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Abstract

We describe a Bayesian estimation and inference procedure for
fMRI time series based on the use of General Linear Models with Au-
toregressive (AR) error processes. We make use of the Variational
Bayesian (VB) framework which approximates the true posterior den-
sity with a factorised density. The fidelity of this approximation is
verified via Gibbs sampling. The VB approach provides a natural
extension to previous Bayesian analyses which have used Empirical
Bayes. VB has the advantage of taking into account the variability
of hyperparameter estimates with little additional computational ef-
fort. Further, VB allows for automatic selection of the order of the
AR process. Results are shown on simulated data and on data from
an event-related fMRI experiment.

1 Introduction

In neuroimaging, the estimation and inferences about evoked responses have,
thus far, rested largely upon classical inference. In statistics, however, there
are two main frameworks for making inferences, classical inference and Bayesian
inference. For a comparison of the different frameworks see Barnett [4] and
Casella and Berger [11]. Strong advocates of Bayesian analysis consider it the
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only logical and self-consistent framework for probabilistic inference. The ra-
tionale behind such claims is laid down in classic texts such as Box and Tiao
[8] and Bernardo and Smith [5]. Adoption of a Bayesian inference framework
has led to a multitude of advances in areas such as image processing [7], sig-
nal processing [28], machine learning [22] and pattern recognition [6]. This is
especially important as developments in these fields have a follow-on impact
on neuroimaging methodology. The initial impact is already being felt [19].

Both (classical) maximum likelihood and Bayesian analysis use the same
model of how the data are caused, often a linear model. However, they differ
in both estimation and inference. Bayesian analysis can be considered an
extension of maximum likelihood that relies upon the specification of prior
expectations about the parameters of the model eg. activations. In maximum
likelihood estimation the parameters are chosen to maximize the likelihood of
obtaining the observed data. In Bayesian analysis the objective is to compute
the probability of the activation given the data, that is, the posterior density.
Through Bayes rule this requires the specification of priors on the parameters
or activations.

Inference in classical statistics proceeds by considering the null hypothe-
sis that there is no activation. A statistic is then formed whose distribution
under the null hypothesis can be used to reject that hypothesis if the data
are sufficiently unlikely. For example a T statistic is a linear compound of pa-
rameter estimates divided by the standard error. The standard error in turn
is based on the variance of the compounding likelihood density. This vari-
ance corresponds to a hyperparameter (a parameter of a probability density
function of parameters).

In Bayesian inference the probability that the activation or contrast of
parameters exceeds some specified threshold can be computed directly from
the posterior density. This posterior density is parameterized by its own hy-
perparameters. In short, to make an inference of a classical or Bayesian sort
both the parameters and hyperparameters of a model must be estimated. In
classical inference the hyperparameters are Restricted Maximum Likelihood
(ReML) estimates. These are simply the values of the hyperparameter that
maximize the probability of the data.

Critically, the variability in hyperparameter estimates must enter into
the inference. This variability is expressed through the degrees of freedom
of classical statistics. For hierarchical linear Gaussian models with multiple
hyperparameters we show [23] how this variability can be taken into account
using a Satterthwaite type approximation based on ReML estimates of the
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hyperparameters.
In Bayesian inference this variability can be taken into account by forming

the full posterior over the parameters and hyperparameters and then inte-
grating out (ie. averaging over) the hyperparameters. The ensuing marginal
distribution is the posterior density of the parameters required for infer-
ence. In practice, however, this integration is often problematic. Either
time-consuming sampling approaches are used or the variability is simply
ignored. In the empirical Bayes framework [10], for example, the variability
in the hyperparameters is typically ignored leading to the ‘over-confidence
problem’ [18].

In this paper we present the general approach, Variational Bayes (VB),
that approximates the posterior density with an analytically tractable form
based on the use of conjugate priors and the assumption of (a degree of)
factorization in the posterior. This enables the posterior densities of the hy-
perparameters to be modeled and resolves the over-confidence problem. We
introduce VB for functional neuroimaging timeseries and illustrate its appli-
cation to the analysis of fMRI in the context of unknown hyperparameters
governing serial correlations among the errors.

In section 2 we describe the time-series model. In section 3 we describe the
Variational Bayes methodology and in section 4 show how it is applied to our
model. This section makes extensive reference to mathematical derivations
which are given in an appendix. In section 5 we present results on simulated
data and on data from an event-related fMRI experiment.

2 Models of fMRI time series

A key issue in the analysis of fMRI time series is the concern that succesive
samples are serially correlated. These correlations arise from neural, physio-
logical and physical sources including the pulsatile motion of the brain caused
by cardiac cycles, local modulation of the static magnetic field by respiratory
movement and by unmodelled neuronal activity. See [37] and [34] for a full
discussion. Not all of this correlation can be removed by high-pass filtering
as the required filter cut-offs would also remove much of the signal.

A standard approach to the analysis of fMRI time series employs voxel-
wise General Linear Models (GLMs). The data at each voxel, Y , are ex-
plained with a set of effects that are incorporated into a design matrix, X.
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One then proceeds by fitting the model

Y = Xw + E (1)

and making inferences based on the parameters, w. The voxel-wise GLM
approach, pioneered in [16] and developed in a Bayesian context [19], allows
one to produce functional maps of the human brain derived from single- or
multiple-subject fMRI studies.

The serial correlation in the error time series, E, affects both the model fit-
ting and the statistical inference. This is typically handled using a two-stage
process where the correlation is estimated in the first stage and the parame-
ters are estimated in the second stage. The diversity of ensuing approaches
results from different characterisations of the serial correlation. These range
from autoregressive (AR) processes [15] [9] [35], Autoregressive Moving Av-
erage (ARMA) processes [26], AR plus white noise models [30], frequency
domain models where the magnitude falls of as 1/f [37] or by multitapering
[34]. For a review of many of these approaches see [34].

The two-stage process for handling the serial correlation can be extended
to multiple iterations using ReML [18] and this allows for both more accurate
parameter estimation and statistical inference. Whilst this is more computa-
tionally demanding [35] and is subject to the law of diminishing returns [9]
[34] we nevertheless take such an iterative approach in this paper.

