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This paper presents a review of Bayesian models of brain and behaviour. We first review the basic principles of Bayesian inference.
This is followed by descriptions of sampling and variational methods for approximate inference, and forward and backward
recursions in time for inference in dynamical models. The review of behavioural models covers work in visual processing, sensory
integration, sensorimotor integration, and collective decision making. The review of brain models covers a range of spatial
scales from synapses to neurons and population codes, but with an emphasis on models of cortical hierarchies. We describe a
simple hierarchical model which provides a mathematical framework relating constructs in Bayesian inference to those in neural
computation. We close by reviewing recent theoretical developments in Bayesian inference for planning and control.

1. Introduction

This paper presents a review of Bayesian models of brain and
behaviour. Overall, the aim of the paper is to review work
which relates constructs in Bayesian inference to aspects of
behaviour and neural computation, as outlined in Figure 1.
This is a very large research area and we refer readers to
standard textbooks and other review materials [1-6].

One of the main ideas to emerge in recent years is that
Bayesian inference operates at the level of cortical macrocir-
cuits. These circuits are arranged in a hierarchy which reflects
the hierarchical structure of the world around us. The idea
that the brain encodes a model of the world and makes pre-
dictions about its sensory input is also known as predictive
coding [7].

Consider, for example, your immediate environment. It
may be populated by various objects such as desks, chairs,
walls, trees, and so forth. Generic attributes of this scene
and the objects in it will be represented by activity in brain
regions near the top of the hierarchy. The connections from
higher to lower regions then encode a model of your world,
describing how scenes consist of objects, and objects by their
features. If a higher level representation is activated, it will
activate those lower level representations that encode the
presence of, for example, configurations of oriented lines that

your brain expects to receive signals about in early visual
cortex.

At the lowest level of the hierarchy these predictions are
compared with sensory input and the difference between
them, the prediction error, is propagated back up the hierar-
chy. This happens simultaneously at every hierarchical level.
Predictions are sent down and prediction errors back up. It is
important to emphasize that this is a dynamic process. Upon
entering a new environment, such as a room in a house,
higher level schemas will activate the likely presence of
objects or people that one expects to encounter in that
room. Initially, lower-level prediction errors are likely to be
large. These will change activations in higher level regions, as
you find that your keys were not on the kitchen table after
all. Neuronal populations that initially encoded the likely
presence of a key become less active.

The overall process is expressed clearly by Fletcher and
Frith [8]: .. .these systems are arranged in a hierarchy so that
the prediction error emitted by a lower-level system becomes
the input for a higher-level system. At the same time, feed-
back from the higher level system provides the prior
beliefs for the lower level system. In this framework, the pre-
diction error signal is a marker that the existing model or
inference has not fully accounted for the input. A readjust-
ment at the next level in the hierarchy may increase
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FiGuURe 1: This paper reviews work which relates constructs in Bayesian inference to those in experimental psychology and neuroscience.

the accuracy and reduce the prediction error. But if it does
not, higher-level readjustments are required. Higher levels
provide guidance to lower levels and ensure an internal
consistency of the inferred causes of sensory input at multiple
levels.”

Predictive coding models comprised of multiple hierar-
chical levels are rather complex, however, when compared
to much of the work in Bayesian modelling of brain and
behaviour. We therefore structure our review to first focus on
models of simple behaviours, and Bayesian models of simple
computations in synapses, neurons, and neural populations
before leading up to a more in depth review of Bayesian
inference in cortical macrocircuits in Section 5.

Section 2 reviews concepts in Bayesian inference. This
includes the basic principle underlying Bayes rule. For
realistic models exact Bayesian inference is impossible, so we
briefly describe two of the leading frameworks for approxi-
mate inference; sampling and variational methods. We also
describe the temporal forward and backward recursions for
inference in dynamical models.

Section 3 reviews behavioural models. This covers work
in visual processing, sensory integration, sensorimotor inte-
gration, and collective decision making. Section 3.2 also
describes how visual perceptions can depend on later sensory
events, so-called postdiction [9]. It may therefore be the case
that perceptions are based on both forwards and backwards
inference in time.

The review of brain models in Section 4 covers a range
of spatial scales from synapses to neurons and population
codes. Section 5 describes models of cortical hierarchies. This
is based on early work by Mumford [10], Rao and Ballard [7]
and a more recent series of papers by Friston [1, 11, 12]. We
describe a simple hierarchical model which provides a math-
ematical framework relating quantities in Bayesian infer-
ence to those in neural computation. Finally, we very briefly

review recent theoretical developments in Bayesian inference
for planning and control in Section 6 and close with a discus-
sion in Section 7.

The main sections of the paper can be read in any order,
so expert readers can skip to relevant sections. It is perhaps
not necessary to fully understand the mathematical parts of
Section 2, but they are included to provide a mathematical
backbone onto which the discussion of models is later
referred.

2. Bayesian Inference

It has been proposed that aspects of human behaviour are
governed by statistical optimality principles, and that the
brain itself is a statistical inference machine [4]. In statistics
the optimal way of updating your beliefs is via Bayes rule.

Consider some quantity, x. Our beliefs about the likely
values of x can be described by the probability distribution
p(x). If we then make a new observation y that is related
to x, then we can update our belief about x using Bayesian
inference.

First we need to specify the likelihood of observing y
given x. This is specified by a probability distribution called
the likelihood, p(y | x). It tells us, if we know x, what are
the likely values of y. Our updated belief about x, that is,
after observing the new data point y is given by the posterior
distribution p(x | y). This can be computed via Bayes rule

p(y 1 x)p(x)
ply)

The denominator ensures that p(x | y) sums to 1 over all
possible values of x, that is it is a probability distribution. It
can be written as

PO = [ Py 1 ¥)p)dx @)

pixly) = (1)
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Equations (1) and (2) describe the basic computations that
underly Bayes rule. These are multiplication, normalisation
(1), and marginalisation (2). Wolpert and Ghahramani [13]
use the game of tennis to illustrate key points. Imagine that
you are receiving serve. One computation you need to make
before returning serve is to estimate, x, the position of the
ball when it first hits the ground. This scenario is depicted in
Figure 2.

It is possible to make an estimate solely on the basis of the
balls trajectory, that is via the data y. We can find the value
of x which maximises the likelihood, p(y | x). This is known
as Maximum Likelihood (ML) estimation. It is also possible
to estimate the uncertainty in this estimate. The ML estimate
and the uncertainty in it together give rise to the likelihood
distribution shown in Figure 2.

But before our opponent hits the ball we may have a fair
idea as to where they will serve. It may be the case, for exam-
ple, that when they serve from the right the ball tends to go
down the line. We can summarise this belief by the prior dis-
tribution p(x) (shown in blue in Figure 2). We can then use
Bayes rule to estimate the posterior distribution. This is the
optimal combination of prior knowledge (“down the line”)
and new data (visual information from the ball’s trajectory).
Our final single best estimate of where the ball will land
is then given by the maximum of the posterior density. This is
known as MAP estimation (from “maximum a posteriori”).

As we continue to see the ball coming toward us we can
refine our belief as to where we think the ball will land. This
can be implemented by applying Bayes rule recursively such
that our belief at time point n depends only on our belief at
the previous time point, n — 1. That is

(yn |xn)p(xn | Y1)
p(Yy) ’

where Y, = {y1,¥2,..., s} denotes all observations up to
time n. Our prior belief, that is, prior to observing data point
yn 1s simply the posterior belief after observing all data points
up to time n — 1, p(x, | Y,—1). Colloquially, we say that
“today’s prior is yesterday’s posterior”. The variable x is also
referred to as a hidden variable because it is not directly
observed.

If the hidden state was a discrete variable, such as whether
the ball landed in or out of the service box, one can form a
likelihood ratio

Pl | Yy) = 2

3)

_ P(Xn =IN | Yn)
LR= plx, =OUT | Y,) @

Decisions based on the likelihood ratio are statistically opti-
mal in the sense of having maximum sensitivity for any given
level of specificity. In contexts where LR is recursively
updated these decisions correspond to a sequential likelihood
ratio test [14]. There is a good deal of evidence showing that
the firing rate of single neurons in the brain report evolving
log LR values [15] (see section on “Neurons” below).

