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Abstract 

 

This paper introduces a multivariate Bayesian (MVB) scheme to decode or recognise brain 

states from neuroimages.  It resolves the ill-posed many-to-one mapping, from voxel-values 

or data-features to a target variable, using a parametric empirical or hierarchical Bayesian 

model.  This model is inverted using standard variational techniques, in this case expectation 

maximisation, to furnish the model-evidence and the conditional density of the model’s 

parameters.  This allows one to compare different models or hypotheses about the mapping 

from functional or structural anatomy to perceptual and behavioural consequences (or their 

deficits).  We frame this approach in terms of decoding measured brain states to predict or 

classify outcomes using the rhetoric established in pattern classification of neuroimaging data.  

However, the aim of MVB is not to predict (because the outcomes are known) but to enable 

inference on different models of structure-function mappings; such as distributed and sparse 

representations.  This allows one to optimise the model itself and produce predictions that 

outperform standard pattern-classification approaches, like support vector machines.   

 

Technically, the model inversion and inference uses the same empirical Bayesian procedures 

developed for ill-posed inverse problems (e.g., source reconstruction in EEG).  However, the 

MVB scheme used here extends this approach to include a greedy search for sparse 

solutions.  It reduces the problem to the same form used in Gaussian process modelling, 

which affords a generic and efficient scheme for model optimisation and evaluating model 

evidence. We illustrate MVB using simulated and real data, with a special focus on model 

comparison; where models can differ in the form of the mapping (i.e., neuronal 

representation) within one region, or in the (combination of) regions per se. 

 

 

 

Introduction 

 

The purpose of this paper is to describe an empirical Bayesian approach to the multivariate 

analysis of imaging data that brings pattern-classification and prediction approaches into the 

conventional inference framework of hierarchical models and their inversion.  The past years 

have seen a resurgence of interest in the multivariate analysis of functional and structural 

brain images.  These approaches have been used to infer the deployment of distributed 

representations and their perceptual or behavioural correlates.  In this paper, we try to identify 

the key issues entailed by these approaches and use these issues to motivate a better 

approach to estimating and making inferences about distributed neuronal representations. 
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This paper comprises three sections. In the first, we review the development of multivariate 

analyses with a special focus on three important distinctions; the difference between mass-

univariate and multivariate models, the difference between generative and recognition models 

and the distinction between inference and prediction.  The second section uses the 

conclusions of the first section to motivate a simple hierarchical model of the mapping from 

observed brain responses to a measure of what those responses encode. This model allows 

one to compare different forms of encoding, using conventional model comparison.  In the 

final section, we apply the multivariate Bayesian model of the second section to real fMRI 

data and ask where and how the visual motion is encoded.  We also show that the ensuing 

model out-performs simple classification devices like linear discrimination and support vector 

machines.  We conclude with a discussion of generalisations; for example, nonlinear models 

and the comparison of multiple conditions to disambiguate between functional selectivity and 

segregation in the cortex. 

 

 

 

 

Multivariate models and classification 

 

 
Mappings and models 

 

In this section, we review multivariate approaches and look at the distinction between 

inference and prediction.  This section is written in a tutorial style in an attempt to highlight 

some of the basic concepts underlying inference on structure-function mappings in the brain. 

We try to link the various approaches that have been adopted in neuroimaging and identify 

the exact nature of inference these approaches support.   

 

The question addressed in most applications of multivariate analysis is whether distributed 

neuronal responses encode some sensorial or cognitive state of the subject (for review see 

Haynes and Rees 2006).  Universally, this entails some form of model comparison, in which 

one compares a model that links neuronal activity to a presumed cognitive state with a model 

that does not.  The link can be from the neuronal measure or response variable, nY ℜ∈  to 

an experimental or explanatory variable, vX ℜ∈ , or the other way around.  From the point of 

view of inferring a link exists, its direction is not important; however, the form of the model 

may depend on the direction.  This becomes important when one wants to compare different 

models (as we will see below).  In current fMRI analysis, inference on models or functions that 

map YXg →:  include conventional mass-univariate models as employed by statistical 
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parametric and posterior probability mapping (that use classical and Bayesian inference 

respectively; Friston et al 2002) or classical multivariate models such as canonical variate 

analysis.  The converse mapping from XYh →:  is used by classification schemes, such as 

linear discriminant analysis and support vector machines.  Typically nY ℜ∈  has many more 

elements or dimensions than vX ℜ∈  (i.e., vn > ).  For example, ℜ∈X  could be a scalar 

or label indicating whether motion is present in the visual field and nY ℜ∈  could be the fMRI 

signal from a thousand voxels, in a visual cortical area.  Similarly, X  could be a label 

indicating whether a subject has Alzheimer’s disease and Y  could be the grey-matter density 

over the entire brain. In what follows, we review some of the basics of inference that are 

needed to understand the relationship between model comparison and classification. 

 

 

Marginal likelihoods and statistical dependencies 

 

We can reduce the problem of linking observed brain responses to their causes (in the case 

of perception) or consequences (in the case of behaviour) to establishing the existence of 

some mapping, YXg →: ; in other words, inferring that there is some statistical 

dependency between the experimental variable and measured response (or the other way 

around).  If this mapping exists, we can infer that brain states cause or are caused by X .  

This means we can formulate our question in terms of a null hypothesis 0H  that there is no 

dependency, in which case the measurements are equally likely, whether or not we know the 

experimental variable; )()|( YpXYp = . The Neyman-Pearson lemma states that the 

likelihood-ratio test  

 

u
Yp

XYp
≥=Λ

)(
)|(

         1 

 

is the most powerful test of size )|( 0Hup ≥Λ=α  for testing this hypothesis. Generally, the 

null distribution of the likelihood-ratio statistic )|( 0Hp Λ  is determined non-parametrically or 

under parametric assumptions (e.g., a t-test).  The likelihood-ratio, )(YΛ  underlies most 

statistical inference and model comparison and is the basis of nearly all classical statistics; 

ranging from Wilk’s Lambda in canonical correlation analysis to the F-ratio in analysis of 

variance. 

 

In Bayesian inference, the likelihood-ratio is known as a Bayes factor (Kass and Raftery 

1995) that compares models of Y  with and without X .  Usually, in Bayesian model 
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comparison, one uses the log-likelihoods directly to quantify the relative likelihood of two 

models 

 

uYpXYp ≥−=Λ )(ln)|(lnln        2 

 

where u  is generally three (see Penny et al 2004).  This means the first model is at least 

)3exp(20 =Λ≈  times more likely than the second, assuming both models are equally likely 

a priori.  Another way of expressing this is to say that the one model is )1(95. +ΛΛ≈  more 

likely than the other, given the data.  We will use both classical and Bayesian inference in this 

paper. 

 

 

Evaluating the marginal likelihood 

 

To evaluate the likelihood ratio we need to evaluate the likelihood under the null hypothesis 

and under some mapping.  To do this we need to posit a probabilistic model of the mapping 

YXg →:)(θ  and integrate out the dependence on the unknown parameters of the 

mapping, θ .  This gives the marginal likelihood (also known as the integrated likelihood or 

evidence) 

 

θθ dXYpXYp ∫= )|,()|(         3 

 

This marginalisation requires the joint density )(),|()|,( θθθ pXYpXYp =  that is usually 

specified in terms of a likelihood, ),|( XYp θ  and a prior, )(θp .  In general, the integral 

above cannot be evaluated analytically.  This problem can be finessed by converting a difficult 

integration problem into an easy optimisation problem; by optimizing a [free-energy] bound on 

the evidence with respect to an arbitrary density )(θq   

 

)),|(||)(()|(ln
)(

)|,(
ln)( XYpqDXYpd

q
XYp

qF θθθ
θ
θ

θ −== ∫    4 

 

When this bound is maximised the Kullback-Leibler divergence )),|(||( XYpqD θ  is 

minimised and ),|()( XYpq θθ ≈  becomes an approximate conditional or posterior density 

on the parameters.  Coincidently, the free-energy1 becomes the log-evidence, 

                                            
1 The free-energy in this paper is the negative free-energy is statistical physics.  This means 
the free-energy and log-evidence have the same sign. 
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)|(ln XYpF ≈ .  All estimation and inference schemes based on parameterised density 

functions can be formulated in this way; from complicated extended Kalman filters for 

dynamic systems to the simple estimate of a sample mean.  The only difference among these 

schemes is the form assumed for )(θq  and how easy it is to maximise the free energy by 

optimising its sufficient statistics (e.g., conditional mean and covariance) of )(θq .   Because 

the bound, ))(( θqF  is a function of a function, the optimisation rests on the method of 

variations (Feynman 1972); this is why the above approach is know as variational learning  

(see Beal 1998 for a comprehensive discussion). This may seem an abstract way to motivate 

the specification of a model; however, it is a useful perspective because it highlights the 

difference between the role of )(θq  in inference and prediction (see below).   

 

The free-energy bound on the log-evidence plays a central role in what is to follow; in that it 

quantifies how good a model is, in relation to another model. The free-energy can be 

expressed in terms of accuracy and complexity terms (Penny et al 2004), such that the best 

model represents the optimum trade-of between fit and parsimony.  This trade-off is known as 

Occam's razor, which is sometimes formulated as a minimum description length principle 

(MDL).  MDL is closely connected to probability theory and statistics through the 

correspondence between codes and probability distributions. This has led some to view MDL 

as equivalent to Bayesian inference, for particular classes of model: in MDL, the code length 

of the model and the code length of model and data together, correspond to the prior 

probability and marginal likelihood respectively in the Bayesian framework (see MacKay 

2003; Grunwald 2005). 

 

In summary, inference can be reduced to model comparison, which rests on the marginal 

likelihood of each model.  To evaluate the marginal likelihood it is necessary to specify the 

parametric form of the joint density entailed by the model. Integrating out dependency on the 

parameters of this model rests on optimising a bound on the marginal likelihood with respect 

to a density, )(θq .  Optimisation makes )(θq  the conditional density on the unknown 

parameters (i.e., an implicit estimation).  The implication is that parameter estimation is a 

necessary and integral part of model comparison.   The key thing to take from this treatment 

is that inference about how the brain represents things reduces to model comparison. This 

comparison is based on the marginal likelihood or evidence for competing models of how 

neurophysiological variables map to observed responses, or vice versa.  Next, we look at the 

most prevalent model in neuroimaging. 

 

 

The General Linear Model and Canonical Correlation Analysis 
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The simplest model is a linear mapping under Gaussian assumptions about random effects; 

i.e., ),0(~ ΣNε  

 

))(,(),|( λβθεβ Σ=⇒+= XNXYpXY      5 

 

Where ),( ΣµN  denotes a normal or Gaussian density with mean µ  and covariance Σ  and 

the unknown parameters, },{ λβθ =  control the first and second moments (i.e., mean and 

covariance) of the likelihood respectively.  This is the general linear model, which is the 

cornerstone for neuroimaging data analysis.  We will restrict our discussion to linear models 

because they can be extended easily to cover nonlinear mappings; these extensions use 

nonlinear projections onto a high-dimensional feature space of the experimental data (e.g., 

Büchel et al 1998) or the images, using kernel methods.  Kernel methods are a class of 

algorithms for pattern analysis, whose best known example is the Support Vector Machine 

(SVM). Kernel methods transform data into a high-dimensional feature space, where a linear 

model is applied. This converts a difficult low-dimensional nonlinear problem into an easy 

high-dimensional linear problem. 