In this paper, we use the voxel-wise GLM approach in conjunction with
AR error processes of arbitrary order. These are referred to as GLM-AR(p)
models where p is the order of the AR process. The reason for this choice is
that, of the many characterisations, AR processes are the most amenable to
mathematical analysis. Further, as we will show, low-order AR processes are
sufficient to characterise the serial correlation in fMRI time series (provided
low-frequency drift terms are modelled as fixed effects).

Mathematically, the GLM-AR(p) model is given by

Y = Xw + E (2)

E = ẼT aT + Z (3)

where Y is a [N × 1] vector of fMRI time series samples, X is the [N × k]
design matrix (see Figure 7 for an example of a design matrix), w is a [k× 1]
vector of regression coefficients, E is a [N × 1] vector of errors which are
modelled as an AR process where a is a [1 × p] vector of AR coefficients, Ẽ
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is a [p×N ] matrix of ‘embedded’ errors (see later) and Z is a [N × 1] vector
of Independent and Identically Distributed (IID) Gaussian errors.

This same model can also be written in terms of the response at scan t

yt = xtw + et (4)

et =
p∑

j=1

ajet−j + zt (5)

where yt, xt, et and zt are the tth rows of Y ,X,E and Z. For the design matrix
in Figure 7, for example, the row vector xt corresponds to the tth row. The
noise zt is Gaussian with zero mean and precision (inverse variance) λ. The
tth column of the embedded error matrix Ẽ is

Ẽt =


et−1

et−2

..
et−p

 (6)

We also define the ‘embedding’ matrices D and X̃ whose tth columns are
given by

dt =


yt−1

yt−2

..
yt−p

 (7)

and

X̃t =


xt−1

xt−2

..
xt−p

 (8)

where dt is [p × 1] and X̃t is [p × k]. Note that D is [p × N ] and X̃ is
[p × kN ] and because et = yt − xtw we have Ẽt = dt − X̃tw. To apply the
above equations to a time series we simply ignore the first p values of yt.
This will have little effect on the ensuing inferences. In what follows the
notation N(µ, Σ) refers to the multivariate Normal distribution with mean
µ and covariance Σ. The notation Ga(b, c) refers to the Gamma probability
distribution with parameters b and c.
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2.1 Likelihood

Equations 4 and 5 can be used to express the log-likelihood of the fMRI time
series as

log p(Y |w, a, λ) =
−λ

2

∑
t

((yt − adt)− (xt − aX̃t)w)2 +
N − p

2
log

λ

2π
(9)

This may equivalently be written as

log p(Y |w, a, λ) =
−λ

2

∑
t

((yt − xtw)− a(dt − X̃tw))2 +
N − p

2
log

λ

2π
(10)

We present the two versions because in the first, the regression coefficients
w are more easily isolated, and in the second the AR coefficients a are. This
will simplify the maths later.

2.2 Priors

In this paper we use vague priors on the model parameters

p(w|α) = N(0, α−1I) (11)

p(a|β) = N(0, β−1I)

p(λ) = Ga(b0, c0)

(12)

where α = 10−6, β = 10−3, b0 = 1000, c0 = 0.001 and N and Ga refer to
the Normal and Gamma densities defined in Appendix A. The value α is
larger than β because the regression coefficients are typically larger than the
autoregressive coefficients. The particular value used for β can, in principle,
affect the model order selection process. This is discussed further in sections
4.2 and 5.2.

We choose vague priors because the focus of this paper is on modelling the
error process. Future work will allow for spatial priors and for priors allowing
information to be aggregated over voxels and subjects. For example, for a
random effects analysis [36] of data from multiple subjects a hierarchical prior
such as

p(w|α) = N(wpop, α
−1I) (13)

would be more appropriate, where wpop are the population regression coeffi-
cients and α is the between-subject precision. Alternatively, one might wish
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to use a shrinkage prior based on the variability of the regression coefficients
over voxels (see eg. [18]). In this case

p(w|α) = N(0, α−1I) (14)

where α is the precision of the regression coefficients over voxels.
Given a Gaussian likelihood function with IID errors the conjugate prior

for the noise precision is a Gamma density. This is the prior we use in this
paper and its mathematical form is described in the Appendix. All of the
parameters of our model are collectively written as θ. That is θ = {w, a, λ).
The prior over the parameters is

p(θ) = p(w|α)p(a|β)p(λ) (15)

The log-likelihood in equations 9 and 10 is also written as log p(Y |θ).
The posterior distribution, p(w|Y ), can now be computed by combining

the prior and likelihood using Bayes’ rule. For the model we have described,
however, there is no analytic form for p(W |Y ). A common solution is to
resort to sampling methods [24]. In this paper, however, we make use of
the Variational Bayesian (VB) framework in which the true posterior density
is approximated with a factorised density. In the numerical examples in
this paper the accuracy of this approximation will be verified using Gibbs
sampling.

3 Variational Bayes

The central quantity of interest in Bayesian learning is the posterior distri-
bution p(θ|Y ). This implies estimation both of the parameters θ and the
uncertainties associated with their estimation. This can be achieved with
the VB framework, a full tutorial on which is given in [25]. In what follows
we describe the key features.

Given a probabilistic model of the data, the log of the ‘evidence’ or
‘marginal likelihood’ can be written as

log p(Y ) =
∫

q(θ|Y ) log p(Y )dθ

=
∫

q(θ|Y ) log
p(Y, θ)

p(θ|Y )
dθ

106



=
∫

q(θ|Y ) log

[
q(θ|Y )p(Y, θ)

p(θ|Y )q(θ|Y )

]
dθ

= F + KL. (16)

Here, q(θ|Y ) is to be considered, for the moment, as an arbitrary density.
We have

F =
∫

q(θ|Y ) log
p(Y, θ)

q(θ|Y )
dθ, (17)

which is known (to physicists) as the negative variational free energy and

KL =
∫

q(θ|Y ) log
q(θ|Y )

p(θ|Y )
dθ (18)

is the KL-divergence [13] between the density q(θ|Y ) and the true posterior
p(θ|Y ).

Equation 16 is the fundamental equation of the VB-framework. Impor-
tantly, because the KL-divergence is always positive [13], F provides a lower
bound on the model evidence. Moreover, because the KL-divergence is zero
when the two densities are the same, F will become equal to the model
evidence when q(θ|Y ) is equal to the true posterior. This is shown schemat-
ically in Figure 1. For this reason q(θ|Y ) can be viewed as an approximate
posterior.