2.1. Gaussians. If our random variables x and y are normally
distributed then Bayesian inference can be implemented
exactly using simple formulae. These are most easily

FIGURE 2: Estimating the position of the ball when it first lands.
The prior is shown in blue, the likelihood distribution in red, and
the posterior distribution with the white ellipse. The maximum
posterior estimate is shown by the magenta ball. This estimate can
be updated in light of new information about the balls trajectory
(yellow). Adapted from Wolpert and Ghahramani [13].

expressed in terms of precisions, where the precision of a
random variable is its inverse variance. A precision of 10
corresponds to a variance of 0.1. We first look at inference for
a single univariate measure (e.g., distance from side of tennis
court). For a Gaussian prior with mean m and precision Ay,
and a Gaussian likelihood with mean mp and precision Ap
the posterior distribution is Gaussian with mean m and pre-
cision A

X (5)

So, precisions add and the posterior mean is the sum
of the prior and data means, but each weighted by their
relative precision. This relationship is illustrated in Figure 3.
Though fairly simple, (5) shows how to optimally combine
two sources of information. As we shall see in Section 3,
various aspects of human behaviour from cue integration to
instances of collective decision making have been shown to
conform to this “normative model”. Similar formulae exist
for multivariate (instead of univariate) Gaussians [16] where
we have multidimensional hidden states and observations,
for example three-dimensional position of the ball and two-
dimensional landing position on court surface.

2.2. Generative Models. So far we have discussed the relation-
ship between a single hidden variable x and a single-observed
variable y. More generally, we may have multiple hidden
variables, for example, representing different levels of
abstraction in cortical hierarchies, and multiple observed
variables from different sensory modalities. These more
complicated probabilistic relationships can be represented
using probabilistic generative models and their associated
graphical models [16, 17]. If these models do not have cycles
they are referred to as Directed Acyclic Graphs (DAGs). A
DAG specifies the joint probability of all variables, x = [x,
X2,...,xy]. This can be written down as

H
p(x) = [ Ip(xi | palxi)), (6)

i=1
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FIGURE 3: Bayes rule for Gaussians. For the prior p(x) (blue) m, =
20, Ap = 1 and the likelihood p(y | x) (red) mp = 25 and Ap = 3,
the posterior p(x | y) (magenta) shows the posterior distribution
with m = 23.75 and A = 4. The posterior is closer to the likelihood
than the prior because the likelihood has higher precision. Bayes
rule for Gaussians has been used to explain many behaviours from
sensory integration to collective decision making.

where pa[x;] are the parents of x;. For example, for the gener-
ative model in Figure 4 we have

px) = p(x1)p(x2) plos | x1)p(xa | X1, x2) p(xs | x4).  (7)

All other probabilities can be obtained from the joint prob-
ability via marginalisation. For example,

p(xs) = J J J Jp(xl,xz,&,xz;,xs)dxl dxy dxs dxs.  (8)

They are therefore referred to as marginal probabilities. If
one of the variables is known, for example, x; may be a sen-
sory input, then the marginalisation operation will produce
a posterior density

plas | x1) = Jjjp(xl)xZ’xS:leaxS)de dxsdxs.  (9)

In hierarchical models of cortical macrocircuits, for example,
x4 may correspond to activity in a higher level brain region
(see Section 5). The above equation then tells us how to
estimate x, given sensory input x;.

If multiple marginal or posterior probabilities need to be
computed this is most efficiently implemented using the
belief propagation algorithm [18], which effectively defines
an ordering on the DAG and passes the results of marginali-
sations between nodes. As we shall see in Section 4, a number
of researchers have proposed how belief propagation can be
implemented in neural circuits [19, 20].

A central quantity in Bayesian modelling is the negative
log likelihood of the joint density, which is often referred to
as the energy

E(x) = —log p(x). (10)
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FIGURE 4: An example of a Directed Acyclic Graph (DAG). This
tells us we can write the joint density over all variables as p(x) =
pla)pl)plxs | x)p(xa | x1,%)p(xs | x4). DAGs provide a
graphical shorthand for specifying Bayesian generative models.

Values of the variables x with high joint probability have low
energy, and inference can be viewed as an energy minimi-
sation process. Values with minimal energy have maximum
joint probability. Because posterior densities are simply
normalised joint densities then minimal energy values also
have Maximum a Posterior (MAP) probability. As we shall
see in Section 5, an MAP, or energy minimisation approach,
has been used to derive predictive coding algorithms [7].

2.3. Approximate Inference. In most interesting models there
is no way to implement exact Bayesian inference. That is, for
most nonlinear and/or non-Gaussian models there are no
analytic formulae for computing posterior densities. Instead
we must resort to approximate inference. There are two basic
approaches (i) sampling methods [21], or (ii) deterministic
approximation methods [16]. The most popular determinis-
tic methods are Laplace approximations or variational infer-
ence. Generally, deterministic methods are advantageous in
being much faster but have the potential disadvantage of
producing only locally optimal solutions.

As we shall see in Section 5, it has been proposed that
cortical brain regions represent information at different lev-
els of abstraction, and that top-down connections instantiate
the brains generative model of the world, and bottom-up
processing its algorithm for approximate inference. We now
briefly review two different approximate inference methods.

2.3.1. Sampling Methods. We assume our goal is to produce
samples from the multivariate posterior density p(x | y),
where y is sensory data, and x are hidden variables of interest,
such as activities of neurons in a network. These samples will
then provide a representation of the posterior. From this,
quantities such as the posterior mean can be computed by
simply taking the mean of the samples.

One of the simplest sampling methods is Gibbs sampling
[21] which works as follows. We pick a variable x; and gener-
ate a sample from the distribution p(x; | x\;, ¥), where x,; are
all the other variables. We then loop over i, repeat this process
a large number of times, and the samples near the end of
this process (typically the last half) will be from the desired



ISRN Biomathematics

posterior p(x | ). In general, it may not be possible to easily
sample from p(x; | x\;, ¥). This limits the applicability of the
approach, but it is highly efficient for many hierarchical
models [21].

A more generic procedure is Metropolis-Hastings (MH)
which is a type of Markov Chain Monte Carlo (MCMC) pro-
cedure [21]. MH makes use of a proposal density g(x';x)
which is dependent on the current state vector x. For sym-
metric g (such as a Gaussian) samples from the posterior
density can be generated as follows. First, start at a point x;
sampled from the prior, then generate a proposal x" using
the density g. This proposal is then accepted with probability
min(1,r), where

L PO 1X)p(x)
ply [ x)px)

If the step is accepted we set x,4; = x'. If it is rejected we
set x,+1 = X, (our list of samples can have duplicate entries).
This procedure is guaranteed to produce samples from the
posterior as long as we run it for long enough, and there
are various criteria that can be used to monitor convergence
[21].

Equation (11) says we should always accept a new sample
if it has higher posterior probability than the last. Because
it allows occasional transitions to less probable states it can
avoid locally optimal solutions. To increase the likelihood
of finding globally optimal solutions it is possible to run
multiple chains at different temperatures and use a proposal
density to switch between them [22]. We will refer to this
idea again in Section 4.3.2 where we suggest that the different
temperatures may be controlled in the brain via neuro-
modulation.

These sample-based approaches were used in early neural
network models such as the Boltzmann machine and the
more recent Deep Belief Networks reviewed in Section 4.4.
As we shall see in Section 4.3.2 Gershmann et al. [23] have
shown how MCMC can be used to account for perceptual
multistability.

(11)

2.3.2. Variational Methods. If our variables comprise sensor
data y and unknown hidden variables x then we can define
the free energy as

F= —Jq(x) log p(y,x)dx — Jq(x) log ﬁdx, (12)

where the first term is the average energy, and the average is
taken with respect to the density gq(x), and the second term
is the entropy of g(x). Given this definition we can write the
log marginal likelihood of the data as

logp(y) = =F +KL(q(x)ll p(x | ¥)), (13)

where KL( ) is the Kullback-Liebler divergence measure [24].
KL is zero if the densities are equal and is otherwise positive,
with larger values reflecting degree of dissimilarity. Given
that the term on the left is fixed, we can minimise the KL
divergence term by minimising the free energy. This will give
us an approximate posterior q(x) that is optimal in the sense
of minimising KL divergence with the true posterior.