 

Under the general linear model (GLM), it is easy to show (see Friston, 2007) that the log-

likelihood ratio is simply the mutual information between X  and Y  

 

Λ=
−=
−=

ln
)|()(
)|()(),(

YXHXH
XYHYHYXI

         6 

 

Where dYYpYpYH )(ln)()( ∫−=  is the entropy or expected surprise. In other words, 

Λln  reflects the reduction in surprise about observed data that is afforded by seeing the 

explanatory variables.  Crucially, this is exactly the same reduction in surprise about the 

explanatory variables, given the data.  This symmetry; i.e., ),(),( XYIYXI = , means that 

we can swap the explanatory and response variables in a general linear model with impunity.  

This is one perspective on why the inference scheme for GLMs, namely canonical correlation 

analysis (CCA) does not distinguish between explanatory and response variables. 

  

Canonical correlation analysis (CCA), also known as canonical variate analysis (CVA) 

computes the likelihood ratio using generalized eigenvalues solutions of YY T  explained and 

not explained by X .  In this context, Λ  is known as Wilk’s Lambda and is a composition of 

generalised eigenvalues (also know as canonical values). Canonical correlation analysis is 

fundamental to inference on general linear models and subsumes simpler variants like 

MANCOVA, Hotellings T-squared test, Partial Least Squares, Linear Discriminant Analysis and 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
Multivariate Bayes: Friston et al 

 8 

other ad hoc schemes.  One might ask; if CCA provides the optimal inference (by the 

Neyman-Pearson Lemma) for GLMs, why is it not used in conventional analyses of fMRI data 

with the GLM?   In fact, conventional mass-univariate analyses do use a special case of CCA, 

namely ANCOVA. 

 

 

Multivariate vs. mass-univariate 

 

The mass-univariate approach to identifying the mapping YXg →:)(θ  is probably the most 

common in neuroimaging, as exemplified by statistical parametric mapping (SPM).  These 

approaches treat each data element (i.e., voxel) as conditionally independent of all other 

voxels such that the implicit likelihood factorises over voxels, indexed by i 

 

∏=
i

ii XYpXYp ),|(),|( θθ         7 

 

In the classification literature, this would be called a naive Bayes classifier (also known as 

Idiot's Bayes) because the underlying probability model rests on conditionally independent 

data-features.  In SPM, the spatial dependencies among voxels are introduced after 

estimation during inference, through random field theory.  Random field theory provides a 

model for the prevalence of topological features in the SPM under the null hypothesis, such 

as the number of peaks above some threshold. This allows one to make multivariate 

inferences over voxels (e.g., set-level inference; Friston et al 1996).  The advantage of 

topological inference is that random field theory provides a very efficient model for spatial 

dependences that is based on the fact that images are continuous; other multivariate models 

ignore this.  The disadvantage of random field theory is that the p-value is not based on a 

likelihood-ratio and is therefore suboptimal by the Neyman-Pearson lemma.  However, SPM 

is not usually used to make multivariate inference because it is used predominantly to find 

regionally specific effects. 

 

Multivariate models relax the naive independence assumption and enable inference about 

distributed responses2.  The first multivariate models of imaging data (scaled sub-profile 

model: Moeller et al 1987) appeared in the nineteen eighties and focused on disambiguating 

global and regionally specific effects using principal component analysis.  Principal 

component analysis also featured in early data-led multivariate analyses of Alzheimer’s 

disease (e.g., Grady et al 1990).  The first canonical correlation analysis of functional imaging 

data addressed the mapping between resting regional cerebral activity and the expression of 

                                            
2 Although it is difficult to generalise, multivariate inference is usually more powerful than 
mass-univariate topological inference because the latter depends on focal responses that 
survive some threshold (and induce a topological feature). 
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symptoms in schizophrenia.  This analysis showed that distinct brain systems correlated with 

distinct sub-syndromes of schizophrenia (Friston et al 1992).   

 

In Friston et al (1995) we generalized canonical correlation analysis to cover all the voxels in 

the brain: The problem addressed in that paper was that CCA requires the number of 

observations to be substantially larger than the dimensionality of the data-features (i.e., 

number of voxels) or experimental variables.  Clearly, in imaging, the number of voxels 

exceeds the number of scans.  This means that one cannot estimate the marginal likelihood 

because there are insufficient degrees of freedom to estimate the covariance parameters, 

θλ ⊂ .  This problem can be finessed by invoking priors )(θp  or constraints on the 

parameters.  In Friston (1995) the parameters were constrained to a low-dimensional 

subspace, spanned by the major singular vectors, U  of the data.  This effectively re-

parameterised the model in terms of a smaller number of parameters; 

TUU ββββ
~~

=⇔= .  Major singular vectors (i.e., eigenimages) span the greatest 

variance seen in the data and are identified easily using singular value decomposition (SVD).  

 

This dimension reduction furnishes a constrained linear model 

 

UUYUY

XY

εεββ

εβ

===

+=
~~~

~~~
        8 

 

which can be treated in the usual way.  We will revisit the use of singular vectors in the 

context of multivariate Bayesian models below and contrast them with the use of support 

vectors.   

 

Worsley et al (1998) used Canonical Variates Analysis (CVA) of the estimated effects of 

predictors from a multivariate linear model. The advantage of this, over previous methods, 

was that temporal correlations could be incorporated into the model, making it suitable for 

fMRI data.  CCA has re-appeared in the neuroimaging literature over the years (e.g., Friman 

et al 2001).  An interesting application of CCA was presented in Nandy and Cordes (2003) 

where the analysis was repeated over small regions of the brain, thereby eschewing the 

dimensionality problem.  The same idea of using a multivariate ‘searchlight’ has been 

exploited recently (Kriegeskorte et al 2006).  These authors used a Mahalanobis distance 

statistic that is closely related to Hotellings T-squared statistic (a special case of Wilk’s 

Lambda that obtains when X  is univariate).   

 

The key point here is that constraints on the dimensionality of nY ℜ∈  or, equivalently, priors 

on the parameters, become essential when dealing with high-dimensional feature spaces, 
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which are typical in imaging.  The same theme emerges when we look at pattern-classifiers in 

imaging: 

 

 

Generative, recognition and classification models 

 

In the recent neuroimaging literature one often comes across the phrase: ‘novel multivariate 

pattern classifiers’.  This section tries to argue that multivariate models and pattern 

classification should not be conflated and that neither are novel.  Critically, it is the 

multivariate mapping from brain measurements to their consequences that characterise 

recent advances; classification per se is somewhat incidental. 

 

The first formal classification scheme for functional neuroimaging was reported in Lautrup 

(1994).  These authors used nonlinear neural network classifiers to classify images of 

cerebral blood flow according to the experimental conditions (i.e., causes), under which the 

images were acquired.  In this application, constraints on the mapping from the high-

dimensional feature (voxel) space to target class were imposed through massive weight-

sharing. Classifiers have played a prominent role in structural neuroimaging (e.g., Herndon et 

al 1996) and are now an integral part of computational anatomy and segmentation schemes 

(e.g., Ashburner and Friston 2005).  However, classification schemes received little attention 

from the functional neuroimaging community until they were re-introduced in the context of 

mind-reading (Carlson et al 2003; Cox and Savoy 2003; Hanson et al 2004; Haynes and 

Rees 2005; Norman et al 2006; Martinez-Ramon et al. 2006). 

 

So far, we have limited the discussion to parameterized mappings YXg →:)(θ  from 

experimental labels to data features.  In a probabilistic setting, these can be considered as 

generative functions or models of experimental causes that produce observed data.  Indeed 

experimental neuroscience rests on comparing generative models that embody competing 

hypotheses about how data are caused.  However, one can also parameterise the inverse 

mapping from data to causes; XYh →:)(θ , to provide a function of the data that 

recognises what caused them.  These are called recognition models.  What is the relationship 

between recognition models and prediction in classification schemes?  In classification, one 

wants to predict or classify a new observation newY  using a recognition model whose 

parameters have been estimated using training data and classification pairs.  Classification is 

based on the predictive density 

 

∫= θθθ dqYXpYXYXp newnewnewnew )(),|(),,|(      9 
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where ),|()( YXpq θθ =  is the conditional density. Classification, or more generally 

prediction, is fundamentally different from inference on the model or mapping per se:  In 

prediction, one uses )(θq  to make an inference about an unknown label, newX  in terms of 

the predictive density, ),,|( YXYXp newnew .  In experimental neuroscience, this label is 

known and inference is on the mapping itself; e.g., XYh →:)(θ .  In short, one uses )(θq  

to evaluate the marginal likelihood, )|( YXp , as opposed to the predictive density.  In other 

words, the predictive density is not used to address whether the prediction is possible or 

whether there is a better predictor, these questions require inference on models; prediction 

requires only inference on the target, given a model.   

 

The only situation that legitimately requires us to predict what caused a new observation is 

when we do not know that cause.  An important example is brain computer interfacing, where 

a subject is trying to communicate through measured brain activity.  Other examples include 

automated diagnostic classification or the classification of tissue type in computational 

anatomy mentioned above.  In summary, the predictive density plays no role in testing 

hypotheses about the mapping between causes and data features; these inferences are 

based on the marginal likelihood of the model. 

 

 

Support Vector Machines 

 

Many classification schemes (e.g., support vector machines) do not even try to estimate the 

predictive density; they simply optimise the parameters of the recognition function to 

maximise accuracy. These schemes can be thought of as using point estimates of θ , which 

ignore uncertainty about the parameters inherent in )(θq .  We will refer to these as point 

classifiers, noting that probabilistic formulations are usually available (e.g., variational 

relevance vector machines; see Bishop and Tipping 2000).  Support vector machines (Vapnik 

1999) are point classifiers that use a linear recognition model; for example, a linear SVM 

assumes the mapping XYh →:)(θ  

 

ββ

εβ

~
)(

~
)(

T

T

Y

YYYK

YKX

=

=

+=

         10 

 

Here )(YK  is called a kernel function, which, in this case, is simply the inner product of the 

data-features (i.e., images).  The important thing to note here is that the parameters, 
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ββ
~TY=  of the implicit recognition model are constrained to lie in a subspace spanned by 

the images.  This is formally related to the constraint used in CCA for images; TUββ
~

= .  In 

other words, both constrained CCA and SVM require the parameters to be a mixture of data-

features.  The key difference is that constrained CCA imposes sparsity by using a small 

number of informed basis sets (i.e., singular vectors), whereas SVM selects a small number 

of original images (i.e., support vectors).  These support vectors define the maximum-margin 

hyperplane separating two classes of observations encoded in ]1,1[−∈X .  These classifiers 

are also known as maximum-margin classifiers.  We introduce the linear SVM because it will 

be used in comparative evaluations later. 