The aim of VB-learning is to maximise F and so make the approximate
posterior as close as possible to the true posterior. To obtain a practical
learning algorithm we must also ensure that the integrals in F are tractable.
One generic procedure for attaining this goal is to assume that the approxi-
mating density factorizes over groups of parameters (in physics this is known
as the mean-field approximation). Thus, we consider:

q(θ|Y ) =
∏
i

q(θi|Y ) (19)

where θi is the ith group of parameters. The distributions which maximise
F can then, via the calculus of variations, be shown to be [25]

q(θi|Y ) =
exp[I(θi)]∫
exp[I(θi)]dθi

(20)

where
I(θi) =

∫
q(θ\i|Y ) log p(Y |θ)dθ\i (21)
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and θ\i denotes all parameters not in the ith group. Note that, importantly,
this means we are able to determine the optimal analytic form of the com-
ponent posteriors (using equation 20). This is to be contrasted with Laplace
approximations where we have to arbitrarily fix the form of the component
posteriors to be Gaussian [28].

The above principles lead to a set of coupled update rules for the pa-
rameters of the component posteriors, iterated application of which leads to
the desired maximisation. Further, by computing F for models of different
order, we can perform model order selection (see eg. [29]). The Bayesian
Information Criterion (BIC) model order criterion has been shown to be a
special case of the VB criterion (F ), recovered in the limit of a large number
of data points [3].

4 Variational Bayes for GLM-AR

We assume the following factorised form for the approximate posterior

q(θ|Y ) = q(w|Y )q(a|Y )q(λ|Y ) (22)

By plugging in the likelihood and priors for our GLM-AR model (from section
2) into equation 20, the approximate posteriors turn out to be

q(w|Y ) = N(ŵ, Σ̂) (23)

q(a|Y ) = N(m, V )

q(λ|Y ) = Ga(bλ, cλ)

Note that, for each component, the form of the approximate posterior is
the same as the prior. In fact, this is no accident, as we chose the priors
to achieve this (for a discussion of such ‘conjugate’ priors, see [8]). In the
appendix we show how the parameters of these distributions are updated
to maximise F (see equation 17). Parameter estimation in VB consists of
iterative application of these update rules as shown by the pseudo-code in
Figure 2.

4.1 Initialisation

The distribution for the regression coefficients, q(w|Y ), is initialised by ig-
noring the autocorrelation in the errors. This is set using the well-known
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Ordinary Least Squares (OLS) solution

ŵ = (XT X)−1XT Y (24)

Σ̂ = σ2
e(X

T X)−1

where

σ2
e =

1

N − k

∑
t

(yt − xtŵ)2 (25)

If we now assume the regression coefficients to be correct, the distribution for
the AR coefficients can be set using the Maximum Likelihood (ML) solution
(from inspection of equation 3)

m = (ẼẼT )−1ẼE (26)

V = σ2
z(ẼẼT )−1

where

σ2
z =

1

N − p

∑
t

(et − ẼT
t mT )2 (27)

which uses Ẽt = dt − x̃tŵ ie. the value of ŵ estimated in 24. Equation 24
constitutes the OLS update for the regression coefficients and equation 26
the OLS update for the AR coefficients.

4.2 Negative Free Energy

The negative free energy is used both to monitor convergence during param-
eter estimation and as a criterion for selecting the optimal AR order. As
shown in the Appendix, it can be computed as

F (p) = Lav −KL(λ)−KL(w)−KL(a) (28)

where, for a generic parameter θi, KL(θi) denotes the KL-divergence be-
tween the approximate posterior q(θi|Y ) and the prior p(θi). Expressions
for the KL-divergences for the various densities are given in [31]. These KL
terms should not be confused with the KL divergence in equation 18 which
is between the approximate posterior and the true posterior.

The first term is given by

Lav =
N − p

2
log λ̃− λ̄

2
G̃− N − p

2
log 2π (29)
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and
log λ̃ = Ψ(cλ) + log bλ (30)

and where G̃ is computed from equation 77. Note that we write F (p) here
to emphasise the dependence of F on AR model order p. This dependence
arises because F , being a lower bound on the model evidence, can be used
as a model order selection criterion (see section 3). It consists of two terms;
the average likelihood constitutes an accuracy term and the KL-divergences
constitute penalties for model complexity. The penalty term arises because
KL(a) increases with p. Just how much it increases, in part, depends on
the value of β (the prior precision of the AR coefficients). In section 5.2,
however, we provide a numerical example showing that this dependence is
very weak.

When F (p) is used for model order selection it is important that all models
be given the same number of data points. For this reason the terms (N − p)
in equation 29 and 75 should be replaced by (N − pmax) where pmax is the
maximum putative model order.

The presence of the penalty terms in the objective function (F (p)) also
prevents model overfitting, even for very large AR model orders. This com-
prises the VB solution to the ‘over-confidence’ problem [18].

One can imagine an alternative scheme for estimating the optimal AR
order; fit a GLM model using OLS and then fit AR models to the residuals
using a criterion such as BIC to choose the optimal order [27]. Whilst this
approach will give some indication of the true AR model order it is based on
OLS estimators which, for any particular data sample, may contain a large
error (that is, large in comparison to the VB estimate). Furthermore, in
previous research on autoregressive modelling we have established that the
VB selection criterion is superior to BIC [32]. To our knowledge, the VB
scheme we have described is the only way for finding the optimal AR order
from data sets with activations. A viable alternative is to focus on null data
sets as in [34].

5 Results

5.1 Synthetic data I

We generated data from a known GLM-AR model

yt = xtw + et (31)
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et = aet−1 + zt (32)

where xt = 1 for all t, w = 2.7, a = 0.3 and 1/λ = Var(z) = σ2 = 4. We
generated N = 128 samples. Now, given any particular values of w, a, λ it
is possible to compute the exact posterior distribution up to a normalisation
factor, as

p(w, a, λ|Y ) ∝ p(Y |w, a, λ)p(w|α)p(a|β)p(λ) (33)

If we evaluate the above quantity over a grid of values w, a, λ we can then
normalise it so it sums to one and so make plots of the exact posterior density.