To obtain a practical learning algorithm we must also
ensure that the integrals in (12) are tractable. One generic
procedure for attaining this goal is to assume that the
approximating density factorizes over groups of variables. In
physics, this is known as the mean field approximation. Thus,
we consider

q(x) = [ (), (14)

where x; is the ith group of variables. We can also write this
as

q(x) = q(xi)q(xi), (15)

where x\; denotes all variables not in the ith group. We then
define the variational energy for the ith partition as

I(x;) = — J q(x\i) log p(y,x)dx\; (16)
and note that F is minimised when
q(x;) = eXp[éM, (17)

where Z is the normalisation factor needed to make g(x;)
a valid probability distribution. This gives us a recipe for
approximate inference in which we update the posteriors
q(x;) in turn. This is much like Gibbs sampling, but we
update sufficient statistics (e.g., mean and variance) rather
than produce samples.

As we described in Section 2.2, point estimates of var-
iables, such as the MAP estimates, can be found by mini-
mising energy. But this does not tell us about the uncertainty
in these variables. To find out this uncertainty we can find
the distribution g(x) that minimises the free energy. Out of all
the distributions which minimise energy, the one that min-
imises free energy has maximal uncertainty (see (12)). That
is, we are minimally committed to specific interpretations of
sensory data, in accordance with Jaynes’ principle of maxi-
mum entropy [24].

Readers can learn more about variational inference in
standard tutorials [16, 25, 26]. We will later refer to vari-
ational inference in the context of the Helmholtz machine
[27], in Section 4.4, and the free energy principle [12, 28] in
Section 5.2.

2.4. Dynamic Models. In previous sections we have consid-
ered generative models for potentially multiple and multi-
dimensional hidden variables and observations. Going back
to the tennis example, I will receive high-dimensional visual
observations from which I may wish to infer two hidden
variables; the two-dimensional position on court where the
ball will land and the position of my opponent.

We now consider models with an explicit dynamic com-
ponent. A broad class of dynamical models are the discrete
time nonlinear state-space models of the form

Xn = f(xn—bun—l) + Wy,
(18)
Vn = g(xna un) + éen,



where x, are the hidden variables, y, are the observations,
u, is a control input, w, is state noise, and e, is observation
noise. All of these quantities are vectors. This is a Nonlinear
Dynamical System (NDS) with inputs and hidden variables.
The function f() is a flow term which specifies the dynamics,
and g( ) specifies the mapping from hidden state to observa-
tions. The above two equations define the state transition
density p(x, | x,—1) and the observation density p(y, | x,)
(to simplify the notation we have dropped the dependence
on uy,, but this is implied).

We denote the trajectories or sequences of observations,
states, and controls using Y, = {y1, ¥2,...> ¥n}> Xu = {x1,
X2,...>Xn}, and U, = {u1,uy,..., u,}. Dynamical models of
the above form are important for understanding, for exam-
ple, Bayesian inference as applied to sensorimotor integra-
tion, as described in Section 3.3. In this context, u, would be
a copy of a motor command known as an “efference copy”.
The dynamical model would then allow an agent to predict
the consequences of its actions.

These models can be inverted, that is, we can estimate x,,
from Y, using forward inference. This is depicted in Figure 5
and described mathematically in the following subsection. As
we shall see in Section 4, Helmholtz has proposed that per-
ception corresponds to unconscious statistical inference and
this has become a working hypothesis for a modern genera-
tion of computational neuroscientists. Thus we have labelled
inference about x, as “perception” in Figure 5.

2.4.1. Forward Inference. The problem of estimating the
states given current and previous observations is solved using
forwards inference. This produces the marginal densities
p(xy | Yy). The forward inference problem can be solved in
two steps. The first step is a Time Update or prediction step

Pl | Yort) = [ PGt L0 )plit | Yo )door. (19)
The second step is a Measurement Update or correction step

P()’n |xn)P(xn | Yio1)
fP()/n | xn)p(xn | Yoo1)dx,

P(xn | Yn) = (20)

which is Bayes rule with prior p(x, | Y,—;) from the time
update, and likelihood p(y, | xx).

For Linear Dynamical Systems (LDS), where f() and g()
in (18) are linear, forward inference reduces to Kalman Fil-
tering [29]. As we shall see, Beck et al. [30] have shown how
Kalman filtering can be implemented using a population of
spiking neurons. For Nonlinear Dynamical Systems (NDS),
approximate forward inference can be instantiated using
an Extended Kalman Filter (EKF). Alternative sample-based
forward inference schemes can be implemented using parti-
cle filtering. Lee and Mumford have proposed how inference
in visual cortical hierarchies can proceed using particle
filtering [31].

2.4.2. Backward Inference. As we shall see, backward infer-
ence is important for postdiction (predictions about the
past—see section on visual processing) and for planning and

ISRN Biomathematics

FIGURE 5: Perception as forwards inference over states. In this and
subsequent figures, the gray shading indicates a known variable.
Perception here corresponds to estimation of hidden state density
p(xn | Uy, Y,) given known motor efference copy U, and sensory
input Y,,. Here and in later figures, the red arrows indicate temporal
dependencies, and U, and Y, indicate sequences up to time n (see
main text). These dynamical models have been used to explain
sensorimotor integration and sensorimotor learning.

FIGURE 6: Perception as forward and backwards inference over
states. Perception here corresponds to estimation of hidden state
density p(x, | Uy, Yn) given known motor efference copy Uy
and sensory input Yy. Here, forward estimates about previous
states x, (i.e., from forward inference) can be improved upon using
more recent efference copy u41,...,uy and sensory information
Ynils---» Yy These so-called postdictive estimates may be useful in,
for example, visual perception.

control (see Section 6). We define the posterior probability of
state x,, given all observations up to time point N as

y(xa) = p(xn | Yn). (21)

This can be computed recursively using

y(xn) = j P | s, Yo)yGon ). (22)

The first term in the integral can be thought of as a reverse
flow term and is computed using Bayes rule

p(-xn+1 |xn> Yn)p(xn | Yn)
fp(xnﬂ | X4, Yn)P(xn | Yn)dxn.

P(xn | Xps1, Yy) = (23)

Importantly, this form of backward inference (the so-called
gamma recursions) can be implemented without requiring
storage of the observations y,. These gamma recursions can
therefore be implemented online, which is important for a
potential neuronal implementation. Backward inference is
represented graphically in Figure 6.

Similar backwards recursions can be derived to estimate
the control signals p(u, | x1, Y,) given initial state values x,
and desired sensory observations. This is depicted in Figure 7
and is important for planning and control as we discuss
in Section 6. We envisage that backwards inference operates
over short time scales for perception (tens of ms) and much
longer time scales for planning and cognition.
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FIGURE 7: Planning as forward and backwards inference over states
and controls. Planning can be formulated as estimation of a density
over actions p(Uy | x1,Yy) given current state x; and desired
sensory consequences, Yy.

Readers can find out more about forwards and backward
inference for dynamical models in standard textbooks [16]. It
is also worth noting that here we are referring to forward and
backward recursions in time. This should not be confused
with forward and backward message passing in hierarchical
models as described in Section 5.

2.4.3. Parameter Estimation. Dynamical systems models also
depend on unknown parameters, . These will parameterise
the dynamical function f() and the observation function
g(). These parameters can be estimated using variational
methods, for example, for LDS [32] or NDS [33] or using
sampling methods [34, 35]. As we shall seee in Section 4,
learning in computational models of the brain can be for-
mulated as parameter estimation in Bayesian models.

3. Behavioural Models

An attractive feature of Bayesian models of behaviour is that
they provide descriptions of what would be optimal for a
given task. They are often referred to as “ideal observer”
models because they quantify how much to update our
beliefs in light of new evidence. Departures from these “nor-
mative models” can then be explained in terms of other con-
straints such as computational complexity or individual
differences. One way to address individual differences is to
use an Empirical Bayesian approach in which parameters of
priors and their parametric forms are estimated from data.
See [36] for an example of this approach in modelling visual
motion processing.

What follows in this section is a review of Bayesian mod-
els of sensory integration, visual processing, sensorimotor
integration, and collective decision making. As we shall
see, the priors that we have about, for example, our visual
world most readily show themselves in situations of stimulus
ambiguity or at low signal-to-noise ratios. Much of the phe-
nomenology of these perceptual illusions is long established
[37], but Bayesian modelling provides new quantitative
explanations and predictions. A more introductory review of
much of this material is available in Frith’s outstanding book
on mind and brain [3].

