This is the connection from region
1 (V1) to region 2 (V5) that is modulated by attention (the 3rd input). The mean
value of this distribution is 0.23. This is also shown in Figure 11. We can use this
distribution to compute our belief that this connection is larger than some thresh-
old γ. If we choose eg. γ = (log 2)/4 = 0.17 then this corresponds to computing
the probability that this modulatory effect occurs within 4 seconds. In DCM faster
effects are mediated by stronger connections (see eg. Equation 1). For our data we
have p(B3

21 > γ) = 0.78.

Figure 13: DCM models of category-specificity. Models 1, 2 and 3 have recip-
rocal and hierarchically organised intrinsic connectitivty. Model 1 has modulation of
the forward connection to MO, model 2 has modulation of the backward connection
to MO, model 3 has both.
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