Figure 3 compares the exact and approximate posterior joint densities for
w, a. In the true posterior it is clear that there is a dependence between w
and a (the width of the density over w depends on a) and that the approx-
imate posterior used in VB ignores this dependence. Figure 4 compares the
exact and approximate posterior marginal densities for w,a and σ2 showing
good agreement. This example epitomises the VB approach, showing that
accurate estimation of the marginal distributions is possible without detailed
modelling of the joint distributions.

5.2 Synthetic data II

We generated data from a larger GLM-AR model having two regression coeffi-
cients and three autoregressive coefficients. Whilst it is possible, in principle,
to plot the exact posteriors using the method described previously, this would
require a prohibitive amount of computer time. We therefore validated the
VB algorithm by comparing it with Gibbs sampling [24].

We used the model

yt = xtw + et (34)

et =
p∑

j=1

ajet−j + zt (35)

where xt is a two-element row vector, the first element flipping between a
‘-1’ and ‘1’ with a period of 40 scans (ie. 20 -1’s followed by 20 1’s) and the
second element being ‘1’ for all t. The two corresponding entries in w reflect
the size of the activation, w1 = 2, and the mean signal level, w2 = 3. We
used an AR(3) model for the errors with parameters a1 = 0.8, a2 = −0.6
and a3 = 0.4. The noise precision was set to 1/λ = Var(z) = σ2 = 1 and we
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initially generated N = 400 samples. An example time series produced by
this process is shown in Figure 5(a).

We then generated 10 such time series and fitted GLM-AR(p) models to
each using the VB algorithm. In each case the putative model order was
varied between p = 0 and p = 5. Figure 5(b) shows a plot of the average
value of the negative free energy, F (p) as a function of p, indicating that the
maximum occurs at the true model order. We note that the criterion F (p) is
dependent on KL(a) and therefore on the chosen value of the prior precision
β. We have found, however, that this dependence is very weak in that values
in the range 10−1 to 106 did not change the optimal value of p.

We also generated a number of data sets containing either N = 40, N =
160 or N = 400 scans. At each data set size we applied the VB algorithm
to a number of data sets and compared Gibbs and VB posteriors for each of
the regression coefficients. For the purpose of these comparisons the model
order was kept fixed at p = 3 for the generating models and the models
inferred by Gibbs and VB. Figure 6 shows representative results indicating
a better agreement with increasing number of scans. We also note that the
VB algorithm requires more iterations for fewer scans (typically 4 iterations
for N = 400, 5 iterations for N = 160 and 7 iterations for N = 40). This is
because the algorithm is initialised with the OLS solution which is closer to
the VB estimate if there are a large number of scans.

Finally, we generated a number of data sets of various sizes to compare
VB and OLS estimates of activation size with the true value of w1 = 2. This
comparison was made using a matched-pairs t-test on the absolute estimation
error. For N > 100 the VB estimation error was significantly smaller for VB
than for OLS (p < 0.05). For N = 160, for example, the VB estimation error
was 15% smaller than the OLS error (p < 0.02).

5.3 Face-repetition data

This data set 1 was recorded during an experiment concerned with the pro-
cessing of images of faces [21]. This was an event-related study in which
greyscale images of faces were presented for 500ms, replacing a baseline of an
oval chequerboard which was present throughout the interstimulus interval.
Images were acquired from a 2T VISION system (Siemens, Erlangen, Ger-

1This data set and a full description of the experiments and data pre-processing are
available from http://www.fil.ion.ucl.ac.uk/spm/data
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many) which produced T2*-weighted transverse Echo-Planar Images (EPIs)
with Blood Oxygen Level Dependent (BOLD) contrast. Whole brain EPIs
consisting of 24 transverse slices were acquired every two seconds resulting
in a total of 351 scans. In this paper we restrict our analysis to a single slice
at z = −24mm (Talairach coordinates [33]).

All functional images were realigned to the first functional image using
a six-parameter rigid-body transformation [14]. To correct for the fact that
different slices were acquired at different times, time series were interpolated
to the acquisition time of the reference slice [21]. Images were then spatially
normalised to a standard EPI template using a nonlinear warping method [1].
We then computed the global mean value, g, over all time series, excluding
non-brain voxels, and scaled each time series by the factor 100/g. After scal-
ing by the peak magnitude of the Hemodynamic Response Function (HRF)
(see below) this makes the units of the regression coefficient values ‘percent-
age of global mean signal’. Each time series was then high-pass filtered using
a set of discrete cosine basis functions with a filter cut-off of 120 seconds.

The data set was analysed using a GLM with a design matrix as shown
in Figure 7. This consists of 19 regressors. The 1st, 3rd, 5th and 7th are
indicator variables, indicating the presentation of a face image, which have
been convolved with a ‘canonical’ HRF [17]. The 2nd, 4th, 6th and 8th
regressors are the corresponding HRF derivatives. Modelling the HRF in
this way allows one to capture onset variability across voxels. Regressors 9
to 12 relate to performace errors and 13 to 18 to subject movement and the
last regressor is an offset.

The data were then analysed using conventional least squares SPM and
the GLM-AR approach. For the SPM analysis, the images were smoothed
using a Gaussian kernel of width 8mm. For the GLM-AR analysis the im-
ages were not smoothed. The results of a standard SPM analysis showing
the effect of presenting face images (using a contrast that averages the con-
tributions from the 1st, 3rd, 5th and 7th regressors) is shown in Figure 8(c).
The corresponding structural image is shown in Figure 8(a). The SPM shows
bilateral activation of fusiform cortex and earlier visual areas. We also note
that many within-brain voxels did not show any BOLD effect due to T2*-
signal dropout. The rest of our analysis is restricted to the non-dropout
voxels.

We then applied GLM-AR(p) models to each voxel with p varying from 0
to 5. In figure 8(b) we plot a map of the optimal AR model order as computed
by the VB approach. Matching this figure with the structural image in
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figure 8(a) we see that Cerebro-Spinal-Fluid (CSF) voxels typically have a
higher model order than grey or white matter voxels. To investigate this
further we segmented the structural image into grey, white and CSF voxels
using the algorithm described in [2] and computed histograms of optimal AR
model order. These are shown in Figure 9. We note that, overall, a model
order of p = 3 is sufficient for all voxels.