3.1. Sensory Integration. Ernst and Banks [38] considered the
problem of integrating information from visual and tactile
(haptic) modalities. If vision v and touch ¢ information

are independent given an object x then Bayesian fusion of
sensory information produces a posterior density

pvx)p(t]x)px)
p(v, 1) '

plx|vt)= (24)

For a uniform prior p(x) and for Gaussian likelihoods, the
posterior will also be a Gaussian with precision A,;. From
Bayes rule for Gaussians (5) we know that precisions add

)Lvt = /11/ + At’ (25)

where A, and A, are the precision of visual and haptic senses
alone, and the posterior mean is a relative-precision weighted
combination

or
Myt = Wy, + Wiy (27)

with weights w, and w;. Ernst and Banks [38] asked subjects
which of two sequentially presented blocks was the taller.
Subjects used either vision alone, touch alone, or a combina-
tion of the two. They recorded the accuracy with which dis-
crimination could be made and plotted this as a function of
difference in block height. This was repeated for each modal-
ity alone and then both together. They also used various
levels of noise on the visual images. From the single modality
discrimination curves they then fitted cumulative Gaussian
density functions, which provided estimates of the precisions
A and A, (i) where i indexes visual noise levels. In the dual
modality experiment the weighting of visual information
predicted by Bayes’ rule for the ith level of visual noise is

Ay (i)

NOESR (28)

1’/‘\’v(i) =

This was found to match well with the empirically observed
weighting of visual information. They observed visual cap-
ture at low levels of visual noise and haptic capture at high
levels. Inference in this simple Bayesian model is consis-
tent with standard signal detection theory [39], however,
Bayesian inference is more general as it can accommodate,
for example, nonuniform priors over block height.

There have been numerous studies of the potential role
of Bayesian inference for integration of other senses. For
example, object localisation using visual and auditory cues
in the horizontal [40] and depth [41] planes has supported a
Bayesian integration model with vision dominating audition
in most ecologically valid contexts. This visual capture is the
basis of the “ventriloquism” effect, but is rapidly degraded
with visual noise. This literature has considered only simple
inferences about single variables such as block height or spa-
tial location. Nevertheless these studies have demonstrated a
fundamental concept; that sensory integration is near Bayes-
optimal.



3.2. Visual Processing. Kersten et al. [42] review the problem
of visual object perception and argue that much of the
ambiguity in visual processing, for example concerning
occluded objects, can be resolved with prior knowledge. This
idea is naturally embodied in a Bayesian framework [43]
and has its origins in the work of Helmholtz who viewed
perception as “unconscious inference.” An example is how
the inference of shape from shading is informed by a “light-
from-above” prior. This results in circular patches which
are darker at the bottom being perceived as convex. The
adaptability of this prior, and subsequent perceptual expe-
rience, has been demonstrated by Adams et al. [44].

An example of such a Bayesian modelling approach is the
work of Yu et al. [45] who propose a normative model for the
Eriksen Flanker task. This simple decision making task was
designed to probe neural and behavioural responses in the
context of conflicting information. On each trial, three visual
stimuli are presented and subjects are required to press a
button depending on the identity of the central stimulus. The
flanking stimuli are either congruent or incongruent. Yu et al.
proposed a discrete time ideal observer model that qualita-
tively captured the dynamics of the decision making process.
This used the recursive form of Bayes rule in (3). In later
work, a continuum time limit of this model was derived [46].
This produced semianalytic predictions of reaction time and
error rate which provided accurate numerical fits to subject
behaviour. They also proposed an algorithm for how these
models could be approximately implemented in a neural
network [45], which we will refer to later (see Section 5).

Weiss et al. [47] propose that many motion illusions arise
from the result of Bayes-optimal processing of ecologically
invalid stimuli. Their model was able to reproduce a number
of psychophysical effects based on the simple assumptions
that measurements are noisy and the visual system has a prior
which expects slower movements to be more likely than faster
ones. For example, the model could predict the direction
of global motion of simple objects such as rhomboids, as a
function of contrast and object shape. This model was later
refined [36] by showing the prior to be non-Gaussian and
subject specific, and that measurement noise variance was
inversely proportional to visual contrast.

Najemnik and Geisler developed an ideal Bayesian obser-
ver model of visual search for a known target embedded in
a natural texture [48]. Prior beliefs in target location were
updated to posterior beliefs using a likelihood term that
reflected the foveated mapping properties of visual cortex.
When this likelihood was matched to individual subjects dis-
crimination ability, the resulting visual searches were nearly
optimal in terms of the median number of saccades. Later
work [49] showed that fixation statistics were also similar to
the ideal observer.

If the world we perceive is the result of hierarchical pro-
cessing in cortical networks then, because this processing
may take some time (of the order of 100 ms), what is per-
ceived to be the present could actually be the past. As this
would obviously be disadvantageous for the species, it has
been argued that our perceptions are based on predictive
models. A 50 ms delay in processing could be accommodated
by estimating the state of the world 50 ms in the future. There
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is much experimental evidence for this view [50]. However,
a purely “predictive” account fails to accommodate recent
findings in visual psychophysics. The flash-lag effect, for
example, is a robust visual illusion whereby a flash and a
moving object that are located in the same position are
perceived to be displaced from one other. If the object stops
moving at the time of the flash, no such displacement is
perceived. This indicates that the position of the object after
the flash affects our perception of where the flash occurred.
This “postdictive” account explains the phenomenon [9],
and related data where the object reverses its direction at the
flash time. A simple Bayesian model has been proposed to
account for the activity of V4 neurons in this task [51]. Later
experimental work found evidence for a linear combination
of both predictive and postdictive mechanisms [52].

Related phenomena include backward masking [53] and
the colour-phi illusion [54]. Here, two coloured dots are
presented one followed quickly by the other and in close
spatial proximity. This gives rise to a perception of movement
and of the color changing in the middle of the apparent
trajectory. Because the viewer cannot know the color of
the second dot until it appears, the percept attributed to
the time of the trajectory must be formed in retrospect.
This postdictive account motivated Dennett [55] to propose
his multiple drafts theory of consciousness. However, these
phenomena are perhaps more simply explained by forwards
and backwards inference in dynamic Bayesian networks (see
Figure 6 and Section 2.4).

3.3. Sensorimotor Integration. Wolpert et al. [56] have exam-
ined the use of dynamic Bayesian models, also referred to as
forward models, for sensorimotor integration. These models
are given generically by (18) where x,, is the current state, u,
is a copy of a motor command, y, are sensory observations,
and w, and e, are state and observation noise.

Inference in these models proceeds as described in
Section 2.4.1. First, the dynamical equation describing state
transitions is integrated to create an estimate of the next
state. This requires as input a copy of the current motor
command (so-called efference copy) and the current state. In
terms of Bayesian updates in dynamical models (see earlier)
this corresponds to the time update or prediction step. A
prediction of sensory input can then be made based on the
predicted next state and the mapping from x, to y,. Finally, a
measurement update or correction step can be applied which
updates the state estimate based on current sensory input.

Wolpert et al. cite a number of key features of dynamic
Bayesian models including the following. First, they allow
outcomes of actions to be predicted and acted upon before
sensory feedback is available. This may be important for
rapid movements. Second, they use efference copy to cancel
the sensory effects of movement (“reafference”), for example,
the visual world is stable despite eye movements. Third,
simulation of actions allows for mental rehearsal which can
potentially lead to improvements in movement accuracy.

This framework was applied to the estimation of arm
position using proprioceptive feedback and a forward model
based on a linear dynamical system [56]. Inference in this



ISRN Biomathematics

model was then implemented using a Kalman filter. The
resulting bias and variance in estimates of arm position were
shown to closely correspond to human performance, with
proprioceptive input becoming more useful later on in the
movement when predictions from the forward model were
less accurate.

One of the core ideas behind these forward models is that,
during (perceptual) inference, the sensory consequences of a
movement are anticipated and used to attenuate the percepts
related to these sensations. This mechanism reduces the pre-
dictable component of sensory input to self-generated stim-
uli, thereby enhancing the salience of sensations that have an
external cause. This has many intriguing consequences. For
example, it predicts that self-generated forces will be per-
ceived as weaker than externally generated forces. This pre-
diction was confirmed in a later experiment [57], thereby
providing a neuroscientific explanation for force escalation
during conflict; children trading tit-for-tat blows will often
assert the other hit him harder.

Kording and Wolpert [58] have investigated learning in
the sensorimotor system using a visual reaching task in which
subjects moved their finger to a target and received visual
feedback. This feedback provided information about target
position that had an experimentally controlled bias and
variance. Subjects were found to be able to learn this map-
ping (from vision to location) and integrate it into their
behaviour, in a Bayes-optimal way.