 

 

Gaussian process models 

 

Support vector machines (for ]1,1[−∈X ) and regression (for continuous targets; )ℜ∈X  

are extremely effective prediction schemes, in a high-dimensional setting.  However, from a 

Bayesian perspective, they rest on a rather ad hoc form of recognition model (their motivation 

is based on statistical learning theory and structural risk minimisation, Vapnik 1999).  Over the 

same period that support vector approaches were developed, Gaussian process modelling 

(Ripley 1994; Rasmussen 1996; Kim and Ghahramani, 2006) has emerged as an alternative 

and generic approach to prediction (see MacKay 1997 for an introduction): The basic idea 

behind Gaussian process modelling is to replace priors )(θp  on the parameters of the 

mapping, XYh →:)(θ   with a prior on the space of mappings; ))(( Yhp , where the 

mappings or functions themselves can be very complex and highly nonlinear.  This is 

perfectly sufficient for prediction and model comparison because the predictive density 

),,|( YXYXp newnew  and marginal likelihood )|( YXp  are not functions of the parameters.  

The simplest form of prior is a Gaussian process prior, which leads to a Gaussian likelihood; 

)),(,0(),|( λλ YNYXp Σ= .  This is specified by a Gaussian covariance, ),( λYΣ , whose 

elements are the covariance between the values of the function or prediction, )(Yh  at the 

two points in feature space.  The covariance ),( λYΣ  is optimised, given training data, in 

terms of covariance function hyperparameters, λ .  This optimisation provides a nice link with 

classical covariance component estimation and techniques like restricted maximum likelihood 

(ReML) hyperparameter estimation (Harville 1977).  

 

We will use this approach below; however, our covariance functions are constrained by 

simple linear mappings, of different sorts, between features and targets.  After ),( λYΣ  has 

been optimised with respect to the free-energy bound above, it can be used to evaluate the 

marginal likelihood and infer on the model it encodes.  Typically, in Gaussian process 
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modelling, one uses maximum likelihood or aposteriori point estimates of the 

hyperparameters to approximate the marginal likelihood; here, we marginalise over the 

hyperparameters using their conditional density, to get more accurate estimates (see also 

MacKay 1999, who discusses related issues under the evidence framework used below). 

 

 

Inference vs. prediction 

 

Some confusion about the roles of prediction and inference may arise from the use of 

classification performance to infer a significant relationship between data features and 

perceptual or behavioural states.  There is a fundamental reason why some classification 

schemes have to use their classification performance to make this sort of inference: This is 

because point classifiers are not probabilistic models, which means their evidence is not 

defined: recall that a model is necessary to specify a form for the joint density of the data and 

unknown model parameters.  Integrating out the dependency on the parameters provides the 

marginal likelihood that is necessary for inference about that model.  In short, model inversion 

optimises the conditional density of the parameters to maximise the marginal likelihood.  In 

contradistinction, point classification schemes optimise the parameters to maximise accuracy.  

This is problematic in two ways.   

 

First, point classification schemes do not furnish a measure of the marginal likelihood and 

cannot be used for inference.  This means that the model-evidence has to be evaluated 

indirectly through cross-validation: Cross-validation (sometimes called rotation-estimation), 

involves partitioning the data into subsets such that the analysis is performed on one 

(training) subset, while the other (test) data are retained to confirm and validate the initial 

analysis3.  A significant mapping can be inferred if the performance on the test subset 

exceeds chance levels. However, by the Neyman-Pearson lemma, this inference is 

suboptimal because it does not conform to a likelihood-ratio test on the implicit recognition 

model.  Having said this, cross-validation can be very useful for classical inference when the 

null distribution of the likelihood ratio statistic is unavailable; for instance when it is analytically 

intractable or it is computationally prohibitive to compute using sampling techniques.   In this 

context, classification can be used as surrogate statistic because the null distribution of 

predictive performance can be derived easily (e.g., a binominal distribution for chance 

classification into two classes).  We will use cross-validation p-values for classical inference 

below. 

 

The second problem for classifiers is that the marginal likelihood depends on both accuracy 

and model complexity (see Penny et al 2004).  However, many classification schemes do not 
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minimise complexity explicitly.  This shortcoming can be ameliorated in two ways. The first is 

to minimise complexity through the use of formal constraints (c.f., the sparsity assumptions 

implicitly in SVM). The second is to optimise the recognition model parameters (e.g., the 

parameter C in SVM, which controls the width of the maximum-margin hyperplane) with 

respect to generalisation error (i.e., the classification error on test data). However, to evaluate 

the generalisation error one needs to know the classes and therefore there is no need for 

classification.  In summary, classification per se appears to play an incidental role in 

answering key questions about structure-function relationships in brain imaging, so why have 

they excited so much interest? 

 

 

Encoding and decoding models 

 

When one looks closely at pattern-recognition or classification schemes in functional 

neuroimaging they have been used as generative models, not recognition models; they have 

been used to test models of how physical brain states generate percepts, behaviours or 

deficits.  For example, studies looking for perceptual correlates in visual cortex are not trying 

to recognize the causes of physiological activations; they are modelling the perceptual 

products of neuronal activity.  Perhaps an even clearer example comes from recent 

developments in computational anatomy, where multivariate data-mining methods have been 

used to study lesion-deficit mappings.  Here, the imaging data are used as a surrogate 

marker of the lesion and resulting behavioural deficits are modelled using Bayesian networks 

(Herskovits and Gerring 2003). 

 

In short, the key difference between conventional multivariate analyses and so-called 

classification schemes does not rest on classification; the distinction rests on whether 

X causes Y , e.g., stimulus motion causes activation in V5; or whether Y  causes X , e.g., 

activation of V5 causes a percept of motion.   Both are addressed by inference on models but, 

in the latter case, the experimental variable X  is a consequence not a cause.  Put simply, 

the important distinction is whether the experimental variable is a cause or consequence.  If it 

is a cause then the appropriate generative model is YXg →:)(θ ; this could be called an 

encoding model in the sense that the brain responses are encoding the experimental factors 

that caused them.  Conversely, if X  is a consequence, we still have a generative model but 

the causal direction has switched to give, XYg →:)(θ .  These have been called decoding 

models in the sense that they model the decoding of neuronal activity that causes a percept, 

behaviour or deficit (Hasson et al 2004; Kamitani and Tong 2006; Thirion et al 2006).  In 

                                                                                                                             
3k-fold cross validation involves randomly partitioning the data into k partitions, training the 
classifier on all but one and evaluating classification performance on that partition. This 
procedure is repeated for all k partitions.   
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some situations, the distinction is subtle but important.  For example, using the presence of 

visual motion as a cause in an encoding model implies that X  is a known deterministic 

quantity.  However, using the presence of motion as a surrogate for motion perception means 

that X  becomes a response or dependent variable reflecting the unknown perceptual state 

of the subject. 

 

The importance of the distinction between encoding and decoding models is that we can 

disentangle inference from prediction and focus on the problem of inverting ill-posed decoding 

models of the form, XYg →:)(θ .  Happily, there is a large literature on these ill-posed 

problems; perhaps the most familiar in neuroimaging is the source reconstruction problem in 

electroencephalography (EEG).  In this context, one has to estimate up to ten thousand 

model parameters (dipole-activities) causing observed responses in a small number of 

channels.  Formally, this is like estimating the parameters coupling activity in thousands of 

voxels to a small number of experimental or target variables.  In the next section, we will use 

exactly the same hierarchical linear models and their variational inversion used in source 

reconstruction (e.g., Phillips et al 2005, Mattout et al 2006) to decode functional brain images.  

Critically, this modelling perspective exposes the dependence of decoding models on prior 

assumptions about the parameters and their spatial disposition. These priors enter the EEG 

inverse problem in terms of spatial constraints on the sources (e.g., point sources in 

equivalent current dipole models vs. distributed solutions with smoothness constraints).  The 

inversion scheme used below allows one to compare models that differ only in terms of their 

priors, using Bayesian model selection.  This allows one to compare models of distributed or 

sparse coding that are specified in terms of spatial priors. 

 

 

Summary 

 

In summary, we have seen that: 

 

• Inference on the mapping between neuronal activity and its causes or consequences 

rests on model comparison, using the marginal likelihood of competing models. The 

marginal likelihood requires the specification of a generative model prescribing the 

form of the joint density over observations and model parameters. This model may be 

explicit (e.g., a general linear model) or implicit (e.g., a Gaussian process model) 

Model inversion corresponds to optimising the conditional density of the model 

parameters to maximise the marginal likelihood (or some bound), which is then used 

for model comparison. 

 

• Multivariate models can map from the causes of brain responses (encoding models; 

YXg →:)(θ ) or from brain activity to its consequences (decoding models; 
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XYg →:)(θ ).  In the latter case there is a curse of dimensionality, which is 

resolved with appropriate constraints or priors on model parameters.  These 

constraints are part of the model and can be evaluated using model comparison in 

the usual way. 

 

• Prediction (e.g., classification) and cross-validation schemes are not necessary for 

decoding brain activity but can provide surrogates for inference. This can be useful 

when the null distribution of the model likelihood-ratio (i.e., Bayes factor) is not 

evaluated easily. 

 

 

The next section describes a decoding model for imaging data sequences that can be 

inverted efficiently to give the marginal likelihood, which allows one to compare different priors 

on the model parameters. 

 

 

A Bayesian decoding model 

 
 

In this section, we describe a multivariate decoding model that uses exactly the same design 

matrices of experimental variables X  and neuronal responses Y  used in conventional 

analyses.  Furthermore, the inversion scheme uses standard techniques that can be applied 

to any model with additive noise.  It should be noted that the inversion of these models 

conforms to the free-energy optimisation approach described above but is very simple and 

can be reduced to a classical covariance component estimation (see Friston et al 2007 for 

details). 

 

 

Hierarchical models 

 

We want a simple model of how measured neuronal responses predict perceptual or 

behavioural outcomes (or their surrogates).  Consider a linear mapping βAX =  between a 

scalar target variable, ℜ∈X  and underlying neuronal activity in n voxels; nA ℜ∈ ; where 

X  corresponds to a scan-specific measure of perceptual, cognitive or behavioural state 

induced by distributed activity A .  Imagine that we obtain noisy measurements nsY ×ℜ∈  of 

nsA ×ℜ∈  in s scans and n voxels (e.g., 128 scans and 1024 voxel from the lateral occipital 

cortex).  Let εγ ++= GTAY  be observed signal, with noise, ns×ℜ∈ε  and additive 
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confounds, gsG ×ℜ∈  scaled by unknown parameters, gℜ∈γ . Here, any effects of 

hemodynamics are modelled with the temporal convolution matrix ssT ×ℜ∈  embedding a 

hemodynamic response function.  Clearly, for structural and PET data, this convolution is 

unnecessary and IT =  is simply the identity matrix. 

 

Under the assumptions above, we can specify the following likelihood model under Gaussian 

assumptions about the noise (see Figure 1 for a schematic summary) 

 

 

εβγββ
β

β

−−=
=

⇒=

GY
TATX
AX

         11 

 

In this model, β  are the unknown parameters of the mapping we want to infer; we will call 

these parameters voxel-weights.  Under the simplifying assumption that the temporal 

convolution matrix is known and is roughly the same for all voxels, this likelihood model is a 

weighted general linear model with serially correlated errors.  Note that TX  corresponds to a 

stimulus (or behavioural) function that has been convolved with a hemodynamic response 

function; this vector has the form of a regressor in the design matrix, Χ  of conventional 

encoding models.  In our implementation we use cTX Χ=  where the contrast weight vector, 

c  specifies the contrast to be decoded.  Conversely, the confounds are the remaining effects; 

)( −−Χ= ccIG , which ensures that 0=Gc .  Effectively, this partitions the conventional 

design matrix of explanatory variables into a target variable and confounds, where the target 

variable comes to play the role of a response variable that has to be predicted.   