In a similar vein, Figure 10 shows a map of the AR(1) coefficient from
the GLM-AR(1) models. This shows a similar pattern to that of the opti-
mal model order map. Tissue-specific boxplots of the AR(1) coefficients in
Figure 11 confirm that, as was also observed in [9], temporal correlation is
stronger in CSF than in grey or white matter.

We then compared VB posteriors with posteriors derived from Gibbs
sampling. For this comparison only the first 8 columns of the design matrix
(plus an offset) were used in order to reduce the computation time required
by the Gibbs sampler. Figure 12 shows the posteriors for an activated voxel
in right fusiform cortex for the four coefficients relating to the presentation of
face images. The model order was set to the maximum of F (p) for that voxel
(p = 1) for both the Gibbs sampler and the VB algorithm. These results are
typical of the data set as a whole indicating a very close agreement between
Gibbs and VB.

We then took the fitted GLM-AR(1) model for that voxel and generated
100 different data sets from it using different realisations of the noise pro-
cess. A comparison of VB versus OLS parameter estimates showed that, on
average, all 8 of the regression coefficients were estimated more accurately
using VB and 5 of them significantly so (p < 0.05). This was repeated for a
number of voxels with similar results, the improvement being commensurate
with strength of correlation.

Finally, in Figure 8(d) we plot a Posterior Probability Map (see [19])
of the effect of presenting images of faces. The map shows the probability
that the effect is greater than 0.5 per cent of the global mean value. This is
similar to the SPM in figure 8(c) in having highly activated voxels in bilateral
fusiform cortex. For a discussion of the relation between PPMs and SPMs
see [19].
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6 Discussion

We have described a Bayesian estimation and inference procedure for General
Linear Models (GLMs) with Autoregressive (AR) error processes of arbitrary
order. The algorithm makes use of the VB framework which approximates
the true posterior density with a factorised density. The fidelity of this ap-
proximation was verified via Gibbs sampling. With low numbers of scans
and a high degree of serial correlation the posterior density over regression
components is highly non-Gaussian showing dependence between autoregres-
sive coefficients and regression coefficients. The corresponding VB posterior
is the best matching multivariate Gaussian without such dependence. With
the numbers of scans used in current fMRI studies (typically > 100) the true
posteriors are well approximated by the VB posteriors. This good agreement
has been found on both synthetic and real data.

Although the VB posterior over regression coefficients is Gaussian it is
not the same Gaussian as would correspond to the OLS solution. Firstly,
the centre of the Gaussian is re-estimated to take the autocorrelation into
account. This results in consistently better estimates of the true regression
coefficients. Secondly, the width of the OLS-Gaussian is a consistent under-
estimate of the true width of the posterior, whereas this is not the case with
VB (see eg. Figure 6b).

Experiments comparing the accuracy with which VB and OLS estimate
activation effects showed VB to be significantly more accurate in data sets
with at least 100-200 scans. This shows that it is worthwhile modelling
the error autocorrelation and correcting the estimated regression coefficients
accordingly. It also shows that a certain minimum amount of data is required
in order for the AR coefficients to be estimated well enough for this correction
to be beneficial. This improvement over OLS will also be shared by other
iterative algorithms such as the Expectation-Maximisation (EM) algorithms
described in [19] and [35].

The VB approach provides a natural extension to these algorithms, how-
ever, in that the variability of hyperparameter estimation is also taken into
account. This is achieved with little additional computational effort. Specifi-
cally, the objective function which is maximised during model fitting contains
a penalty term consisting of the KL divergence between the prior over hyper-
parameters and the approximate posterior. In this way, model overfitting is
prevented. This constitutes the VB solution to the ‘overconfidence’ problem
[18]. Further, VB allows for automatic selection of AR order.

115



In an exploratory analysis of event-related fMRI data the optimal AR
order was seen to be higher in CSF than in grey or white matter. Overall,
an AR(3) model was seen to be sufficient for all voxels. Also, the magnitude
of the first AR coefficient was seen to be higher in CSF. This confirms earlier
observations [9] [35] that the values of AR coefficients have spatial structure.
On other data sets Woolrich et al. [34] have observed stronger correlation in
grey matter than in white matter or CSF. These observations confirm that
there is a physiological component to the autocorrelation, whereas earlier
investigations using phantoms suggested that this correlation might be purely
due to the physics of the measurement process [37].

In this paper we have used the order criterion furnished by VB for ‘model
selection’. Using it we have established that GLM models with low-order
AR error processes are suitable for fMRI data analysis. We also note that
the order criterion could be used for ‘model averaging’ [20] in which, rather
than selecting the ‘best’ model order, we average over model orders using the
criterion as a weighting factor. This approach is, for example, used routinely
in Bayesian wavelet analysis [12].

Currently the VB algorithm is implemented in MATLAB (Mathworks,
Inc.) and requires 30 minutes on a high-end computer to analyse a single
slice of data. This is an order of magnitude faster than Gibbs sampling.
With an optimised compiled software implementation this could be reduced
further.

This paper has focussed on voxel-wise Bayesian modelling of fMRI time
series in which priors over the regression and autoregressive coefficients were
set to be vague. The next step is to tie together the voxel-wise models using
informative priors where voxel-wise parameter estimates will be informed by
data from other voxels and other subjects (see eg. [18] and [35]). In this
way, quantities such as the prior precisions on regression and autoregressive
parameters (α and β) can be estimated rather than set to arbitrary values.
This will ultimately lead to a multiple-subject random effects model with
Bayesian regularisation.
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A Gamma density

We define the Gamma density

p(x) = Ga(b, c) (36)

as

Ga(b, c) =
1

Γ(c)

xc−1

bc
exp(

−x

b
) (37)

In the derivations that follow in the next section we will refer to the log of a
gamma density

log p(x) = − log Γ(c)− c log b + (c− 1) log x− x

b
(38)

Note that the mean and variance of a Gamma variate are bc and b2c.

