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Abstract

Lavine [7] has shown how 1-dimensional Linear Dynamical Systems
(LDS’s) can be used for exact inference in 2- (or higher) dimensional
Gaussian Markov Random Fields (GMRFs). His trick is to relate
the row of an image to the state of the LDS and introduce pseudo-
observations (which turn out to be zero) such that the evolution equa-
tion implements vertical neighbour contstraints and the observation
equation implements horizontal neighbour constraints. Thus, exact
inference can take place using Kalman smoothing. In this report we
show how nonstationary smoothness parameters can be estimated us-
ing the M-step of the EM algorithm for LDS’s.

1 Introduction

We consider the problem of ‘restoring’ 2D images that have been corrupted
by additive Gaussian noise

vij = hij + eij (1)

where vij are the observed image values, hij are the true uncorrupted image
values which we wish to estimate and eij is additive zero mean Gaussian
noise. The images are of dimension i = 1..Ny by j = 1..Nx and have a total
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of N = NxNy pixels. We use the column vectors Vi and Hi to denote the
ith observed and hidden rows of the images. Whole images are denoted by
matrices V and H.

In this paper the noise is considered to be independent from voxel to voxel.
The noise variance is considered to be either stationary or nonstationary, the
latter case being of most interest.

The above problem is known in image processing as image restoration. It
is solved by assuming that the images are smooth, in some as yet undefined
sense, so that information from local neighbourhoods can be used to estimate
hij. In what follows N(m, Σ) denotes a univariate/multivariate Gaussian with
mean m and variance/covariance Σ.

2 Gaussian Markov Random Fields

We consider the Conditional Autoregressive (CAR) model introduced by Be-
sag [1]. An alternative choice would have been the Simultaneious Autore-
gressive model described in [8] (page 88) and [6],[3].

CARs are defined as follows. Firstly, for each location i, j we define a set
of neighbouring locations. The probability density for hij is then specified
in terms of these neighboring values. This set of conditional distributions is
then sufficient to specify the joint distribution p(H).

The fact that the probability densities are initially specified by conditional
densities based on neighbouring values is the Markov property. For this
reason CARs are also known as a Gaussian Markov Random Fields (GMRFs)
[2].

In this paper we consider a neighbourhood system based on cardinal
points ie. Nij = {hi−1,j, hi+1,j, hi,j−1, hi,j+1}. The conditional densities are

p(hij|Nij) = N

(
µij,

1

(rj + si)

)
(2)

where rj = 1/αj and si = 1/βi. The mean is given by

µij =
1

2(rj + si)
[rj(hi−1,j + hi+1,j)) + si(hi,j−1 + hi,j+1))] (3)

The terms αj and βi specify prior variances for data in the jth column and
ith row of the image. These are also written as column vectors α and β.
Together, these densities specify the joint prior p(H).
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The GMRF prior for p(H) is not a proper prior, however, because it
specifies only differences between neighbouring values rather than absolute
values. We do get a multivariate Gaussian for p(H) but all the rows and
columns of the precision matrix (eq 4 of [7]) add up to zero. It is therefore
singular.

The observed values are related to the unobserved values through

p(vij|hij) = N(hij, λij) (4)

where λij is the variance of the ijth observation. We also write Λi as the
vector of variances for the ith row.

From the above specification of the prior and the likelihood it is possible
to compute the posterior using Bayesian inference in the usual way. A com-
putational problem appears however, as to compute the posterior one must
invert a very large (N by N) matrix. One solution is to take advantage of the
block tridiagonal structure in this matrix using, for example, Block Cyclic
Reduction (BCR) (see [5], page 177). But in this paper we use a (fabulous !)
trick introduced by Lavine [7] who shows that inference in 2D GMRFs can
take place using the machinery of one dimensional Linear Dynamical Sys-
tems (LDS). Whilst the underlying algorithm is not necessarily faster than
BCR it does, however, provide access to the already established theory of
Bayesian estimation and inference for LDS.