 

We can simplify this model by projecting the target and predictor variables onto the null space 

of the confounds to give a model for weighted target vectors 

 

TGGIorthR

RTW

RYWX

)( −−=

=

+= ςβ

        12 

 

Here R  is a residual forming matrix that removes confounds from the model.  W  is a 

weighting matrix that combines the residual forming and temporal convolution matrices to give 

a convolved target variable, with confounds removed. The fluctuations sR ℜ∈−= εβς  are a 

vector of unknown random effects that retain their multivariate Gaussian distribution, where 
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TRVR)exp()cov( ςς λς =Σ= .  Here, ςλ  is some unknown covariance parameter or 

hyperparameter and V  represents serial correlations or non-sphericity before projection4.  

The nice thing about decoding models is that we do not have to worry about spatial 

dependencies among the measurement noise (i.e., smoothness in images). This is because 

the random effects are a linear mixture of noise over voxels. 

 

 

Empirical priors 

 

There is a special aspect of decoding models that operate on large numbers of voxels (i.e., 

when the number of voxels exceeds the number of scans); they are ill-posed in the sense that 

there are an infinite number of equally likely solutions. In this instance, estimating the voxel-

weights nℜ∈β  requires constraints or priors.  This is implemented easily by invoking a 

second level in the model 

 

)()1(
1 )exp()exp()()cov(

)exp()()cov(
m

m
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Here, the columns of unU ×ℜ∈  contain spatial patterns or vectors and η  are unknown 

pattern-weights.  These weights are treated as second-level random effects with covariance, 

ηη Σ=)cov( , which induces empirical priors on the voxel-weights; ),0()( TUUNp ηβ Σ= .  

This is a convenient way to specify empirical priors because it separates the specification of 

prior spatial covariance into patterns encoded by U  and the variances in the leading diagonal 

matrix, ηΣ .  In this model, )(ληΣ  is a mixture of covariance components arising from a 

nested set of pattern-weights, K⊃⊃⊃ )3()2()1( sss  where each subset has the same 

variance.  The i-th subset )(is  is encoded by a leading diagonal matrix, )(iI , containing 

dummy or switch variables indicating which patterns or columns of U  belong to that subset.  

The construction of this nested set means that the variance; )exp()exp( 1
ηη λλ i++K  of a 

pattern-weight in )(is  is always greater than a pattern-weight in its superset, )1( −is . 

 

                                            
4 In our implementation we use the ReML estimates of serial correlations from a conventional 
encoding formulation of the model.  This provides a very efficient estimate because there are 
generally large numbers of voxels (see Friston et al 2007 for more details). 
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There are many priors that one could specify with this model, one common prior, used 

implicitly in fMRI, is that spatial patterns contribute sparsely to the decoding. In other words, a 

few voxels (or patterns) have large values of β , while most have small values.  This is the 

underlying rationale for support vector machines that pre-suppose only a few data-features 

(support vectors) are needed for classification.  Relevance vector machines make this prior 

explicit, by framing the elimination of redundant vectors in terms of empirical priors on the 

parameters.  Relevance vector machines are a special case of automatic relevance 

determination, which is itself a special case of variational Bayes.  In fact, these special cases 

can be expressed formally in terms of conventional expectation maximisation (EM; Dempster 

et al 1977), which, for linear models, is formally related to restricted maximum likelihood 

(ReML; Harville 1977). See Friston et al 2007 and references therein (e.g., Mackay and 

Takeuchi 1996; Tipping 2001).  In this paper, optimisation is formulated in terms of 

expectation maximization. 

 

The model above allows us to compare a wide range of spatial models for decoding.  Sparsity 

is accommodated by having more than one subset; where most subsets have small variance 

and some have large variance.  Crucially, we can control what is sparse.  If IU =  is the 

identity matrix, the spatial vectors encode single voxels and we have the opportunity to model 

sparse representations over anatomical regions.  This deployment would be consistent with 

functional segregation.  Furthermore, we could assume that this segregation is spatially 

coherent (see Friston et al 1992 for a theoretical motivation in terms of neuronal 

computation); this would entail using smooth vectors with local support. Conversely, we may 

assume representations are distributed sparsely over patterns (i.e., one of a small number of 

patterns is expressed at any one time).  These patterns could be the principal modes of co-

variation in the data.  This would correspond to making U  the major singular vectors of the 

data, as in the constrained CCA of the previous section.  Finally, these patterns may simply 

be the patterns expressed from moment to moment.  In other words, TYU = ; this is the 

model used in [linear] support vector machines and regression; in fact, these images may 

contain confounds, which speak to the use of adjusted images TRYU = .   Figure 2 lists the 

various models considered in this paper and the corresponding spatial patterns in U .  

Models with spatial and smooth vectors imply anatomically sparse representations.  

Conversely, models with singular or support vectors imply the representation is distributed 

over patterns (which may be sparse in pattern-space but not sparse anatomically, in voxel-

space). The key thing about the hierarchal decoding model above is that it can accommodate 

different hypotheses about spatial coding.  These hypotheses can be compared using 

Bayesian model comparison; provided we can evaluate the marginal likelihood of each model.  

In the next section, we describe this evaluation. 
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Evaluating the marginal likelihood 

 

In what follows, we describe a simple inversion of the model in Eq.13 using conventional EM, 

under sparse priors on the parameters.  This can be regarded as a generalisation of 

classification schemes used currently for fMRI, in which the nature of the priors becomes 

explicit.  This inversion uses standard techniques and furnishes the log-evidence or marginal 

likelihood of the model itself and the conditional density of the voxel-weights or decoding 

parameters.  The former can be used to infer on mappings between brain states and their 

consequences, using model comparison.  The latter can be used to construct posterior 

probability maps showing which voxels contribute to the decoding, for any particular model. 

 

For a more general and technical discussion of the following see Friston et al (2007).  In brief, 

we use a fixed-form variational approximation to the approximating posterior under the 

Laplace approximation and the mean field approximation; )()()( λβθ qqq = . The Laplace 

approximation means ),()( ββµβ Σ= Nq  and ),()( λλµλ Σ= Nq  are Gaussian and are 

defined by their conditional means and covariances.  Under these assumptions, the 

variational scheme reduces to EM.  Furthermore, because we can eliminate the parameters 

β  from the generative model (by substituting the second level of Eq.13 into the first), we only 

need the M-step to estimate ),()( λλµλ Σ= Nq  for model comparison and indeed prediction 

(c.f., Gaussian process modelling).  This M-step is formally related to ReML5. 

 

 

Bayesian inversion with EM 

 

The inversion of Eq.13 is straightforward because it is a simple hierarchical linear model.  

Inversion proceeds in two stages: first, hyperparameters encoding the covariances of the 

error and the empirical prior covariance are estimated in an M-step.  After convergence, the 

conditional moments of the hyperparameters are used to evaluate the conditional moments of 

the parameters in an E-step and the log-evidence for model comparison.  Because we are 

dealing with a linear model there is no need to iterate the two steps; it is sufficient to iterate 

the M-step.    For simplicity, we will assume that the pattern sets encoded by )()1( ,, mII K  

are given and deal with their optimization later. 

 

First, we simplify the model further by eliminating the parameters through substitution 

 

                                            
5 This scheme shares formal aspects with relevance vector machines and automatic 
relevance determination (e.g., Tipping 2001); however, the hyperparameters control 
covariance components as opposed to precision components.  This allows for flexible models 
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where RYUL =  maps the second-level random effects to the weighted target variable.  In 

this form, the only unknown quantities are the hyperparameters, λ  controlling the covariance 

),( λYΣ  of the weighted target variable. This means we have reduced the problem to 

optimising the hyperparameters of ),( λYΣ ; this is exactly the form used in Gaussian process 

modelling. 

 

This covariance includes the covariance of the observation noise and covariances induced by 

the second level of the model.   )(Wrankw =  corresponds to the degrees of freedom left 

after removing the effects of confounds.  The log-evidence, )|(ln YXp  is approximated with 

the free energy (see Eq.4): 

 

))()(||ln2ln|)(|ln)(( 1
2
1 πµπµπµµ λλλλλ −Π−−ΠΣ+−Σ−Σ−= − TTT wWXWXF  

           15 

 

The first two terms reflect the accuracy of the model and the last two its complexity 

( π2lnw is a constant).  This approximation requires only the prior ),()( 1−Π= πλ Np  and 

posterior ),()( λλµλ Σ= Nq  densities of the hyperparameters. In our work, we set the prior 

expectation and covariance to 32−=iπ  and 256I=Π  respectively. This is a relatively 

uninformative hyperprior with a small expectation.  A hyperprior variance of 256  means that 

a scale parameter )exp( iλ  can vary by many orders of magnitude; for example a value of 

)0exp(1 =  is two prior standard deviations from the prior mean of )32exp(101.26 -14 −=× . 

 

Note that the free-energy also depends on the conditional uncertainty about the 

hyperparameters encoded in λΣ .  The conditional moments of the hyperparameters are 

given by iterating 

 

 

The M-step 

                                                                                                                             
through linear mixtures of covariance components and renders it an extension of classical 
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until convergence.  This is effectively a Fisher-scoring scheme that optimises the free-energy 

bound with respect to the hyperparameters. It usually takes between four and sixteen 

iterations (less than a second for a hundred images).  11)exp( −− ΣΣ−= iii QP λµ  is the 

derivative of the precision 1)( −Σ λµ , with respect to the i-th hyperparameter, evaluated at its 

conditional expectation.  Critically, the computational complexity )( 2msO  of this scheme 

does not scale with the number of voxels or patterns, but the number of pattern subsets, m .  

This reflects one of the key advantages of hyper-parameterising the covariances (as opposed 

to precisions); namely, that one can model mixtures of covariances, induced hierarchically, at 

the lowest (observation) level of the hierarchy. 

 

Given the conditional expectations of the covariance hyperparameters from the M-step, the 

conditional mean and expectation of the parameters obtain analytically from 

 

The E-step 
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Where Μ  is a maximum aposteriori projector matrix. This may look unfamiliar to some 

readers who work with linear models, because we have used the matrix inversion lemma to 

suppress large matrices. This remarkably simple EM scheme solves the difficult problem of 

inference on massively ill-posed models in a very efficient fashion; we use this scheme for 

source reconstruction in ill-posed EEG and MEG problems (Mattout et al 2006).  However, 

the current problem requires us to address a further issue, namely the optimisation of the 

partition (i.e., number and composition of the subsets) encoded in, )(iI .  This bring us to the 

final component of Bayesian decoding 

                                                                                                                             
covariance estimation (Harville 1977). 
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A greedy search on pattern-sets 

 

Many schemes that seek a sparse solution, such as relevance vector regression (Bishop and 

Tipping 2000) use a top-down strategy and start with a separate precision hyperparameter for 

each pattern or vector.  By estimating the conditional precision of each pattern-weight, 

redundant or irrelevant patterns can be eliminated successively until a sparse solution 

emerges. Clearly, this can entail estimating an enormous number of hyperparameters.  We 

take an alternative bottom-up approach, which generalises minimum norm solutions.  We 

start with the minimum norm assumption that all pattern-weights have the same variance  

II =)1(  and use the conditional expectations of the pattern-weights to create a new subset; 

with the highest [absolute] values.  We then repeat the EM using two subsets.  The subset of 

patterns with high weights is split again to create a new subset and the procedure repeated 

until the log-evidence stops increasing (or the m-th partition contains a subset with just one 

pattern).  This can be expressed formally as 

 

|||| )()()1( mmm II µµη ≥∧=+         18 

 

where )(mµ  is the median of the conditional pattern-weights of the m-th subset.  The and 

operator ∧  ensures that the new set is a subset of the previous set. The result is a 

succession of smaller subsets, each containing patterns with a higher covariances and 

weights, which is necessarily sparse.  Clearly, if the underlying weights are not sparse the 

search will terminate with a small number of subsets and the solution will not be sparse.  This 

optimisation of subsets corresponds to a greedy search: a greedy algorithm uses the meta-

heuristic of making the locally optimum choice with the hope of finding the global optimum. 