B Derivation of VB algorithm

B.1 Autoregressive coefficients

We first note that the log-likelihood in equation 10 can be expressed as a
quadratic function of a and dropping all terms not dependent on a we get

log p(Y |w, a, λ) = −λ

2
(aC(w)aT − 2D(w)aT ) (39)

where

C(w) =
∑

t

(dt − X̃tw)(dt − X̃tw)T (40)

D(w) =
∑

t

(yt − xtw)(dt − X̃tw)T

From eq. 20 we see that
q(a|Y ) ∝ exp[I(a)] (41)

where
I(a) =

∫ ∫
q(θ|Y ) (log p(Y |θ) + log p(θ)) dθ (42)
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This gives

I(a) =
∫

q(w|Y )q(λ|Y ) log p(Y |w, a, λ)dwdλ (43)

+ log p(a|β) (44)

= − λ̄

2
(aC̃aT − 2D̃aT ) + βaaT + ..

where

C̃ =
∫

q(w|Y )C(w)dw (45)

D̃ =
∫

q(w|Y )D(w)dw

Given that I(a) can be expressed as the quadratic

I(a) = −1

2
[a(λ̄C̃ + βI)aT − 2λ̄D̃aT ] + .. (46)

and that the log of a Gaussian density p(a) with mean m (a row vector) and
covariance V , including only a-dependent terms, is

log p(a) = −1

2
[aV −1aT − 2mV −1aT ] (47)

we see that
q(a|Y ) = N(m,V ) (48)

where

V = (λ̄C̃ + βI)−1 (49)

m = λ̄D̃V

It now remains to compute the integrals C̃ and D̃ which are given as follows

C̃ =
∑

t

dtd
T
t + X̃t(ŵŵT + Σ̂)X̃T

t (50)

− dtŵ
T X̃T

t − X̃tŵdT
t

D̃ =
∑

t

ytd
T
t − xtŵdT

t − ytŵ
T X̃T + xt(ŵŵT + Σ)X̃T

t

If instead of integrating out the dependence on q(w|Y ) we simply use the
point estimate ŵ, then C̃ = ẼẼT and D̃ = ẼE where the elements of Ẽ are
now given by Ẽt = dt − x̃tŵ. If we also have no prior on the AR coefficients,
ie. β = 0, we then recover the ML update (see equation 26)

m = (ẼẼT )−1ẼE (51)
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B.2 Regression coefficients

The regression coefficients are derived in much the same way. We first note
that the log-likelihood in equation 9 can be expressed as a quadratic function
of w and dropping all terms not dependent on w we get

log p(Y |w, a, λ) = −λ

2
(wT A(a)w − 2B(a)w) (52)

where

A(a) =
∑

t

(xt − aX̃t)(xt − aX̃t)
T (53)

B(a) =
∑

t

(yt − adt)(xt − aX̃t)
T

From eq. 20 we see that

q(w|Y ) ∝ exp[I(w)] (54)

where
I(w) =

∫
q(θ|Y ) (log p(Y |θ) + log p(θ)) dθ (55)

This gives

I(w) =
∫ ∫

q(a|Y )q(λ|Y ) log p(Y |w, a, λ)dadλ (56)

+ log p(w|α) (57)

= − λ̄

2
(wT Ãw − 2B̃w) + αwT w + ..

where

Ã =
∫

q(a|Y )A(a)da (58)

B̃ =
∫

q(a|Y )B(a)da

Given that I(w) can be expressed as the quadratic

I(w) = −1

2
[wT (λ̄Ã + αI)w − 2λ̄B̃w] + .. (59)
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and that the log of a Gaussian density p(w) with mean ŵ (a column vector)
and covariance Σ̂, including only w-dependent terms, is

log p(w) = −1

2
[wT Σ̂−1w − 2ŵT Σ̂−1w] (60)

we see that
q(w|Y ) = N(ŵ, Σ̂) (61)

where

Σ̂ = (λ̄Ã + αI)−1 (62)

ŵ = Σ̂λ̄B̃T

It now remains to compute the integrals Ã and B̃ which are given by

Ã =
∑

t

xT
t xt + X̃T

t (mT m + V )X̃t − xT
t mX̃t − X̃T

t mT xt (63)

B̃ =
∑

t

ytxt −mdtxt − ytmX̃t + dT
t (mT m + V )X̃t (64)

Note that for the special case in which the errors E are uncorrelated, ie.
m = 0, we have Ã = XT X and B̃ = XT Y . If we also have no prior on
the regression coefficients, ie. α = 0, we then recover the OLS update (see
equation 24)

ŵ = (XT X)−1XT Y (65)

B.3 Noise precision

We write the log-likelihood in equation 9, dropping all terms not dependent
on λ, as

log p(Y |θ) = −λ

2
G(w, a) +

N − p

2
log λ (66)

where
G(w, a) =

∑
t

((yt − adt)− (xtw − aX̃tw))2 (67)

From equation 20 we see that

q(λ|Y ) ∝ exp[I(λ)] (68)
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where
I(λ) =

∫
q(θ|Y )(log p(Y |θ) + log p(θ))dθ (69)

This gives

I(λ) = −λ

2

∫ ∫
q(w|Y )q(a|Y )G(w, a)dwda (70)

+
N − p

2
log λ + log p(λ)

= −λ

2
G̃ +

N − p

2
log λ + log p(λ)

where
G̃ =

∫ ∫
q(w|Y )q(a|Y )G(w, a)dwda (71)

Substuting for log p(λ) and keeping only λ-dependent terms gives

I(λ) = −λ

2
G̃ +

N − p

2
log λ + (c0 − 1) log λ− λ

b0

(72)

= −λ

(
G̃

2
+

1

b0

)
+
(

N − p

2
+ c0 − 1

)
log λ

(73)

Comparing this with the log of a gamma density in appendix A we see that

q(λ|Y ) = Ga(bλ, cλ) (74)

where

1

bλ

=
G̃

2
+

1

b0

(75)

cλ =
N − p

2
+ c0

Note that the mean of this density is

λ̄ = bλcλ (76)

It now remains to compute the integral

G̃ =
∑

t

∫ ∫
q(w|Y )q(a|Y )((yt − adt)− (xtw − aX̃tw))2dwda (77)

= G̃1 + G̃2 + G̃3
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where

G̃1 =
∑

t

∫
q(a|Y )(yt − adt)

2da (78)

G̃2 =
∑

t

∫ ∫
q(w|Y )q(a|Y )(xtw − aX̃tw)2dwda

G̃3 = −2
∑

t

∫ ∫
q(w|Y )q(a|Y )(yt − adt)(xtw − aX̃tw)dwda

These integrals can be evaluated as

G̃1 =
∑

t

y2
t + dT

t (mT m + V )dt − 2ytd
T
t m (79)