The standard LDS framework is described in the appendix, along with an
associated EM algorithm. GMRFs can be mapped onto LDS’s by associating
rows in images with state vectors at different time points. Specifically, we
write

xt = Hi (5)

A = IJ

We then form the augmented observation vector

yt =

[
Vi

0J−1

]
(6)

where 0J−1 is a J − 1-element column vector of zeros. We also form an
augmented observation matrix

C =

[
IJ

F

]
(7)
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where F is the (J − 1)-by-J matrix

F =


1 −1 0 .. 0
0 1 −1 .. 0
.. .. 1 −1 0
0 0 0 1 −1

 (8)

The state noise covariance matrix is then set to

Qt = diag(α) (9)

where 1J is a row of 1’s. The observation noise covariance matrix is set to

Rt =

[
diag(Λi) 0
0 diag(β)

]
(10)

We note that non-rectangular grids can be accomodated by making A
and F row-specific, ie. use Ai and Fi. Zero-valued rows in the matrix Ai

would indicate the lack of a vertical dependence and zero-valued rows in Fi

the lack of a horizontal dependence. This allows one to smooth discontiguous
fields.

We also use the initial values µ1 = Vi and Σ1 = IJ . Using these values
it is now possible to run the Kalman smoothing algorithm shown in the
Appendix. The constitutes the E-Step of an EM algorithm for inference in
LDS’s described by Ghahramani [4]. It is then possible for us to re-estimate
α and β using the M-Step updates for Q and R also given in the appendix.
From equation 33 it can be shown that

αj =
1

T − 1

[(
T∑

t=2

Pt(j, j)

)
− 2

(
T∑

t=2

Pt,t−1(j, j)

)
+

(
T∑

t=2

Pt−1(j, j)

)]
(11)

This is equivalent to

αj =
1

I − 1

I∑
i=2

E[(hij − hi−1,j)
2] (12)

where E[] is the expected value under the posterior distribution. This makes
intuitive sense. For homogeneous priors we have

α =

∑
j αj

J
(13)
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From equation 35 and our definitions of yt and C it can be shown that

βi =
1

T

T∑
t=1

(FPtF
T )(i, i) (14)

This is equivalent to

βi =
1

J − 1

J−1∑
j=1

E[(hij − hi,j+1)
2] (15)

For homogeneous priors we have

β =

∑I
i=1 βi

I
(16)

3 Discussion

The figure shows the restoration of an artificial image corrupted with Gaus-
sian noise, the nonstationary GMRF algorithm being superior.

The positive features of the algorithm are that images can be nonstation-
arily smoothed. Importantly, the smoothing can take into account different
noise variance values at each voxel. Further, the full posterior distribution
over voxel values is readily computed (it falls out of the Kalman smoothing
step).

A subtlety with the EM estimation of the smoothness (variance) param-
eters is that the β values cannot be computed directly. This is because
the pseudo-observations, being zero, will result in β estimates that are zero.
Therefore to estimate them, we use a two-stage process where in the first
stage the β’s are fixed and the α’s are estimated. We then re-run the algo-
rithm with transposed images. These two stages can be interleaved so that
we do not get excessive smoothing in one (or the other) direction.

A Linear Dynamical System

Our model is a linear dynamical system for T p-variate observations and a
latent-space of dimension k. The state-space equations are

xt = Axt−1 + wt (17)

yt = Cxt + vt
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(a) (b)

(c) (d)

Figure 1: (a) Original image, (b) Corrupted image, Error=2.92, (c) Image
restored with GMRF stationary prior, Error=2.66, (d) GMRF nonstationary
prior, Error=0.26.

where p(wt) = N(0, Q), p(vt) = N(0, Rt) and Q and Rt are covariance matri-
ces. The variables xt are state variables and yt the observations. They are
vectors of dimension k × 1 and p× 1 respectively. We have

p(yt|xt) = N(Cxt, Rt) (18)

p(xt|xt−1) = N(Axt−1, Q) (19)

p(x1) = N(µ1, Σ1) (20)

which define the observation model, state transition model and initial state
distribution. If we know A, C, Q and R then the hidden state variables can
be inferred using Kalman smoothing.