Returning to our tennis theme, an analysis of three years
of Wimbledon games has indicated that the outcome of the
current point depends on the outcome of the previous point
[59]. There are multiple potential sources of correlation here.
It could be that a player intermittently enjoys a sweet para-
meter spot where his internal sensorimotor model accurately
predicts body and ball position and is able to hit the ball
cleanly, or perhaps a player finds a new pattern in his
opponents behaviour such as body position, or previous
serve, predicting current service direction.

3.4. Collective Decision Making. Sorkin et al. [60] have
applied Bayes rule for Gaussians (see (5)) in their study of
collective decision making. Here the optimal integration
procedure involves each group members’ input to the collec-
tive decision being weighted proportionally by the member’s
competence at the task. Mathematically, “competence” cor-
responds to precision. This model of group behaviour was
shown to be better than a different model which assumed
members made individual decisions which were then com-
bined into a majority vote. This latter model better described
collective decision making when members did not interact.

Bahrami et al. [61] investigated pairs of subjects (dyads)
making collective perceptual decisions. Dyads with similarly
sensitive subjects (similar precisions) were found to produce
collective decisions that were close to optimal, but this was
not the case for dyads with very different sensitivities. These
observations were explained by a Bayes-optimal model under
the assumption that subjects accurately communicated their
confidence. This confidence sharing proved essential for the
group decision to be better than the decision of the best
subject.

4. Brain Models

We now turn to Bayesian models of the brain. As articulated
by Colombo and Series [62] it could be that our behaviour is
near Bayes-optimal yet the neural mechanisms underlying it
are not. Current opinion on this issue is divided. According
to Rust and Stocker [63] “If the system as a whole performs
Bayesian inference, it seems unlikely that any one stage in
this cascade represents a single component of the Bayesian
model (e.g., the prior) or performs one of the mathematical
operations in isolation (multiplying the prior and the like-
lihood)”

However, the above statement may be too heavily influ-
enced by the simplicity of the tasks which were initially used
to demonstrate near Bayes-optimal behaviour for example
univariate cue integration. As we shall see, the nonlinear
dynamic hierarchical models underlying predictive coding
models of cortical macrocircuits (Section5) do in fact
provide a close correspondence with biology [1, 19, 64].

The structure and function of the human brain can be
studied at multiple temporal and spatial scales. Research
activity at the different scales effectively constitutes different
scientific disciplines, although there is a good deal of work
addressing integrative and unifying perspectives [2, 65, 66].
Our review of the literature proceeds through increasing
spatial scale and a later section reviews work in modelling
cortical macrocircuits.

4.1. Synapses and Dendrites. Most models of information
processing in neural circuits require that synaptic efficacies
are stable at least over seconds if not minutes or hours. How-
ever, real synapses can change strength several-fold at the
time scale of a single interspike interval. This is known as
Short Term Synaptic Plasticity (STP) [67]. Why do synapses
change so quickly?

Pfister et al. [68] argue that neuronal membrane poten-
tials are the primary locus of computational activity, where
incoming information from thousands of presynaptic cells
is integrated and analog state values, x are computed. It is
then proposed that the goal of synaptic computation is to
optimally reconstruct presynaptic membrane potentials, and
optimal reconstructions are made possible via STP. Crudely,
if a synapse has recently received a spike it increases its
estimate of x and decreases it otherwise. Simple dynamic
Bayesian models of this process explain empirical synaptic
facilitation and depression.

Kiebel and Friston [69] propose that, through selective
dendritic filtering, single neurons respond to specific
sequences of presynaptic inputs. This study employs a
dynamic Bayesian model of dendritic activity in which intra-
cellular dendritic states are also viewed as predicting their
presynaptic inputs. Pruning of dendritic spines then emerges
as a consequence of parameter estimation in this model.

4.2. Neurons. Gold and Shadlen [15] propose that categor-
ical decisions about sensory stimuli are based on the accu-
mulation of information over time in the form of a log likeli-
hood ratio (see Section 2). They review experiments in which
monkeys were trained to make saccades to a target depending
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on the perceived direction of moving dots in the centre
of a screen. Firing rates of neurons in superior colliculus
and lateral intraparietal regions were seen to follow this
evidence accumulation model. In follow-up experiments tar-
gets appeared on the left or right with different prior proba-
bility and initial firing rates followed these priors as predicted
by the accumulation model. These models are also known
as drift diffusion models and are the continuous analog
of the sequential likelihood ratio test [14].

Fiorillo [70] proposed a general theory of neural compu-
tation based on prediction by single neurons. Each neuron is
proposed to mirror the function of the whole system in learn-
ing to predict aspects of the world related to future reward. A
neuron receives prior temporal information via nonsynaptic
voltage-gated channels, and prior spatial information from
a subset of its synaptic inputs. The remaining excitatory
synaptic inputs provide current information about the state
of the world. This would correspond to a “likelihood” term.
The difference between expected and actual state is reflected
as a prediction error signal encoded in the membrane poten-
tial of the cell. This proposal seems consistent with predictive
coding theories that are formulated at a systems level (see
Section 5).

Lengyel et al. [71] model storage and recall in an auto-
associative model of hippocampal area CA3. The model
treats recall as a problem of optimal probabilistic inference.
Information is stored in the phase of cell firing relative to the
hippocampal theta rhythm, a so-called spike-time code or
phase code. Learning of these phase codes is based on Spike
Timing Dependent Plasticity (STDP), such that a synapse is
strengthened if the cell fires shortly after receiving a spike on
that synapse. If the order of events is reversed the synapse is
weakened. Synaptic changes only occur in a small time win-
dow, as described by an STDP curve. Given empirical STDP
curves the Lengyel et al. model was able to predict the form
of empirical Phase Response Curves (PRCs) underlying recall
dynamics. These PRCs describe the synchronization prop-
erties of neurons. A refinement of their model [72] repre-
sented information in both spike timing and rate, and an
approximate inference algorithm was developed using varia-
tional inference (see Section 2.3.2).

Deneve [20] shows that neurons that optimally integrate
evidence about events in the world exhibit properties similar
to integrate and fire neurons with spike-dependent adapta-
tion (a gradually reducing firing rate). She proposes that neu-
rons code for time-varying hidden variables, such as direc-
tion of motion, and the basic meaning of a spike is the occur-
rence of new information, and that propagation of spikes
corresponds to Bayesian belief propagation (see Section 2).
A companion paper [73] shows how neurons can learn to
recognize dynamical patterns, and that successive layers of
neurons can learn hierarchical models of sensory input. The
learning that emerges is a form of STDP.

4.3. Populations

4.3.1. Probabilistic Codes. The response of a cortical neuron
to sensory input is highly variable over trials, with cells
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showing Poisson-like distributions of firing rates. Specifi-
cally, firing rate variances grow in proportion to mean firing
rates, as would be expected from a Poisson density [74].
Hoyer and Hyvarinen [75] review in vitro experiments which
suggest that the variability of neuronal responses may not be
a property of neurons themselves but rather emerges in intact
neural circuits. This neural response variability may be a way
in which neural circuits represent uncertainty.

Ma et al. [76] argue that if cells fired in the same way
on every trial the brain would know exactly what the stimulus
was. They suggest that the variability over a population of
neurons for a single trial provides a way in which this uncer-
tainty could be encoded in the brain, thus providing a
substrate for Bayesian inference. Moreover, if the distribu-
tion of cell activities is approximately Poisson then Bayesian
inference for optimal cue integration, for example, can be
implemented with simple linear combinations of neural
activity. They call this representation a Probabilistic Popu-
lation Code (PPC). An interesting property of these codes
is that sharply peaked distributions are encoded with higher
firing rates (see Figure 1 in [77]). If the distribution was
Gaussian this would correspond to high precision.

Ma et al. [76] concede that a deficiency of their PPC
scheme is that neural activities are likely to saturate when
sequential inferences are required. This can be avoided by
using a nonlinearity to keep neurons within their dynamical
range, which could be implemented for example using divi-
sive normalisation [78]. This idea was taken up in later work
[30] which shows how populations of cells can use PPCs to
implement Kalman filtering.

4.3.2. Sampling Codes. A different interpretation of neural
response variability is that populations of cells are imple-
menting Bayesian inference by sampling from a posterior
density [75] (see Section 2.3.1). They suggest that “variability
over time” could be used whereby a “single neuron could rep-
resent a continuous distribution if its firing rate fluctuated in
accordance with the distribution to be represented. At each
instant in time, the instantaneous firing rate would be a ran-
dom sample from the distribution to be represented.” This
interpretation is reviewed in [5, 6] and contrasted with PPCs.