Greedy algorithms produce good solutions on some problems, but not all. Most problems for 

which they work well have optimal substructure, which is satisfied in this case, at least 

heuristically.  This is because the problem of finding a subset of patterns with high variance 

can be reduced to finding a bipartition that contains a subset. This is assured, provided we 

always select a subset with the highest pattern-weights.  The result of the greedy search is a 

sparse solution over patterns; where those patterns can be anatomically sparse or distributed.  

See Figure 3 for a schematic summary of the scheme. 

 

In principle6, adding a subset will either increase the free energy or leave it unchanged.  This 

is because each new subset must, by construction, have a variance that is greater than or 

equal to its superset.  Once the optimal set size is attained, any further subsets will have a 

vanishingly small variance scale-parameter and the corresponding hyperparameter will tend 
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to its prior expectation; ii πµ λ → .  In this instance, the curvature approaches the prior 

precision, iiiiL Π−=→λλ  (see Eq.16).  This means the conditional covariance approaches 

the prior covariance, which provides an upper bound.  It can be seen from Eq.15 that the free-

energy is unchanged under these conditions and the subset is effectively switched off.  This is 

an example of automatic model selection discussed in Friston et al (2007). 

 

Unlike SVM and related automatic relevance determination (ARD) procedures, Bayesian 

decoding does not eliminate irrelevant patterns.  All the patterns are retained during the 

optimisation, although some subsets can be switched off as mentioned above.    There is no 

need to eliminate patterns because the computational complexity grows with the log of the 

number of data-features; ))ln(( 3 nsO .  This is because m subsets cover m2  patterns.  This 

means typically, the greedy search takes a few seconds, even for thousands of voxels. 

 

 

Summary 

 

In summary: 

 

• We can formulate a MVB decoding model that maps many data-features to a target 

variable, as a simple hierarchal model; known as a parametric empirical Bayes model 

(PEB; Efron and Morris 1973; Kass and Steffey 1989).  The hierarchical structure 

induces empirical priors on the data-features (i.e., voxels) which we can prescribe in 

terms of patterns over features.  Each pattern is assigned to a subset of patterns, 

whose pattern-weights (unknown parameters of the mapping) have the same 

variance. 

 

• Each prescription of patterns (i.e., partition) constitutes a hypothesis about the nature 

of the mapping between voxels and the target variable (i.e., the neuronal 

representation or cause).  One can select among competing hypotheses using model 

selection based on the model evidence.  This evidence can be evaluated quickly 

using standard variational techniques; formulated as covariance component 

estimation using EM. 

 

• The partition can be optimised using a greedy search that starts with a classical 

minimum norm solution and iterates the EM scheme with successive bipartitions of 

the subset with the largest pattern-weights.  The free-energy or log-evidence of 

successive partitions or models increases until the optimum set size is reached. 

                                                                                                                             
6 Ignoring problems of local minima 
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This concludes the specification of the model and its inversion. In the next section, we turn to 

applications and illustrate the nature of inference entailed by Bayesian decoding. 

 

 

 

Illustrative analyses 
 

This section illustrates Bayesian decoding using synthetic and real data.  We start with a 

simple example to show how the greedy search works.  This uses simulated data generated 

by anatomically sparse representations.  We then analyse these data to show how the log-

evidence (or its free energy bound) can be used to compare models of anatomically sparse 

and distributed coding.  We will analyse three sets of synthetic data (sparse, distributed and 

null) with three models (spatial, singular and null) and ensure that the inversion scheme 

identifies the correct model in all cases.  A null model is one in which there are no patterns 

and no mapping.  The simulations conclude with a comparative evaluation of MVB with a 

conventional linear discriminant analysis.  The focus here is on the increased power of 

hierarchical models, over classical models that do not employ empirical priors.   

 

We then apply the same models to real data obtained during a study of attention to visual 

motion.  The emphasis here is on model comparison both in terms of different empirical priors 

(spatial, smooth, singular and support) and different brain regions.  Finally, we cross-validate 

the results of decoding visual motion (i.e. presence or absence)  from single scans using a 

leave-one-out protocol.  We show that the Bayesian classification out-performs a SVM 

applied to the same problem. We use this analysis to motivate a cross-validation p-value for 

MVB models, for which the null distribution of the likelihood ratio is not readily available. 

 

 

Simulations 

 

In all simulations, we used the same error variance, fMRI data and confounds used in the 

empirical analyses below.  Using these features (i.e., voxel-wise fMRI time-series) and 

assumed pattern-weights we were able to generate target variables and analyse the data 

knowing the true values.  The data features comprised 583 voxel values from 360 scans, with 

26 confounds (see Figure 4 and below for a detailed description).  We first removed the 

confounds from the data features to give, RY . Synthetic target variables were then 

constructed by taking a weighted average of the voxel time-series and adding noise.  The 

voxel-weights were generated using one of the models described in the previous section and 

depicted in Figure 2. 
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Bayesian decoding 

 

First, we generated data under a sparse spatial model using the first 128 scans and 256 

voxels.  Here the voxel-weights were sampled from a normal distribution and raised to the fifth 

power, to make them sparsely distributed.  Random variables were added to the ensuing 

target variable after they were scaled to give a signal to noise of four; i.e., the standard 

deviation of signal was four times the noise.  Because the signal and random effects at each 

voxel are mixed with the same weights (see Eq.11), the implicit signal to noise at each voxel 

(on average) is also four. The resulting target variable and error and are shown in Figure 4 

(left panel).  The upper-left panel in Figure 5 shows the voxel-weights, whose sparsity is self-

evident.  The lower-left panel shows the free-energy bound on the log-evidence as a function 

of greedy steps (i.e., number of pattern subsets).  We have subtracted the log-evidence for 

the null model so that any value greater than three can be considered as strong evidence for 

sparse coding7.  It can be seen that the log-evidence increases systematically with the size of 

the partition, until it peaks after about five subsets.  The conditional expectation of the voxel-

weights for the partition with the greatest free energy is shown in the left middle panel, plotted 

against the true value.  Although the agreement is not exact, the MVB scheme has identified 

voxels with truly large weights (circled).   

 

We repeated exactly the same analysis but set the weights to zero to simulate a null model.  

In this instance the log-evidence optimized by the greedy search never increased above the 

null model and we would infer there was no mapping.  Even if we take the optimum set 

( 1=m ) from the greedy search on the spatial model, the estimated weights are appropriately 

small (see right panels in Figure 5). 

 

 

Model comparison 

 

In the next simulations, we generated target variables using the model in Eq.13 and different 

patterns.  In all cases we selected the pattern-weights, η  as above from a normal distribution 

and raised them to the fifth power.  We generated three target variables corresponding to a 

null model; ∅=U , a sparse spatial model; IU =  and a distributed singular model; 

RYUDV = , where this equality signifies a singular value decomposition of the adjusted data 

                                            
7 Strong evidence requires the Bayes factor to be between 20 and 150, or the differential log-

evidence to be between )20ln(3 ≈  and )150ln(5 ≈  (Penny et al 2004).  This corresponds 

to a posterior probability for the better model between  212095. ≈=p  and  

15115099. ≈=p , under flat priors on the models. 
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into orthonormal vectors.   We then inverted each of the three models using the three target 

variables.  The free-energies of the resulting nine analyses are shown in Figure 6.  It can be 

seen that the decoding scheme correctly identified the true model in all cases; in the sense 

that the greatest free-energy was obtained with the model that generated each target 

variable.  It should be noted that when the signal to noise was decreased, we often observed 

that the sparse spatial model was favoured over the distributed singular model even when 

data were generated using the latter.  This may be because the singular vectors of the data 

used were themselves sparse over voxels.  However, we never observed that sparse model 

to be better than a null model when decoding null data.  In the final simulations, we look more 

closely at the sensitivity and specificity conferred by the empirical priors implicit in hierarchical 

models. 

 

 

Hierarchical vs. non-hierarchical models 

 

To compare empirical Bayesian with classical models, we repeated the first set of simulations 

using a sparse model but reduced the number of scans to 64, the number of voxels to 32 and 

reduced the signal to noise to a half.  Reducing the number of voxels to less than the number 

of scans enabled us to use conventional CCA to infer on the coupling between voxel activity 

and the simulated target variables.  Recall that CCA uses exactly the same linear model as 

MVB but there are no empirical priors (i.e., the voxel-weights are treated as fixed-effects).  

Because the target variable is univariate, this CCA model is the same as an analysis of 

covariance (ANCOVA), which is exactly the same as a linear discriminate function analysis.  

The likelihood-ratio statistic for ANCOVA is, after transformation, the F-statistic.  We generated 

target variables as above and evaluated the log-likelihood ratio, Λln  using the free energy of 

sparse and null models, optimised using MVB.  For each realisation we also computed the F-

statistic using a standard CCA.  We repeated this ten thousand times for both sparse and null 

targets.  This allowed us to plot the proportion of sparse targets identified by both statistics as 

a function of their threshold; this is the sensitivity.  Conversely, the proportion of null targets 

identified falsely at each threshold gives a measure of specificity.  Plotting one against the 

other gives receiver-operator curves for the two statistics. 

 

The results of these simulations are shown in Figure 7.  It is immediately obvious that Λln  

based on MVB is much more sensitive for all acceptable levels of specificity.  This is not 

surprising because the data were generated in a way that the MVB scheme could model.  

What is remarkable is the quantitative improvement in sensitivity or power:  The classical 

analysis shows about 20% sensitivity at 5% false positive rate.  The threshold for this rate 

was, 20.2=F , which agrees well with the 05.0=p  threshold; 181.2=F  based on its null 

distribution under Gaussian assumptions.  At this level of specificity, the MVB scheme 

exhibited about 56% sensitivity.  Interestingly, the threshold for this specificity was, 
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09.1ln =Λ .  In other words, the optimum threshold for classical inference on the Bayes 

factor would require positive (but not strong) evidence in favour of the alternative hypothesis.  

However, unfortunately there are no analytic results for this threshold because there are no 

analytic results for the null distribution of the MVB log-likelihood ratio (unlike the F-statistic).  