G̃2 =
∑

t

xt(ŵŵT + Σ̂)xT
t + Tr(X̃T

t (mT m + V )X̃tΣ̂) (80)

+ ŵT X̃T
t (mT m + V )X̃tŵ − 2xt(ŵŵT + Σ̂)X̃tm

T

G̃3 =
∑

t

−2ytxtŵ + 2mdtxtŵ (81)

+ 2ytmX̃tŵ − 2dT
t (mT m + V )X̃tŵ

B.4 Negative Free Energy

From equation 17 we have

F =
∫

q(θ|Y ) log
p(Y, θ)

q(θ|Y )
dθ (82)

= Lav −KLprior

where
Lav =

∫
q(θ|Y ) log p(Y |θ)dθ (83)

KLprior =
∫

q(θ|Y ) log
q(θ|Y )

p(θ)
dθ (84)

Now, from equation 15 we have

p(θ) = p(w|α)p(a|β)p(λ) (85)
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and from equation 22

q(θ|Y ) = q(w|Y )q(a|Y )q(λ|Y ) (86)

Hence

KLprior = KL(w) + KL(a) + KL(λ) + KL(α) + KL(β) (87)

where, for a generic parameter θi, KL(θi) denotes the KL-divergence between
the approximate posterior q(θi|Y ) and the prior p(θi). Expressions for the
KL-divergences for the various densities are given in [31]. The average log-
likelihood is given by

Lav =
∫ ∫ ∫

q(w|Y )q(a|Y )q(λ|Y ) log p(Y |w, a, λ)dwdadλ (88)

From equation 9

log p(Y |w, a, λ) = −λ

2
G(w, a) +

N − p

2
log λ (89)

where
G(w, a) =

∑
t

((yt − adt)− (xtw − aX̃tw))2 (90)

Hence

Lav = − λ̄

2
G̃ +

N − p

2

∫
q(λ|Y ) log λdλ +

N − p

2
log 2π (91)

=
N − p

2
log λ̃− λ̄

2
G̃− N − p

2
log 2π

where G̃ is given in equation 77 and

log λ̃ =
∫

q(λ|Y ) log λdλ (92)

= Ψ(cλ) + log bλ

and Ψ() is the digamma function.

123



References

[1] J. Ashburner and K. J. Friston. Nonlinear spatial normalization using
basis functions. Human Brain Mapping, 7(4):254–266, 1999.

[2] J. Ashburner and K. J. Friston. Voxel-based morphometry – the meth-
ods. NeuroImage, 11:805–821, 2000.

[3] H. Attias. A Variational Bayesian Framework for Graphical Models. In
T. Leen et al, editor, NIPS 12, Cambridge, MA, 2000. MIT Press.

[4] V. Barnett. Comparative Statistical Inference. Wiley, 1999.

[5] J.M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley, 2000.

[6] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, Oxford, 1995.

[7] A. Blake and M. Isard. Active Contours. Springer-Verlag, 1998.

[8] G.E.P Box and G.C. Tiao. Bayesian Inference in Statistical Analysis.
John Wiley, 1992.

[9] E. Bullmore, M. Brammer, S. Williams, S. Rabe-Hesketh, N. Janot,
A. David, J. Mellers, R. Howard, and P. Sham. Statistical methods of
estimation and inference for functional MR image analysis. Magnetic
Resonance in Medicine, 35(2):261–277, 1996.

[10] B.P. Carlin and T.A. Louis. Bayes and Empirical Bayes Methods for
Data Analysis. Chapman and Hall, 2000.

[11] G. Casella and R. Berger. Statistical Inference. Duxbury, 1990.

[12] M. Clyde, G. Parmigiani, and B. Vidakovic. Multiple shrinkage and
subset selection selection in wavelets. Biometrika, 85:391–402, 1998.

[13] T.M. Cover and J.A. Thomas. Elements of Information Theory. John
Wiley, 1991.

[14] K. J. Friston, J. Ashburner, C. D. Frith, J.-B. Poline, J. D. Heather, and
R. S. J. Frackowiak. Spatial registration and normalization of images.
Human Brain Mapping, 2:165–189, 1995.

124



[15] K. J. Friston, A. P. Holmes, J.-B. Poline, P. J. Grasby, S. C. R. Williams,
R. S. J. Frackowiak, and R. Turner. Analysis of fMRI time series revis-
ited. NeuroImage, 2:45–53, 1995.

[16] K. J. Friston, A. P. Holmes, K. J. Worsley, J.-B. Poline, C. D. Frith, and
R. S. J. Frackowiak. Statistical parametric maps in functional imaging:
A general linear approach. Human Brain Mapping, 2:189–210, 1995.

[17] K.J. Friston, P. Fletcher, O. Josephs, A. Holmes, M.D. Rugg, and
R. Turner. Event-related fMRI: characterizing differential responses.
NeuroImage, 7:30–40, 1998.

[18] K.J. Friston, D. Glaser, R. Henson, S. Kiebel, C. Phillips, and J. Ash-
burner. Classical and Bayesian inference in neuroimaging: Applications.
Neuroimage, 16:484–512, 2002.

[19] K.J. Friston, W. Penny, C. Phillips, S. Kiebel, G. Hinton, and J. Ash-
burner. Classical and Bayesian inference in neuroimaging: Theory. Neu-
roimage, 16:465–483, 2002.

[20] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data
Analysis. Chapman and Hall, 1995.

[21] R.N.A. Henson, T. Shallice, M.L. Gorno-Tempini, and R.J. Dolan. Face
repetition effects in implicit and explicit memory tests as measured by
fMRI. Cerebral Cortex, 12:178–186, 2002.

[22] M.I. Jordan, editor. Learning in Graphical Models. MIT Press, 1999.

[23] S.J. Kiebel, D. Glaser, and K.J. Friston. A heuristic for the degrees
of freedom of statistics based on multiple hyperparameters. Technical
report, Manuscript in preparation, 2002.

[24] S.J. Kiebel, W.D. Penny, and K.J. Friston. Application of the Gibbs
sampler to fMRI data. Manuscript in preparation, 2002.