This sampling perspective provides an account of bistable
perception in which multiple interpretations of ambiguous
input correspond to sampling from different modes of the
posterior. This may occur during bistable percepts arising
from, for example, binocular rivalry or the Necker cube
illusion. If stimuli are modified such that one interpretation
is more natural, then it becomes dominant for longer time
periods. This is consistent with Bayesian sampling where
more samples are taken from dominant modes [21]. The
above idea was investigated empirically by placing Necker
cubes against backgrounds comprised of unambiguous cubes
[79]. Subjects experienced modified dominance times in line
with the above predictions. In experiments on binocular
rivalry, where images presented to the two eyes are different,
only one of them will be perceived at a given time. A switch
will then occur and the other image will be perceived. For
certain stimuli, subjects tend to perceive a switch as a wave
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propagating across the visual field. This behaviour can be
readily explained by Bayesian sampling in a Markov random
field model [23].

It should be borne in mind that other proposals have
been made regarding the nature of bistable perception. For
example, Dayan [80] has proposed a deterministic generative
and recognition model for binocular rivalry with an empha-
sis on competition between top-down hypotheses rather
than bottom-up stimulus information. Here, switching bet-
ween percepts was implemented with a simple fatigue pro-
cess in which stable states slowly become unstable, resulting
in perceptual oscillation.

From a computational perspective, the idea that popu-
lations of cells may be sampling from posterior densities is
an attractive one. The sampling approach has become a stan-
dard method for inverting Bayesian models in statistics and
engineering [21]. It is best suited, however, to low-dimen-
sional problems, because the algorithms become very slow in
high dimensions. It is popular in statistics and engineering
because it is much more likely than deterministic methods
to produce globally optimal posteriors. One method for
encouraging this is to have a “temperature” parameter which
starts off high and is gradually reduced over time, according
to an annealing schedule. Annealed Importance Sampling,
for example, is a gold standard method for approximating the
model evidence [26]. Sampling approaches have been used
in neural network models from the Boltzmann machine, to
sparse hierarchical models and Deep Belief Networks (see
Section 4.4).

In models with Gaussian observations the temperature
corresponds to the precision of the data. As we shall see later,
precisions have been proposed to be at least partly under
the control of neuromodulators, so it seems reasonable to
suggest that sampling based inference may be guided towards
global optima via neuromodulation.

4.3.3. Spontaneous Activity. If neuronal populations encode
Bayesian models of sensory data then this predicts a par-
ticular relationship between spontaneous and evoked neural
activity. This has been investigated empirically by Berkes
et al. [81]. If stimulus y is caused by event x then a Bayesian
model will need to represent the prior distribution over the
cause, p(x), and update it to the posterior distribution p(x |
y). If this procedure is working properly then the average
posterior (evoked) activity should be approximately equal to
the prior activity. That is

Pl = | px 1 9)p(y)dy

(29)
~ Zp(xi | yi),

where y; are samples from the environment. Here the left
hand side is the prior and the right hand side is average-
evoked activity. This prediction was later confirmed by
research from the same team who analysed visual cortical
activity of awake ferrets during development [81]. The sim-
ilarity between spontaneous and average-evoked activities,
as measured using KL-divergence (see Section 2), increased
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with age and was specific to responses evoked by natural
scenes. Fiser et al. [6] argue that the above relationship
between spontaneous and average-evoked activity fits more
naturally with a sampling view of neural coding.

4.4. Generative Models. This section describes macroscopic
models of cortical processing either of single brain regions
or of processing in hierarchical models [2, 82]. The work
reviewed in this section is very closely related to that
described in Section 5, the main difference being that
Section 5 proposes a specific mapping onto cortical anatomy
based on predictions, prediction errors, and the lamina
structure of cortex.

Early models of hierarchical processing in cortex focus
on feedforward processing. This transforms sensory input by
static spatiotemporal filtering into more abstract represen-
tation and produces object representations that are transla-
tionally and viewpoint invariant as shown, for example, by
Fukushima [83], Riesenhuber and Poggio [84], and Stringer
and Rolls [85].

An alternative view on cortical processing is the idea of
analysis-by-synthesis which suggests the cortex has a genera-
tive model of the world and that recognition involves inver-
sion of this model [86]. This very general idea has also
become known as predictive coding.

This idea is combined with Helmholtz’s concept of per-
ception as inference in the Helmholtz machine [27]. This is
an unsupervised learning approach in which a recognition
model infers a probability distribution over underlying
causes of sensory input, and a separate generative model is
used to train the recognition model. The approach assumes
causes and inputs are binary variables. Both recognition and
generative models are updated so as to minimise a variational
free energy bound on the log model evidence. This implicitly
minimises the Kullback-Liebler divergence between the true
posterior density over causes and the approximation poste-
rior instantiated in the recognition model (see Section 2.3.2).

Olshausen and Field [87] have proposed a sparse coding
model of natural images where the likelihood is a simple lin-
ear model relating a “code” to image data, but the prior over
code elements factorises and there is a sparse prior over each
element. For a given image, most code elements are therefore
small with a few being particularly large. This approach was
applied to images of natural scenes and resulted in a bank of
feature detectors that were spatially localised, oriented, and
comprised a number of spatial scales, much like the simple
cells in V1. A similar sparse coding approach can explain the
properties of auditory nerve cells [88]. Later work [89] devel-
oped a two-layer model in which cells in the first layer were
topographically organised and cells in the second layer were
adapted so as to maximise the sparseness of locally pooled
energies. Learning in this model produced second layer cells
with large receptive fields and spatial invariance much like
the complex cells in early visual cortex.

These sparse coding models have shown how responses
of cells in one or two layer cortical networks can develop via
learning in the appropriate generative models, but have been
unable to explain how coding develops in multiple layers of
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cortical hierarchies. Recent progress in this area has been
made using Deep Belief Networks (DBNs) [90]. These are
probabilistic generative models composed of multiple layers
of stochastic binary units. The top two layers have undi-
rected, symmetric connections between them and form an
associative memory, and the lower layers receive top-down
directed connections from the layer above. Inference pro-
ceeds using sampling (see Section 2.3.1), and the approach
allows nonlinear distributed representations to be learnt a
layer at a time [91].

DBNs are based on many years of development starting
with the Boltzmann machine, a network of binary stochastic
units comprising hidden and visible units. This employs a
type of probabilistic model called an undirected graph, where
connected nodes are mutually dependent [16] (these are not
DAGs). This then led to a Restricted Boltzmann Machine
(RBM) where there are no connections among hidden units.
DBNss can then be formed by stacking RBMs, such that hid-
den layer unit activities in lower level RBMs become training
data for higher level RBMs. Hinton [91] notes that the key
to efficient learning in these hierarchical models is the use of
undirected units in their construction.

5. Cortical Hierarchies

This section describes models of Bayesian inference in cor-
tical hierarchies by Mumford [10], Rao and Ballard [7] and
a more recent series of papers by Friston [1, 11, 12]. We very
briefly review the basics of cortical anatomy, describe the
modelling proposals, and then provide a concrete example.

5.1. Functional Anatomy. The cortex is a thin sheet of neu-
ronal cells which can be considered as comprising six layers,
each differing in the relative density of different cell types.
The relative densities of excitatory to inhibitory cells change
from one cortical region to another, and these differences
in “cytoarchitecture” can be used to differentiate, for exam-
ple, region V1 from V2 [92, 93]. Despite these differences
there are many commonalities throughout cortex. For exam-
ple, layer 4 comprises mainly excitatory granule cells, and so
is known as the granular layer. Other layers are also referred
to as being agranular. The functional activity of a cylindrical
column through the cortical sheet capturing several thou-
sand neurons has been described in the form of canonical
microcircuit [94]. This circuit is proposed to be replicated
across cortex, providing a modular architecture for neural
computation.