 

This means that although we can always select the best model, we cannot use Λln  to 

assign a p-value to test the null hypothesis of independence between the data-features and 

target.  However, we can use the selected model for cross-validation and use the ensuing 

predictions to get a classical p-value.  This is useful because we can then make classical 

inferences about over-determined models that would elude conventional statistics. We will 

illustrate this in the final section. 

 

It should be noted that these simulations were performed for comparative purposes only.  As 

mentioned in the previous section it is not possible to use CCA when the number of voxels 

exceeds the number of scans, nor is it possible to compare CCA models specified in terms of 

different spatial priors, because there are none.  Clearly, in the simulations above we knew 

what caused the target variable.  In the next section, we apply the analyses above to real data 

where the model and their parameters are unknown. 

 

 

Empirical demonstrations 

 

In this section, we apply the analysis above to real data obtained during a study of attention to 

visual motion.  We have deliberately used a standard data set, which is available from 

http://www.fil.ion.ucl.ac.uk/spm, so that readers can reproduce the analyses below.  These 

data have been used previously to illustrate various developments in data analysis.  In many 

decoding and classification analyses, one generally uses high-resolution unsmoothed data 

and small volumes of interest.  However, the principles of inference are exactly the same for 

any imaging data and we will illustrate the sorts of questions that can be addressed using this 

standard smoothed data set. 

 

 

fMRI data 

 

Subjects were studied with fMRI under identical stimulus conditions (visual motion subtended 

by radially moving dots) under different attentional tasks (detection of velocity changes).  The 

data were acquired from normal subjects at 2-Tesla using a Magnetom VISION (Siemens, 

Erlangen) whole-body MRI system, equipped with a head volume coil.  Contiguous multi-slice 

T2*-weighted fMRI images were obtained with a gradient echo-planar sequence (TE = 40ms, 

TR = 3.22s, matrix size = 64x64x32, voxel size 3x3x3mm).  The subjects had four 
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consecutive hundred-scan sessions comprising a series of ten-scan blocks under five 

different conditions D F A F N F A F N S.  The first condition (D) was a dummy condition to 

allow for magnetic saturation effects.  F (Fixation) corresponds to a low-level baseline where 

the subjects viewed a fixation point at the centre of a screen.  In condition A (Attention) 

subjects viewed 250 dots moving radially from the centre at 4.7 degrees per second and were 

asked to detect changes in radial velocity.  In condition N (No attention) the subjects were 

asked simply to view the moving dots.  In condition S (Stationary) subjects viewed stationary 

dots.  The order of A and N was swapped for the last two sessions.  In all conditions subjects 

fixated the centre of the screen.  In a pre-scanning session the subjects were given five trials 

with five speed changes (reducing to 1%).  During scanning there were no speed changes.  

No overt response was required in any condition. Data from the first subject are used here. 

 

Figure 8 shows the results of a conventional analysis using a linear convolution model formed 

by convolving box-car stimulus functions with a canonical hemodynamic response function 

and its temporal derivative.  The stimulus functions encoded the presence of photic 

stimulation (first two columns of the design matrix on the upper right), visual motion (second 

two columns) and attention (last two columns).  The design matrix shows only the first 

constant term of a series of drift terms (a discrete cosine set) modelling slow fluctuations in 

signal as confounds.  The SPM shown in the upper panel uses the F-Statistic to test for 

motion; the corresponding contrast weights are shown above the design matrix.  The red 

circle depicts a 16mm radius spherical volume of interest, encompassing 583 voxels in early 

striate and extrastriate cortex (deliberately chosen to include V5/MT complex).  The table 

(lower panel) shows classical p-values testing for the contrast after adjustment using random 

field theory for the spherical search volume.  These voxels survived an uncorrected threshold 

of 001.0<p . We will attempt to decode motion from all the gray matter voxels in this 

spherical region, using MVB.  This may seem a trivial problem; however, this design was 

optimised to detect the effects of attention of motion-related responses, not motion per se.  

Decoding motion is actually quite a challenge because there were only four epochs of 

stationary stimuli (note that the effects of photic stimulation are treated as confounds in the 

decoding model) 

 

Before looking at Bayesian decoding it is worthwhile noting that multivariate inference using 

random field theory suggests the mutual information between the voxel-time courses and 

motion is significant.  This can be inferred from the set-level inference with 006.0<p  (left-

hand column of the table).  This is based on the observed number of peaks surviving a 

001.0<p  threshold in the volume of interest.  Here we expected 72.0  peaks (see Table 

footnote) but observed four.  Under the Poisson clumping heuristic; this number of ‘rare 

events is very unlikely to have occurred by chance (see Friston et al 1996 for more details). 
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Bayesian decoding 

 

Figure 9 shows the results of a spatial MVB decoding of the first (canonical) motion regressor.  

The upper left panel shows the free-energy approximation to the log-evidence for each of 

eight greedy steps, having subtracted the log-evidence for the corresponding null model.  As 

in the previous section, any log-evidence difference of three or more can be considered 

strong evidence in favour of the model.  It can be seen that the log-evidence peaks with four 

subsets, giving an anatomically sparse deployment of voxel-weights (upper right panel).  This 

sparsity is evidenced by the heavy tails of the distribution, lending it a multimodal form.  

These weights (positive values only) are shown as a maximum intensity projection and in 

tabular format in the middle row.  The table also provides the posterior probability that the 

voxel-weight is greater or less than zero (for peaks that are at least 4mm apart).  Note that 

these probabilities are conditioned on the model as well as the data.  That is; under the 

sparse model with spatial vectors, the probability that the first voxel has a weight greater than 

zero, given the target variable, is 99.1%.   Note that the free-energy decreases after four 

subsets.  Strictly speaking this should not happen because the free-energy can only increase 

or stay the same with extra components.  However, in this case, the EM scheme has clearly 

converged on a local maximum, when there are too many subsets.  This is not an issue in 

practice, because one would still select the best model, which hopefully is a global maximum. 

 

The bottom row shows the target variable and its prediction as a function of scan and by 

plotting them against each other. This weighted target variable is simply cRWX Χ=  from 

Eq.12, where the contrast, c  selects the first motion regressor from the design matrix, Χ  in 

Figure 8.  Note that the motion target has a complicated form because all other effects (photic 

stimulation, attention and confounds) have been explained away.  The agreement is not 

surprising because one could produce a perfect prediction given 583 voxels and only 360 

scans.  The key thing is that the match is not perfect but is optimised under the empirical 

priors prescribed by the model.  To illustrate the specificity of this analysis we repeated 

exactly the same analysis but randomised the target variable by convolving a time-series of 

independent Gaussian variables with the hemodynamic response function used to create the 

real target variables.  Figure 10 shows the results of this analysis, using the same format as 

the previous figure.  The prediction is now, properly, much poorer, because there is no 

mapping between the neuronal activity and target.  Critically, this can be inferred from the 

optimised log-evidence (upper left panel), which fails to provide strong evidence over the null 

model. 

 

 

Model comparison 
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To illustrate model comparison we repeated the analysis above using five different models; 

null, spatial, smooth, singular and support. The smooth patterns were based on a Gaussian 

smoothing kernel with a standard deviation of four millimetres.  The singular vectors were 

selected automatically so that they explained 95% of the variance in the data-features.  After 

optimising the log-evidence with the greedy search, the model evidences were compared 

directly.   Figure 11a shows that the best model was a spatial model and therefore indicates 

that the representation of motion is anatomically sparse; as one would predict under 

functional segregation.  Interestingly, of the non-null models, the smooth vectors were the 

worst.  This suggests that, even though the fMRI data were smoothed, the underlying 

representation of motion is not dispersed spatially; again this would be expected under patchy 

functional segregation (see Zeki 1990).  One would imagine that, in the absence of 

smoothing, the model with smooth patterns would fare even worse. Although the informed 

singular vectors outperform the image-based support vectors, there is no strong evidence for 

the former model relative to the latter.  This simple example illustrates the sorts of questions 

that can be addressed using MVB. 

 

In the previous example, we compared models that differed in the patterns encoding the form 

of the empirical priors.  Clearly models can also differ in terms of which data-features we 

chose as predictors.  In imaging, this translates into comparing the predictive ability of 

different brain regions (or combinations of brain regions) using model comparison.  As a 

simple example, we selected a 16mm spherical volume of interest in the prefrontal region and 

repeated the MVB analysis.  The log-evidence for both regions and the null model are 

provided in Figure 11b.  These show that canonical motion can be readily decoded from both 

regions but, if one wanted to ask which region afforded the better model, then clearly the 

visual region supervenes.  We have deliberately chosen a rather trivial question to illustrate to 

model comparison; however, it is easy to imagine interesting questions that can be formulated 

using MVB.  For example, using combinations of regions it is possible to compare models 

with two regions (say right and left hemispheric homologues), one or the other or neither and 

infer on the lateralisation of representations.  This allows one to ask specific questions about 

the nature of distributed codes in the brain and how they are integrated functionally. 

 

 

Cross-validation 

 

This section concludes with a comparison with a standard classifier and cross-validation of 

the MVB decoding.  Point classifiers like SVM cannot be assessed in terms of model 

evidence because the requisite probability densities are not formally parameterised.  

However, we can assess the MVB model using cross-validation by evaluating the predictive 

density using )(θq .  In this example, we used the occipital volume of interest of 16mm radius 

above, encompassing 538 voxels.  We addressed cross-validity by trying to classify each 
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scan as a motion or non-motion scan; this entailed thresholding the target variable, WX  

around its median to produce a list of class labels (one or minus one).  The median threshold 

ensures that there are an equal number of targets in each class.  Because the target variable 

has been convolved with a hemodynamic response function, these labels reflect the amount 

of motion under the support of this function (i.e., within the preceding few seconds). 

 

We used a leave-one-out strategy by designating one scan in the time series as a test scan 

and estimating the pattern-weights using the remaining training scans.  We used a MVB 

model with sparse spatial patterns.  The pattern-weights were then used to form a prediction, 

which was thresholded around its median and compared with the target class.  This was 

repeated 360 times (for every scan) and the significance of the classification assessed 

against the null hypotheses of chance performance, using the binomial distribution.  The MVB 

classification performed at 64.4%, (232 out of 360; -81025.1 ×=p ), which appears extremely 

significant (but see below).  For comparison purposes, we trained a standard SVM classifier8 

with exactly the same training and test samples, using the adjusted imaging data RY  as data 

features.  To ensure we optimised the SVM we repeated the leave-one-out scheme for nine 

levels of the hyperparameter 80 10,,10 −= KC .  The best performance of the SVM (with 

310−=C ) was well above chance level, correctly classifying 61.4% (221 out of 

360; -6105.58×=p ) of scans; however, its performance was poorer in relation to the 

Bayesian classification (64.4%).  See Figure 12.   

 

The voxel-weights for the SVM and MVB classifiers are shown in Figure 13 (upper panels).  

The difference is immediately obvious; the MVB profile shows the anatomical sparsity implicit 

in characterisations above; whereas the SVM weights are not sparse.  However, if we plot the 

MVB weights against the cubed SVM weights we see that, with one exception, when the MVB 

found a large positive or negative weight, so did the SVM. 

 

One may ask why the MVB decoding model was better than the SVM, given both sought 

sparse solutions and the SVM was explicitly optimising classification performance (while the 

decoding scheme optimised free-energy).  The most parsimonious answer is that the SVM is 

using a suboptimal model. The results of model comparison in Figure 11a, suggest that visual 

motion has a sparse anatomical representation and this is the model used by Bayesian 

decoding.  Conversely, the SVM is obliged to use a sparse mixture of non-sparse patterns 

and is consequently poorer at classifying.   