By the Markov property

p(X, Y ) = p(x1)
T∏

t=1

p(xt|xt−1)
T∏

t=1

p(yt|xt) (21)
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Therefore the joint log-likelihood is a sum of quadratic terms

L = log p(X, Y ) = −
T∑

t=1

1

2

[
(yt − Cxt)

′R−1
t (yt − Cxt)− log |Rt|

]
(22)

−
T∑

t=2

1

2

[
(xt − Axt−1)

′Q−1(xt − Axt−1)
]
− T − 1

2
log |Q|

− 1

2

[
(x1 − µ1)

′Σ−1(x1 − µ1)
]
− 1

2
log |Σ1| −

T (p + k)

2
log 2π

(23)

A.1 EM algorithm

The EM algorithm requires us to maximise the auxiliary function

F =
∫

p(X|Y ) log p(X, Y )dX (24)

This quantity depends on three expectations which we denote as follows

mt =
∫

p(xt|Y )xtdxt (25)

Pt =
∫

p(xt|Y )xtx
′

tdxt

Pt,t−1 =
∫

p(xt, xt−1|Y )xtx
′

t−1dxt

A.2 E-Step: Kalman smoothing

Following [4], we write the expected value of xt conditioned on all data up
to time t as xt

t ≡ E[xt|yt
1]. Similarly, the corresponding covariance is given

by Σt
t ≡ Var[xt|yt

1].
This step implements the recursive computation of xt

t and Σt
t from xt−1

t−1

and Σt−1
t−1.

xt−1
t = Axt−1

t−1 (26)

Σt−1
t = AΣt−1

t−1A
′
+ Q

Kt = Σt−1
t C

′ (
CΣt−1

t C
′
+ Rt

)
xt

t = xt−1
t + Kt(yt − Cxt−1

t )

Σt
t = Σt−1

t −KtCΣt−1
t .
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The procedure is initialised using x0
1 = µ1 and Σ0

1 = Σ1.
The backward recursions compute xt

t and Σt
t from xt−1

t−1 and Σt−1
t−1.

Jt−1 = Σt−1
t−1A

T (Σt−1
t )−1 (27)

xT
t−1 = xt−1

t−1 + Jt−1(x
′

t − Axt−1
t−1)

ΣT
t−1 = Σt−1

t−1 + Jt−1(Σ
′

t − Σt−1
t )Jt−1

′
.

The procedure is initialised using ΣT
T = ΣT and xT

T = xT where the right
hand side quantities are from the final forward recursion step.

A.3 Posterior Density

The forward and backward steps together allow us to compute xT
t and ΣT

t

which are the first two moments of xt conditioned on the whole data set. The
posterior density is therefore given by p(xt|Y ) = N(mt, Vt) where

mt ≡ xT
t (28)

Vt ≡ ΣT
t .

For the M-step we also need the quantities

Pt ≡ ΣT
t + xT

t (xT
t )

′
(29)

and Pt,t−1 ≡ ΣT
t,t−1 + xT

t (xT
t−1)

′
where backward recursions are used for

ΣT
t−1,t−2 = Σt−1

t−1Jt−2
′
+ Jt−1(Σ

T
t,t−1 − AΣt−1

t−1)Jt−2
′

(30)

The last recursion is initialised using

ΣT
T,T−1 = (I −KT C)AΣT−1

T−1. (31)

A.4 M-Step

The update for a full-covariance Q is (assuming A = I), from [4]

Q =
1

T − 1

[(
T∑

t=2

Pt

)
−
(

T∑
t=2

Pt,t−1

)
−
(

T∑
t=2

Pt−1,t

)
+

(
T∑

t=2

Pt−1

)]
(32)

For a diagonal Q we have
QD = diag(Q) (33)
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and for isotropic Q

QI =
1

k
Tr(Q) (34)

The update for R is, from [4]

R =
1

T

(
T∑

t=1

yty
′

t − 2Cmty
′

t + CPtC
′
)

(35)
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