It is now well established that cortical regions are arrang-
ed in hierarchies. Felleman and van Essen [92], for example,
used anatomical properties to reveal the hierarchical struc-
ture of the macaque visual system. Anatomical connections
from lower to higher regions originate from superficial layer
2/3 pyramidal cells and target the granular layer [92].
Anatomical connections from higher to lower areas originate
from “deep” layer 5/6 pyramidal cells and target layers 1 and
6 (agranular layers). This connectivity footprint is depicted
in Figure 8. This is a generic pattern of connectivity within
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FIGURE 8: Anatomical connections from lower to higher regions
in a serial cortical hierarchy originate from superficial layer
2/3 pyramidal cells in an ascending pathway (shown in red).
Anatomical connections from higher to lower areas originate from
layer 5/6 pyramidal cells and target layer 1/6 cells in lower regions
(shown in purple). Adapted from Shipp [95].

cortex, although it is more clearly manifested in some brain
areas than others [95].

Kennedy and Dehay [97] note that cortical hierarchies do
not form a strict chain, for example, V1 can make a direct
feedforward connection to V4 as well as indirectly through
V2. They note that “hierarchical distance” can be defined in
terms of laminar connectivity patterns. Long distance feed-
forward connections arise strictly from the supragranular
layer (as Felleman and van Essen), but shorter distance ones
also have contributions from infragranular layers.

Functionally, one key concept here concerning visual
cortex, for example, is that there are separate “what” and
“where” hierarchies although this is being challenged by
recent perspectives in active vision [98]. There is a good deal
of evidence showing that these higher level representations
are more enduring [99]. This makes sense as more abstract
causes in our sensory world exist on a longer time scale that
is objects may move, they may even change shape or colour,
but they are still the same object.

If sensory input is at the bottom of the hierarchy then
what is at the top? One idea is that rather than there being
a top and a bottom there is an “inside” and an “outside”
[1, 96]. That is, there is a centre rather than a top. Brain
regions around the outside receive information from differ-
ent sensory modalities; vision, audition, touch. The next level
in represents higher level modality specific information, such
as lines and edges in the visual system or chirps and formants
in the auditory system. As we progress closer to the centre,
brain regions become multimodal as depicted in Figure 9.

5.2. Hierarchical Predictive Coding. Mumford [10] has pro-
posed how Bayesian inference in hierarchical models maps
onto cortical anatomy. Specifically, he proposes that top-
down predictions are sent from pyramidal cells in deep layers
and received by agranular layers (purple arrows in Figure 8),
and that prediction errors are sent from superficial pyramidal
cells and are received by stellate cells in the granular layer (red
arrows in Figure 8).
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FiGure 9: Cortical architecture depicting multimodal areas in the
centre and unimodal sensory processing regions on the periphery,
with visual regions shown at the bottom and auditory regions on
the right. Adapted from Mesulam [96].

Rao and Ballard [7] describe a predictive coding model
of visual cortex in which “extraclassical” receptive field prop-
erties emerge due to predictions from higher levels. When
the model is presented with images of an extended bar, for
example, first layer cells processing input from near the end
of the bar soon stop firing as the presence of signal at that
location is accurately predicted by cells in the second layer
which have larger receptive fields. This “end-stopping” effect
in first layer cells is explained by there being no prediction
error to send up to the second layer. By this later time, cells
in the second layer already know about the bar.

In related work Rao and Ballard [100] consider a similar
model, but where hidden layer representations are intrinsi-
cally dynamic. Inference in this model is then implemented
with an Extended Kalman Filter (see Section 2.4). These
dynamics embody a nonlinear prediction step which also
helps to counteract the signal propagation delays introduced
by the different hierarchical levels (see Section 3.2 for a dis-
cussion of this issue).

Lee and Mumford [31] review evidence from human
brain imaging and primate neurophysiology in support of
the hypothesis that processing in visual cortex corresponds
to inference in hierarchical Bayesian models. They describe
activity in visual areas as being tightly coupled with the rest of
the visual system such that long latency V1 responses reflect
increasingly more global feedback from abstract high level
features. This is consistent with a nonlinear hierarchical and
dynamical model and they propose that inference in this
model could be implemented using particle filtering (see
Section 2.4.1).

George and Hawkins [19] describe a “hierarchical tem-
poral memory” model of activity in cortical hierarchies
which makes spatio-temporal predictions. Inference in this
model is based on the belief propagation algorithm and
detailed proposals are made regarding the mapping of vari-
ous computational steps onto activity in different cortical
laminae.

A series of papers by Friston [1, 11] review anatomical
and functional evidence for hierarchical predictive coding,
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and describe implementations of Mumford’s original pro-
posal [10] with increasing levels of sophistication. These
include the use of continuous-time nonlinear dynamical gen-
erative models and the use of a generalised coordinate repre-
sentation of state variables. This concept from control theory
provides a representation of higher order derivatives such
as position, velocity, and acceleration, variables which have
natural representations in the brain. Generalised coordinates
effectively provide an extended time window for inference
and may also provide a mechanism for postdiction (des-
cribed in Section 3.2). This series of papers also describes a
variational inference algorithm for estimating states (infer-
ence) and parameters (learning) and how these computa-
tions map onto cortical laminae. In later work [101] this
framework was extended by expressing sensory input as a
function of action, which effectively repositions an agent’s
sensory apparatus. The same variational inference proce-
dures can then be used to select actions. This active inference
framework is explained in recent reviews [12, 28].

5.3. Two-Level Model. We now describe a simple Bayesian
model of object recognition which illustrates many of the
previously described features. This is a simplified version of
the models described by Rao and Ballard [7]. We focus on
perception, that is, how the beliefs regarding the hidden var-
iables in the network can be updated. For simplicity, we focus
on a hierarchical model with just two levels, although the
approach can be applied to models of arbitrary depth.

The identity of an object is encoded by the variable x,,
the features of objects by the variable x;, and a visual image
by y. The model embodies the notion that x, causes x; which
in turn causes y. The probabilistic dependencies in the asso-
ciated generative model can be written as

p(ysxi,x) = p(y | x1) pla | x2) p(x2). (30)

One can derive update rules for estimating the hidden
variables by following the gradient of the above joint like-
lihood, or equivalently the log of the joint likelihood. This
will produce MAP estimates of the hidden variables (see
Section 2). Taking logs gives

log p(y,x1,%) =logp(y | x1) +log p(x1 | x2) +log p(x2).
(31)

We now make the additional assumption that these distri-
butions are Gaussian. To endow the network with sufficient
flexibility of representation, for example the ability to turn
features on or off, we allow nonlinear transformations, g( ),
between layers. That is,

p(y | x1) = N(y;g1(x1),Aol),
plxr | x2) = N(x152(x2), 1), (32)
p(x2) = N(x250,2,1),
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where g1(x;) and g(x;) are top down predictions of lower
level activity based on higher level representations, and A; are
precision parameters. This can also be written as

y =g1(x1) +em,
x1 = ©(x2) + e (33)
Xy = és.

One can then derive the following update rules for the hidden
variables [7]

d ,
T% = dogi(x1)er + Arey,

J (34)
T% = Algz,(xz)ez + A2,

where ¢’ () denotes the derivative of the nonlinearity and the
prediction errors are given by

er =y —gx1),
(35)
e = x1 — @(x2).

Figure 10 shows the propagation of predictions and predic-
tion errors in this two-level network.

The parameter 7 in (34) determines the time scale of per-
ceptual inference. The degree to which the activity of a unit
changes as a function input is referred to as “gain.” In (34)
the input is the bottom up prediction error. The gain is there-
fore dependent on the precision A; and the slope of the non-
linearity g’ (). There are therefore at least two gain control
mechanisms. These will change the balance between how
much network dynamics are dependent on top-down versus
bottom-up information. Similar equations can be derived for
how to update the parameters of the model, as shown in [7].

5.4. Gain Control. The key element of a digital computer is a
voltage-gated switch, the transistor, which is turned on and
off by the same sorts of currents it controls. An understand-
ing of neuronal gain control is important to computational
neuroscience [102]. Simple sensory reflexes, for example, can
be turned off and replaced by responses based on higher level
cognitive processing. There are a number of potential
mechanisms in the brain for gain control including synchro-
nization, neuromodulation, recurrent dynamics, and inhibi-
tion.

5.4.1. Synchronization. Equation (34) shows that the gain of
a unit is dependent on the slope of the nonlinearity g’ (). If we
interpret a unit as reflecting the activity of a population of
cells then this slope can be increased, for example, by increas-
ing the synchronization among cells. Highly synchronized
cell populations have large gain [103]. In addition, this gain
can be amplified by recurrent computation in neural net-
works [102, 104].