 

                                            
8 Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001. 
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 
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This intuition was confirmed by repeating the MVB classification but using support vectors.  

As can be seen in Figure 12, the classification performance fell from 64.4% to 63.0%.  This is 

still better than the SVM, with a difference of 1.66%.  However, this difference is less than the 

standard deviation of the underlying binomial distribution; )1(3602.63% 2
1

2
1 −= .  One 

might anticipate that a finer-tuned optimisation of the SVM hyperparameters would equate the 

performance of the SVM and MVB, under support vectors.  Note that MVB optimises its own 

hyperparameters automatically (without needing the true test class). 

 

 

Classical inference with cross validation 

 

One might ask whether the p-values from the leave-one-out scheme could be used for 

inference?  Unfortunately they cannot, because the removal of confounds and serial 

correlations render them invalid.  In other words, the binomial test assumes that the training 

and test data-features are independent and this assumption is violated when we use data-

features that have been adjusted for confounds; or when the data are serially correlated as in 

fMRI.  In what follows, we describe a cross-validation scheme that resolves this problem and 

produces p-values for any MVB model. 

 

The solution rests on using weighted samples of data-features for training that are linearly 

independent (i.e., orthogonal) of the test data.  This is achieved by removing serial 

correlations and eliminating the test data before estimating the voxel-weights.  These weights 

are then applied to de-correlated features, with the training data eliminated.  Critically, 

elimination proceeds by treating unwanted data as confounds, as opposed to simply 

discarding portions of the data.  More precisely, consider a k-fold scheme in which the test 

subset is encoded by indicator variables in the leading diagonal matrix, )(kI .  The model is 

optimised using a residual forming matrix, SGGIR kkk )( −
−−− −= ; where (i) the confound 

matrix ],[ )(k
k ISGG =−  includes any effects due to the de-correlated test data and (ii) 

2/1−= VS  is a de-correlation matrix that renders the errors spherical.  The ensuing weights 

βµk  are then applied to test-features, YRY kk = .  These test-features are formed using a 

residual forming matrix, SGGIR kkk )( −−=  with confounds )](,[ )(k
k IISGG −=  that allow 

the effects due to the de-correlated training data to be explained away.  The result is a cross-

validation prediction, βµkkk YX =  that accounts properly for serial correlations and confounds 

by ensuring that the cross-validation weights cannot be influenced by the test data and the 

prediction is conditionally independent (to first order) of the training data    Furthermore, it 

ensures, under the null hypothesis, that the test and training data are linearly independent; 

i.e.,  
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The predictions can now be added to give a cross-validation prediction for the entire 

sequence of weighted targets; i.e., )(ˆ
1

1
KXXSX ++= − K .  Under the null hypothesis, 

there can be no correlation between WX  and X̂ .  Furthermore, because the random effects 

in this model are mixtures of random effects over features (i.e., voxels) we know by central 

limit theorem that they are normally distributed.  This means the most powerful test of the null 

hypothesis is a simple t-test; testing for dependency between the observed and predicted 

targets, in the presence of confounds.  This can be tested using the simple model 

 

 εβ += ],[ˆ GTXX          20 

 

under normal parametric assumptions about the serially correlated errors with a test of the 

null hypothesis that 01 =β .  The astute reader may notice that we have come full-circle; in 

that this test is exactly the same as testing a contrast, i.e., 0=βTc , under the original 

encoding model; εβ +Χ=X̂ .  The only difference is that we have replaced the original 

voxel-values with a summary of the activity over voxels, using a cross-validation procedure.  

 

To ensure the assumptions above are not violated in a practical setting, we applied the 

procedure using a two-fold cross-validation scheme to the empirical data above, using 

weighted targets formed by convolving random vectors with a hemodynamic response 

function.  We repeated this a thousand times and accumulated the p-values from the t-test on 

the model in Eq.21.  Figure 14 shows the results of this analysis in terms of a Q-Q plot (i.e., 

cumulative frequency of ranked p-values).  An exact and valid test should produce a straight 

line though the origin; happily this is what we observed.  This is important because it gives a 

reasonably powerful test that enables classical inference about multivariate models for which 

no conventional results exist. 

 

Figure 15 shows the results of the cross-validation prediction for the 16mm occipital volume of 

interest.  This prediction should be compared with that in Figure 9 that was obtained without 

the cross-validation constraint. It can be seen that the accuracy of this prediction is unlikely to 

have occurred by chance; the corresponding cross-validation p-value was 000046.0=p  

and was extremely significant.  

 

 

Summary 
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In summary, this section has demonstrated the nature of inference with MVB.  We anticipate 

that most analyses could use both Bayesian and classical inference.  First, [Bayesian] model 

comparison would be used to identify the best qualitative form of model for any structure-

function relationship, using the log-evidence over models.  Having established the best model 

the cross-validation p-value can be used for a quantitative [classical] inference that any 

dependencies between observed brain measures and their consequences are unlikely to 

have occurred by chance. 

 

 

 

Discussion 
 

This paper has described a multivariate Bayesian (MVB) scheme to decode neuroimages.  

This scheme resolves the ill-posed many-to-one mapping, from voxels or data-features to a 

target variable, using a parametric empirical Bayesian model with covariance hyperpriors.  

This model is inverted using expectation maximisation to furnish the model evidence and the 

conditional density of the parameters of each model.  This allows one to compare different 

models or hypotheses about the mapping from functional or structural anatomy to perceptual 

and behavioural consequences (or their deficits).  The primary aim of MVB is not to predict or 

classify these consequences but to enable inference on different models of structure-function 

mappings; such as the distinction between distributed and sparse representations.  This 

allows one to optimise the model itself and produce predictions that can outperform standard 

pattern classification approaches.   

 

MVB is a model comparison approach that is well suited for testing specific hypotheses about 

structure-function mappings; e.g. is the representation of objects sparse or distributed in the 

visual cortex? The outputs of MVB are the log-evidences for the models tested, which allows 

inference about spatial coding and the conditional density of the voxel-weights. In addition, 

one can also derive a cross-validation p-value for MVB models.  On the other hand, classifier 

approaches like Support Vector Machines (SVM) optimise the parameters of a discriminating 

function to maximize classification accuracy. They are useful when one wants to make 

predictions about new examples, especially when there is no prior hypothesis available or the 

model assumptions can not be guaranteed (e.g., classifying patients vs. controls, predicting 

treatment response, predicting subject decisions about novel stimuli, etc,). The outputs of this 

approach are the classification accuracy and the voxel-weights. 

 

 

Model inversion and inference in MVB uses exactly the same empirical Bayesian procedures 

developed for ill-posed inverse problems (e.g., source reconstruction in EEG).  However, the 
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MVB scheme extends this approach to include an efficient greedy search for sparse solutions.  

In contradistinction to top-down strategies, employed by things like automatic relevance 

determination, MVB uses a computationally expedient bottom-up search for the optimum 

partition; i.e., number and composition of pattern-weight subsets with the same variance.  It 

should be noted that there is a distinction between the abstraction of model comparison as 

the computation of a metric (e.g., likelihood ratio) and a search algorithm (e.g., greedy 

search). One reason to make this distinction lies in the need to consider when a particular 

search algorithm is appropriate; for example, a greedy search may be suitable for our 

purposes, in optimising linear models, yet may fail for nonlinear multivariate associations 

(e.g., the exclusive-or (XOR) association that eluded early neural-network solution 

algorithms). 

 

 

We have illustrated MVB using simulated and real data, with a special focus on model 

comparison; where models can differ in the form of the mapping (i.e., neuronal 

representation) within one region, or in terms of the regions themselves.  These 

demonstrations concluded with a procedure to compute exact p-values for classical inference 

on the model selected, using cross-validation. We organise the rest of the discussion around 

some obvious questions; many of which have been posed by colleagues after discussing the 

material above: 

 

 

• Can one use Bayesian decoding with event-related fMRI paradigms? 

 

Yes; in fact the scheme can be applied to any data and design that can be formulated as 

a conventional linear model.  This includes convolution models for fMRI studies with 

efficient design.  Unlike classification schemes, the model does not map to classes or 

labels, but to continuous, real-valued target variables; therefore, one is not forced to 

assign each scan to a class.  Furthermore, the target variable is convolved by a 

hemodynamic response so that the delay and dispersion inherent in fMRI measures of 

neuronal activity becomes an explicit part of the decoding. 

 

 

• Does the scheme assume the same hemodynamic response function in all voxels? 

 

Not if variations in voxel-specific hemodynamic response functions are included as 

confounds.  For example, to a first-order approximation, one can model differences in 

hemodynamic latency with the temporal derivative of the target variable (and any other 

confounds).  This derivative enters the projection matrix; R , which effectively removes 

variations in latency in both the target variable and voxel-time series.  Similar arguments 
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apply to other variations in the response function.  In practice, decoding uses exactly the 

same model specification as encoding.  The target variable is specified with contrast 

weights in the usual way but they are used to subtract the corresponding column (or 

mixture of columns) from the design matrix.  This reduced design matrix now becomes 

the confound matrix in a decoding model and will contain regressors necessary for 

explaining away differences in hemodynamic responses (provided a suitable basis set 

was specified for the conventional analysis). 

 

 

• Can MVB be applied to structural images or contrasts in multi-subject studies? 

 

Yes; as mentioned above, it can be used in any context that lends itself to conventional 

modelling.  This includes the analysis of grey-matter segments in voxel-based-

morphometry.  This means it is possible to infer on structure-function mappings explicitly; 

for example one can use grey-matter segments from a group to predict 

neuropsychological deficit, diagnosis or response to treatment.  In fact, this application 

was one of the primary motivations for this work (see below). 

 

 

• Can the scheme cope with serial correlations in the errors? 

 

Yes; these can be accommodated by adding extra error covariance components 

modelling any non-sphericity.  The associated hyperparameter will be estimated in the 

EM scheme along with the others.  In the current implementation, this is not necessary 

because we use the serial correlations V  from a conventional analysis using ReML. 

 

 

• Is a greedy search for a sparse solution appropriate if the neuronal representation is 

not sparse (i.e., if it is distributed)? 

 

Yes; a sparse solution in the space of pattern-weights does not mean the solution is 

anatomically sparse, because the patterns can be sparse or distributed.  Both the 

hyperpriors and greedy search can accommodate sparse solutions in the space of 

pattern-weights.  This sparsity is a useful constraint on the many-to-one nature of the 

decoding problem; it means the scheme will seek an optimum sparse solution for any set 

of patterns that are specified.  However, the patterns that model the anatomical 

deployment of neuronal activity may or may not be sparse.  This means one can infer a 

representation is distributed by comparing two models with sparse (e.g., spatial vectors) 

and non-sparse (e.g., support vectors) patterns. 
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• Will the greedy search find significant subsets when there is no mapping? 

 

No. The free-energy bound that is optimised by both the greedy search, and each 

iteration of the EM scheme, embodies both accuracy and complexity.  This means that 

adding a hyperparameter to the model will only increase the bound, if the increase in 

accuracy (i.e., fit) more than compensates for increased model complexity.  This is why 

the log-evidence did not exceed the null model during the greedy search, using the null 

data in the simulations (see Figure 5). 