[25] H. Lappalainen and J.W. Miskin. Ensemble Learning. In M.Girolami,
editor, Advances in Independent Component Analysis. Springer-Verlag,
2000.

125



[26] J. Locascio, P. Jennings, C. Moore, and S. Corkin. Time series analysis
in the time domain and resampling methods for studies of functional
magnetic resonance brain imaging. Human Brain Mapping, 5:168–193,
1997.

[27] A. Neumaier and T. Schneider. Estimation of parameters and eigen-
modes of multivariate autoregressive models. Submitted to ACM Trans.
Math. Softw., 2000.

[28] J.J.K. O’Ruaniaidh and W.J. Fitzgerald. Numerical Bayesian Methods
Applied to Signal Processing. Springer, 1996.

[29] W.D. Penny and S.J. Roberts. Bayesian Methods for Autoregressive
Models. In IEEE International Workshop on Neural Networks for Signal
Processing, Sydney, Australia, 2000.

[30] P. L. Purdon and R. Weisskoff. Effect of temporal autocorrelations due
to physiological noise stimulus paradigm on voxel-level false positive
rates in fMRI. Human Brain Mapping, 6:239–249, 1998.

[31] S.J. Roberts and W.D. Penny. Variational Bayes for generalised autore-
gressive models. IEEE Transactions on Signal Processing, Accepted for
publication.

[32] S.J. Roberts and W.D. Penny. Variational Bayes for generalised autore-
gressive models. IEEE Transactions on Signal Processing, 50(9):2245–
2257, 2002.

[33] J. Talairach and P. Tournoux. Coplanar stereotaxic atlas of the human
brain. Thieme Medical, New York, 1988.

[34] Mark W. Woolrich, Brian D. Ripley, Michael Brady, and Stephen M.
Smith. Temporal autocorrelation in univariate linear modelling of fMRI
data. NeuroImage, 14(6):1370–1386, December 2001.

[35] K. J. Worsley, C. H. Liao, J. Aston, V. Petre, G. H. Duncan, F. Morales,
and A. C. Evans. A general statistical analysis for fMRI data. NeuroIm-
age, 15(1), January 2002.

[36] B.S. Yandell. Practical data analysis for designed experiments. Chapman
and Hall, 1997.

126



[37] E. Zarahn, G.K. Aguirre, and M. D’Esposito. Empirical analysis of
BOLD fMRI statistics 1. Spatially unsmoothed data collected under
null-hypothesis conditions. Neuroimage, 5:179–197, 1997.

Figure 1: The quantity F provides a lower bound on the log-evidence of the
model with equality when the approximate posterior equals the true posterior.
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Initialise;
While (∆F > tol);

Update Sufficient Statistics (SS) for regression coefficient
distribution, {ŵ, Σ̂}, using equation 62

Update SS for autoregressive coefficient
distribution, {m, V }, using equation 49

Update SS for noise precision
distribution, {bλ, cλ}, using equation 75

Calculate F using equation 28
Let ∆F = (FNew − FOld)/FNew

End

Figure 2: Pseudo-code for VB algorithm. Update rules for the sufficient
statistics of the distributions q(w|Y ), q(a|Y ) and q(λ|Y ) are applied until the
relative increase in the objective function F is less than a specified tolerance,
tol.
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(a)

(b)

Figure 3: The figures show contour lines of constant probability density from
(a) the exact posterior p(a, w|Y ) and (b) the approximate posterior used in
the VB algorithm, q(a, w|Y ) for the example in section 6.1. This clearly
shows the effect of the factorisation, q(a, w|Y ) = q(a|Y )q(w|Y ).
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(a)

(b)

(c)

Figure 4: The figures compare the exact (solid lines) and approximate (dashed
lines) marginal posteriors (a) p(w|Y ) and q(w|Y ), (b) p(a|Y ) and q(a|Y ), (c)
p(σ2|Y ) and q(σ2|Y ) (where σ2 = 1/λ).
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(a)

(b)

Figure 5: The figures show (a) an example time series from a GLM-AR model
with AR model order of p = 3 and (b) a plot of the negative free energy F (p)
versus p. This shows that F (p) picks out the correct model order.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: The figures show the posterior distributions from Gibbs sampling
(solid lines) and Variational Bayes (dashed lines) for data sets containing 40
scans (top row), 160 scans (middle row) and 400 scans (bottom row). The
distributions in the left column are for the first regression coefficient (size
of activation) and in the right column for the second regression coefficient
(offset). The fidelity of the VB approximation increases with number of scans.
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Figure 7: Design matrix for face-repetition fMRI analysis. There are 19
regressors, 8 relating to the presentation of face images, 4 relating to perfor-
mance errors, 6 relating to subject movement and 1 being an offset. The first
19 regressors consist of indicator variables indicating the occurence of events,
such as the presentation of face images to a subject, that have been convolved
with a canonical hemodynamic response function or its derivative [17].
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(a) (b)

(c) (d)

Figure 8: The figures show (a) a Structural MRI image, (b) a map of the
optimal AR model order with black being 0 and white being 3, (c) a statistical
parametric map of the t-statistic from an SPM analysis, the background grey
shade indicating non-brain voxels and areas of fMRI signal dropout and (d)
a posterior probability map showing the effect of presenting face images. The
map shows the probability that the peak effect is greater than 0.5 per cent of
the global mean value.
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(a)

(b)

(c)

Figure 9: The figures show histograms of optimal AR model order for (a)
grey matter, (b) white matter and (c) CSF.
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Figure 10: The figures show a map of the AR(1) coefficient in GLM-AR(1)
models of the face data set.
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Figure 11: Box and whisker plots of the autoregressive coefficient from GLM-
AR(1) models applied to the face data set for CSF and grey and white matter.
The boxes have lines at the lower quartile, median and upper quartile values.
The whiskers extend out to the most extreme value within a distance of one
and a half times the interquartile range from the box. Data points outside of
the whiskers are drawn as dots.
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(a) (b)

(c) (d)

Figure 12: The figures compare the exact posterior, p(wi|Y ), (solid lines)
as computed from Gibbs’ sampling with the approximate posterior, q(wi|Y ),
(dashed lines) as used in VB for regression coefficients (a) w1, (b) w3, (c)
w5 and (d) w7 from a GLM belonging to a single voxel in the right fusiform
activation area of the face-repetition data set.
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