5.4.2. Neuromodulation. Equation (34) also shows that gain
can be changed by manipulating the precision A;. It has
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Region 0

Region 1

Region 2

Superficial Deep

FiGurg 10: Predictive coding architecture for inference in hierar-
chical models. Each level in the hierarchy is located in a different
brain region. Each region has a population of error units and
a population of causal units. The error units are hypothesised
to reside in superficial cortical laminae and causal units in deep
laminae. Error units receive messages from the state units in the
same level and the level above, whereas state units are driven by
error units in the same level and the level below. The person near
the centre of the image would be difficult to see without a top-
down prediction that there was somebody walking along the path.
This prediction may be derived from previous time steps, hence the
need for dynamic models, or from higher level scene knowledge that
people walk on paths.

been proposed that neuromodulators can change A; and so
modulate the encoding of uncertainty. Neuromodulators are
generated in subcortical nuclei and distributed to large
regions of cortex. Different neuromodulators project to dif-
ferent cortical regions. For example, the highest concentra-
tions of dopamine are found in striatum, basal ganglia, and
frontal cortex. The detailed spatial specificity and temporal
dynamics of neuromodulatory projections are unknown but
they are thought to act as macroscopic signals [105].

Yu and Dayan [106] have considered the computational
problem of assessing the validity of predictive cues in various
contexts. Here a context reflects the set of stable statistical
regularities that relate environmental entities such as objects
and events to each other and to our sensory and motor
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systems. They propose that Acetylcholine (ACh) signals the
uncertainty that is expected within a given context and
that Norepinephrine (NE) signals the uncertainty associated
with a change in context. Increasing levels of ACh and NE
therefore downweight the strength of top-down (contextual)
information and effectively upregulate bottom-up sensory
input.

It has also been proposed that dopamine signals uncer-
tainty in reward delivery [107]. This proposal has been elab-
orated upon by Friston et al. [108] who propose that dop-
amine balances the relative weighting of top-down beliefs
and bottom-up sensory information when making inferences
about cues that reliably signal potential actions. A dynamical
model of cued sequential movements was developed in
which inference proceeded using the variational approach
described earlier, and the resulting simulated behaviours
were examined as a function of synthetic dopamine lesions.

5.4.3. Recurrent Dynamics. Abbott [102] suggests that small
differences in gain from, for example, synchronization can be
amplified via dynamics in recurrent networks. Yu and Dayan
[109] have used such dynamics in a model of visual atten-
tion. They developed a generative model of the Posner atten-
tional task where a central cue predicts the location of a stim-
ulus which then has a property (orientation) about which
subjects have to make a decision, for example, press the left
if the stimulus points left. Here there are two feature dimen-
sions; spatial location and orientation. Inference in the Yu
and Dayan model then shows how priors in one feature
dimension (spatial) can gate inference in the other (orien-
tation). This is consistent with electrophysiological responses
whereby spatial attention has a multiplicative effect on orien-
tation tuning of visual cortical neurons.

In the Yu et al. [45] study of the Eriksen Flanker task,
referred to in Section 3.2, an approximate inference algo-
rithm was proposed. This assumed a default assumption that
the stimuli would be congruent and processing could pro-
ceed using a feedforward network in which “congruent” con-
nections were facilitated using gain control. But upon detec-
tion of response conflict, an “incongruent” set of feedforward
connections would instead be facilitated.

5.4.4. Receptor Pharmacology. Long range connections in the
brain, both bottom-up and top-down, are excitatory and
use the neurotransmitter glutamate. Glutamate acts on two
types of postsynaptic receptor (i) AMPA receptors and (ii)
NMDA receptors. NMDA receptors have a different action
depending on the current level of postsynaptic potential, that
is, they are voltage-gated. There is known to be a greater pro-
portion of NMDA receptors for top-down connections
which therefore provides a mechanism for top-down signals
to gate bottom-up ones.

Corlett et al. [110] review the action of various drugs on
psychotic effects and describe their action in terms of their
receptor dynamics and inference in hierarchical Bayesian
networks. Ketamine, for example, upregulates AMPA and
blocks NMDA transmission. This will increase bottom-up
signalling, which is AMPA-mediated, and reduce top-down
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signalling which is NMDA mediated. They suggest this will
in turn lead to delusions, inappropriate inference of high
level causes. Bayesian models of psychosis and underlying
links to the pharmacology of synaptic signalling are discussed
at length in [8]. See also [111] for a broader view of com-
putational modelling for psychiatry.

6. Planning and Control

This review has briefly considered optimal decision making
in terms of the likelihood ratio tests that may be reported by
single neurons [15]. But as yet, we have had nothing to say
about sequential decisions, planning, or control. Here, the
key difference is that our decisions become actions which
affect the state of the world which will in turn affect what
the next optimal action would be. Because the combination
of (potential) actions grows exponentially with time this is
a difficult computational problem. It is usually addressed
using various formalisms, from optimal control theory [112,
113] to reinforcement learning [114]. For reviews of these
approaches applied to neuroscience see [115, 116].

Here we focus on recent theoretical developments in this
area where research has shown how problems in optimal con-
trol theory, or “model-based” reinforcement learning, can be
addressed using a purely Bayesian inference approach. For
example, Attias [117] has proposed that planning problems
can be solved using Bayesian inference. The central idea is to
infer the control signals, u,, conditioned on known initial
state x; and desired goal states x,. For example, Toussaint
[118] describes the estimation of control signals using a
Bayesian message passing algorithm which defaults to a
classic control theoretic formulation for linear Gaussian
dynamics. This framework can also be extended to accom-
modate desired observations, Yy. The appropriate control
signals can then be computed by estimating the density
p(uy, | x1, Yn) which can be implemented using backwards
inference (see Section 6). This approach is currently being
applied to systems level modelling of spatial cognition [119].

Similarly, Todorov has shown how control theoretic
problems become linearly solvable if the cost of an action
is quantified by penalising the difference between controlled
and uncontrolled dynamics using Kullback-Liebler diver-
gence [120]. Computation of optimal value functions is then
equivalent to backwards inference in an equivalent dynamic
Bayesian model [121] (see Section 2.4).

We refer to the above approaches using the term Planning
as Inference. Planning as Inference requires the propagation
of uncertainty forwards and backwards in time. This can be
implemented using the forwards and backwards inference
procedures described earlier. For these algorithms to be
implemented in the brain we must have an online algorithm
such as the gamma recursions. An advantage of considering
control and planning problems as part of the same overall
Bayesian inference procedure is that it becomes very natural
to model the tight coupling that systems neuroscientists
believe underlies action and perception [98, 122].
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7. Discussion

This paper has hopefully shown that Bayesian inference pro-
vides a general theoretical framework that explains aspects
of both brain activity and human behaviour. Bayesian infer-
ence can quantitatively account for results in experimental
psychology on sensory integration, visual processing, senso-
rimotor integration, and collective decision making. It also
explains the nonlinear dynamical properties of synapses,
dendrites, and sensory receptive fields where neurons and
neural networks are active predictors rather than passive
filters of their sensory inputs.

More generally, the field is beginning to relate constructs
in Bayesian inference to the underlying computational infra-
structure of the brain. At the level of systems neuroscience
brain imaging technologies are likely to play a key role.
For example, neuroimaging modalities such as Electroen-
cephalography (EEG) and Magnetoencephalography (MEG)
are thought to mainly derive from superficial pyramidal
cells. Cortical signals measured with these modalities should
therefore correspond to prediction error signals in the hier-
archical predictive coding models described in Section 5.
Transcranial Magnetic Stimulation (TMS) can be used to
knock out activity in various brain regions and therefore
infer which are necessary for perceptual inference [31]. Func-
tional Magnetic Resonance Imaging (fMRI) can be used to
monitor activity in lower level regions that may be explained
away by activity in higher level regions [31]. An important
recent development is the use of dynamic models of brain
connectivity to estimate strengths of connections between
regions [123]. This allows for the quantitative assessment of
changes in top-down or bottom-up signalling from brain
imaging data [124, 125].

A particularly exciting recent theoretical development is
the notion of Planning as Inference described in Section 6.
Previously, Bayesian inference has been used to explain per-
ception and learning. This recent research suggests how
Bayesian inference may also be used to understand action
and control. This closes the loop and reflects the tight coupl-
ing that systems neuroscientists believe underlies action and
perception in the human brain [98, 122]. Central to this
endeavour are the forwards and backwards recursions in time
that are necessary to compute optimal value functions or
control signals. Our review has also suggested, in Section 3.2,
that they may also be necessary to model perceptual inference
at a much shorter time scale.
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