 

 

• Why does Bayesian inference not use cross-validation like classification schemes? 

 

Because it does not need to; classification schemes are generally obliged to use cross-

validation or generalisation error to assess how good they are because they do not 

furnish inference on the mapping they are trying to model.  Making inferences with 

classification still rests on model comparison but does so only at the last step, where one 

compares classification performance with a null model of chance classification (e.g., using 

a binomial distribution).  From the perspective of model comparison, classification 

performance is a surrogate for the likelihood ratio. We exploited this approach to compute 

a p-value for classical inference using cross-validation. 

 

 

• Can the Bayesian decoding model be used to classify? 

 

Generally, if a model is to be applied to classification problems, where the class labels are 

discrete, one usually uses logistic or multinomial regression, where the log-likelihood ratio 

is a linear function of some parameters. These models are based on binomial/multinomial 

distributions, as opposed to the Gaussian densities used in MVB. However, the 

continuous target variables, assumed by MVB, can be thresholded to give distinct classes 

or labels (for an example, see the comparison between MVB and SVM above).  Having 

said this, the objective of Bayesian decoding is more general and is not simply to 

establish a statistical dependency between neuronal representations and a perceptual or 

behavioural consequences; it is concerned with comparing different models of that 

mapping.  This is not possible with simple classification because classification schemes 

use only one model (the model that has been optimised with respect to generalisation 

error).  Classification is therefore a special application of the more general MVB 

framework presented here. 
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We conclude with a brief review of extensions of the linear model presented here.  These 

include nonlinear models and extensions to cover multiple target variables. 

 

Nonlinear models 

 

As mentioned above we envisage applying this sort of analysis to look at structure-function 

relationships in the brain, using structural images (e.g., grey-matter segments from multiple 

subjects).  An important application here is lesion-deficit analysis, where one wants to 

understand how damage to different brain areas conspires to provide a behavioural deficit.  A 

critical aspect of this mapping is that is may be nonlinear.  In other words, the production of a 

deficit following damage to one region depends on the integrity of another (as in degenerate 

structure-function mappings).  We have previously emphasised the necessary role of 

multivariate models in this context previously, when qualifying the use of voxel-based-

morphometry (Friston and Ashburner 2004).  There have been some exciting developments 

in this context; using directed Bayesian graphs (see Herskovits and Gerring 2003).  In the 

context of our parametric model, nonlinearities are easy to include, through the use of 

polynomial expansions.  For example9, 
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can be treated as in exactly the same way as the first-order model above to provide the log-

evidence and conditional estimates of the first and second-order pattern-weights; 1η  and 2η .  

The first-order weights play exactly the same role as previously; however, the second-order 

weights model interactions between patterns in causing the target.  An important example of 

this is predicting a psychological deficit by damage to two regions that have a degenerative 

(many-to-one) structure-function relationship (see Price and Friston 2002).  Under second-

order degeneracy, a deficit would not be evident in damage to either region alone and would 

require a non-zero second-order weight on bilateral regional damage to predict a deficit.  In 

principle, one could establish second-order degeneracy by comparing the second-order 

model above to its reduced first-order form.   
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which is exactly the same as Eq.13.  We will exploit nonlinear MVB in future work on multi-

lesion deficit analyses of structural scans. 

 

 

Comparing different representations 

 

This paper has dealt with the simple case, where X  is univariate (e.g., a subspace of a fuller 

design, specified with one-dimensional contrast).  The more general case of multivariate 

decoding entails exactly the same formulation but with vectorised variables.  An important 

example of this would be models for two contrasts or targets (e.g., house and face 

perception).  A model for two perceptual targets 1X  and 2X  is  
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This model has the same form as Eq.13 but has been arranged so that the pattern-weights 

)(+η  map activity in patterns to both targets, whereas )(−η  map differential activity to the 

target.  This means that )(+η  are weights that mediate overlapping representations and )(−η  

determine which patterns or voxels predict the targets uniquely.  Note that the errors are 

uncorrelated because they are mixture of orthogonal voxel-weights.  By comparing this full 

model with a reduced model 
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One should be able to test for common or overlapping representations and disambiguate 

between category-specific representations that are functionally selective (with overlap) and 

functional segregated (without).  We will explore this in future work. 

 

 

Software note 

The Bayesian decoding scheme, described in this paper, will be available in the next release 

of SPM5 (http://www.fil.ion.ucl.ac.uk/spm).  It is accessed through the results panel 

(multivariate Bayes) after displaying a contrast as an SPM.  It is assumed that the target 

variable is the compound or contrast of regressors specified by the contrast weights of the 

                                                                                                                             
9 The symbol ⊗  means Kronecker tensor product and is equivalent taking all the products of 
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SPM.  If an F-contrast is specified, the first component is used for decoding.  The volume of 

interest is specified in the usual way (sphere, box or mask) and the greedy search is initiated 

for the model (spatial, smooth, singular or sparse) requested.    After the model has been 

optimised or selected its cross-validation p-value can be accessed using a two-fold scheme 

illustrated in the main text. The results are displayed using the same format used in Figures 9, 

10 and 15 above. 
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Figure Legends 

 

Figure 1: Schematic highlighting the differences between encoding and decoding models, 

which couple measured brain responses to their causes (encoding) or consequences 

(decoding).  The arrows denote conditional dependences.  The variables are described in the 

main text. 

 

Figure 2: Taxonomy of different decoding models that are defined by spatial patterns or 

vectors encoding empirical priors on voxel-weights linking brain activity to perceptual or 

behaviour variables. 

 

Figure 3: The EM schemes and its embedding within a greedy search for the optimum set of 

patterns that maximises the free-energy bound on log-evidence. The variables are defined in 

the main text. 

 

Figure 4: Right: Data-features that were mixed to generate the target variable in the 

simulations.  These are a subset (128 scans and 256 voxels) of the voxel-data from the 

analysis of real fMRI data reported in Figure 8.  Left: Target variable (solid line) and noise 

(broken line) for the simulation demonstrating the nature of the greedy search (reported in 

Figure 5). 

 

Figure 5: Left panels: results for a greedy search for the optimum set of spatial patterns 

using targets generated from sparse voxel-weights.  The true weights are shown on the top 

and the estimated weights are plotted against the true weight in the centre.  The lower panel 

shows the log-evidence, relative to a null model with no patterns, as a function of the number 

of greedy steps (i.e., the size of the set).  Right panels:  the same format as the upper row 

but showing an analysis of null targets, formed by setting the voxels-weights to zero; using 

exactly the same noise terms.  The predicted voxel-weights come from the first 1=m  model. 

The red circles highlight the voxel with the largest voxel-weight. 

 

Figure 6: An illustration of model comparison using three models (spatial, singular and null) 

applied to three synthetic target variables that were generated by the same three models.  

Each row corresponds to the log-evidences (normalised to their minimum) for each target.  

These results show that model comparison allows one to identify the form of the model that 

generated the data.  The horizontal line is set at three (i.e., a difference in log-evidence that 

would be regarded as strong evidence in favour of a model) 

 

Figure 7: Upper panel: Receiver operator curves summarising a power analysis for the 

Bayesian decoding scheme and an analysis based on a conventional linear model (CCA).  
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These curves depict the sensitivity as a function of false positive rate for various thresholds 

applied to likelihood-ratio statistics.  These statistics were the log-evidences difference for the 

MVB (i.e., log-Bayes factor; solid line) scheme and the F-statistic for the general linear model 

(dotted line).  The vertical line marks a false positive rate of 0.05.  This rate obtained with a 

threshold of 1.09 for the log-Bayes factor and 2.20 for the F-statistic.  The corresponding 

power was 56.4% or MVB and 19.6% for CCA. Lower panels:  Distribution of the statistics 

(MVB; left and CCA; right) over ten thousand realizations for the null targets (dotted lines) and 

a target generated with a signal to noise of one half (solid lines). 

 

Figure 8:  Results of a conventional encoding analysis of the visual motion study.  The upper 

left panel shows the maximum intensity projection of the SPM, thresholded at 001.0<p  

(uncorrected).  The upper right panel shows the design matrix and contrast used to construct 

the SPM.  The Table lists maxima in the SPM, using random field theory, to give adjusted p-

values for the number, size and height of subsets in the excursion set.  The red circle depicts 

the 16mm spherical volume of interest used to adjust the p-values and employed for decoding 

in subsequent figures.  This volume was centred at 48, -63, 0mm and contained 583 grey 

matter voxels. 

 

Figure 9: Results of an MVB analysis using the voxels highlighted in the previous figure.  The 

upper left panel shows the free-energy bound on the log-evidence, relative to a null model, as 

a function of set size; the red lines depict the threshold for strong and very strong evidence for 

each model (i.e., an extra subset of patterns).  The upper right panel shows the distribution of 

voxel-weights for the optimum model and discloses their sparse distribution.  The middle 

panels show the conditional estimates of the voxels-weights as a maximum intensity 

projection and in Tabular format (reporting the sixteen most significant voxels spaced at least 

4mm apart).  The lower panels show the observed and predicted target as a function of scan 

number and plotted against each other. 

 

Figure 10: This figure uses the same format as the previous figure but shows the results of 

an analysis applied to a randomised target in which any coupling between data-features and 

targets was destroyed. 

 

Figure 11: Bayesian model comparison:  Left: (a) Log-evidences for five models of the same 

target and voxels.  These models differ in terms of the spatial patterns that might be used to 

encode motion.  Right: (b) log-evidences for three models of the same target but now using 

different voxels.  These voxels came from two 16mm spherical volumes of interest in the 

visual and prefrontal regions, depicted by the red circles on the maximum intensity projection. 

 

Figure 12: Classification performance of the MVB scheme (horizontal line) and SVM (bars) 

over different levels of the SVM hyperparameter, C.  Performance is shown in terms of 
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percentage correct classification of motion scans using the occipital volume of interest in the 

previous figures.  The MVB models here employed sparse (top line) and support (lower line) 

vectors, where as the SVM used, by definition, support vectors. 

 

 

Figure 13:  Comparative analysis if the encoding of visual motion using MVB and SVM.  

Upper panels: voxel-weights from SVM (left) and MVB (right) showing the sparsity over 

voxels of the latter, relative to the former.  Lower panel: The same weights plotted against 

each other, showing that large values in one correspond to large values in the other.   

 

Figure 14:  Results of a simulation study to ensure the exact nature of cross-validation p-

values.  This Q-Q plot shows the cumulative frequency of ranked p-values from one 

thousand, two-fold cross validation tests using the data-features from the fMRI study (V5/MT 

volume of interest) and a randomised weighted target.  Ideally the Q-Q plot should be a 

straight line passing though the origin.  The number of p-values falling below 0.05=p  was 

0.056 , suggesting a reasonably exact test. 

 

Figure 15:  Results of a two-fold cross-validation using the motion target and the 360 scans 

of 583-volxel features from the visual volume of interest.  Upper panel: The target variable 

(solid line) and its prediction (broken line) from the cross validation. Lower panel; The same 

data plotted against each other.  These results can be compared with the lower panels in 

Figure 9.  The difference here is that the prediction of one half of the time-series is based on 

data from the other. 
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