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Abstract

This technical note describes the construction of posterior probability maps that enable conditional or Bayesian inferences about regionally-specific effects in neuroimaging.  Posterior probability maps are images of the probability or confidence that an activation or effect exceeds some specified threshold, given the data.  Posterior probability maps (PPMs) represent a complementary alternative to statistical parametric maps (SPMs) that are used to make classical inferences.  A key problem in Bayesian inference is the specification of appropriate priors.  This problem can be eschewed by using empirical Bayes in which prior variances are estimated from the data.  Empirical Bayes requires a hierarchical observation model.  In neuroimaging observations of the same effect over voxels provides a natural, two-level hierarchy that enables an empirical Bayesian approach.   In this note we present a brief motivation and the operational details of a simple empirical Bayesian method for computing posterior probability maps.  We then compare Bayesian and classical inference through the equivalent PPMs and SPMs testing for the same effect in the same data.

Introduction

To date, inference in neuroimaging has been restricted largely to classical inferences based upon statistical parametric maps (SPMs).  The statistics that comprise these SPMs are essentially functions of the data  (Friston et al 1995).  The probability distribution of the chosen statistic, under the null hypothesis (i.e. the null distribution) is used to compute a P value.  This P value is a probability of obtaining the statistic, or the data, given that the null hypothesis is true.  If sufficiently small, the null hypothesis can be rejected and an inference is made.  The alternative approach is to use Bayesian or conditional inference based upon the posterior distribution of the activation given the data (Holmes & Ford 1993).  This necessitates the specification of priors (i.e. the probability distribution of the activation).  Bayesian inference requires the posterior distribution and therefore rests upon posterior density analysis.  A useful way to summarize this posterior density is to compute the probability that the activation exceeds some threshold.  This computation represents a Bayesian inference about the effect, in relation to the specified threshold.  In this technical note we describe an approach to computing posterior probability maps for activation effects, or more generally treatment effects in imaging data sequences.  A more thorough account of this approach will be found in Friston et al (2002).  We focus here on a specific procedure that has been incorporated into the next version of the SPM software (SPM2).  This approach represents, probably, the most simple and computationally expedient way of constructing PPMs.

The motivation for using conditional or Bayesian inference is that it has high face validity.  This is because the inference is about an effect, or activation, being greater than some specified size that has some meaning in relation to the underlying neurophysiology.  This contrasts with classical inference, in which the inference is about the effect being significantly different than zero.  The problem for classical inference is that trivial departures from the null hypothesis can be declared significant, with sufficient data or sensitivity.  From the point of view of neuroimaging, posterior inference is especially useful because it eschews the multiple-comparison problem.  In classical inference one tries to ensure that the probability of rejecting the null hypothesis incorrectly is maintained at a small rate, despite making inferences over large volumes of the brain.  This induces a multiple-comparison problem that, for continuous spatially-extended data, requires an adjustment or correction to the P values using Gaussian Random Field Theory.  This Gaussian field correction means that classical inference becomes less sensitive or powerful with large search volumes.  In contradistinction, posterior inference does not have to contend with the multiple-comparison problem because there are no false-positives.  The probability that an activation has occurred, given the data, at any particular voxel is the same, irrespective of whether one has analyzed that voxel or the entire brain.  For this reason, posterior inference using PPMs may represent a relatively more powerful approach than classical inference in neuroimaging (see Friston et al 2002 for a detailed discussion).  

Priors and Bayesian inference
PPMs require the posterior distribution or conditional distribution of the activation (a contrast of conditional parameter estimates) given the data.  This posterior density can be computed, under Gaussian assumptions, using Bayes rules.  Bayes rule requires the specification of a likelihood function and the prior density of the model’s parameters.  The models used to form PPMs and the likelihood functions are exactly the same as in classical SPM analyses.  The only extra bit of information that is required is the prior probability distribution of the parameters of the general linear models employed.  Although it would be possible to specify these in terms of their means and variances, using independent data or some plausible physiological constraints, there is an alternative to this fully Bayesian approach.  The alternative is empirical Bayes in which the variances of the prior distributions are estimated directly from the data.  Empirical Bayes requires a hierarchical observation model where the parameters and hyper-parameters at any particular level can be treated as priors on the level below.  There are numerous examples of hierarchical observations models.  For example, the distinction between fixed- and mixed-effects analyses of multi-subject studies relies upon a two-level hierarchical model.  However, in neuroimaging there is a natural hierarchical observation model that is common to all brain mapping experiments.  This is the hierarchy induced by looking for the same effects at every voxel within the brain (or gay matter).  The first level of the hierarchy corresponds to the experimental effects at any particular voxel and the second level of the hierarchy comprises the effects over voxels.  Put simply, the variation in a particular contrast, over voxels, can be used as the prior variance of that contrast at any particular voxel.  In what follows we describe how this approach is implemented and provide some examples of its application.

Theory

Conditional estimators and the posterior density

In this section we describe how the posterior distribution of the parameters of any general linear model can be estimated at each voxel from imaging data sequences.  Under Gaussian assumptions about the errors 
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the conditional or posterior covariances and mean of the parameters 
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are given by (see Friston et al 2002).  





[image: image4.wmf](

)

(

)

q

q

e

q

q

q

e

q

h

h

1

1

1

1

1

-

-

-

-

-

+

=

+

=

C

y

C

X

C

C

X

C

X

C

T

y

y

T

y





2
where 
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is the prior covariance.  Once these two moments are known, the posterior probability that a particular effect or contrast specified by a contrast weight vector c exceeds some threshold 
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 is easily computed
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is the cumulative density function of the unit normal distribution.  An image of these posterior probabilities constitutes a PPM.  
Estimating the error covariance with ReML
Clearly to compute the conditional moments in (2) one needs to know some hyper-parameter 
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 that controls the error covariance 
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, where V is the correlation or non-sphericity matrix of the errors (see below).  If we knew the prior covariances 
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 then the error covariance hyperparameter is simply estimated using Restricted Maximum Likelihood (ReML).  This involves recursion of the following equations that can be formulated in terms of expectation maximization (EM, Dempster et al 1977), as described in Friston et al (2002)
Until convergence {
E-Step
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4
These equations are presented in the form used in Friston et al (2002a) and below, to make the connection with EM explicit
.  Given that there is only one hyperparameter to estimate this scheme converges very quickly (2 to 3 iterations for a tolerance of 10-6).  
Estimating the prior density with empirical Bayes

Simply computing the conditional moments using (2) corresponds to a fully Bayesian analysis at each and every voxel.  However, there is an outstanding problem in the sense that we do not know the prior covariances of the parameters.  It is at this point that we introduce the hierarchical perspective that enables an empirical Bayesian approach.  If we now consider (1) as the first level of the two-level hierarchy, where the second level corresponds to observations over voxels, we have a hierarchical observation model for each voxel that treats some parameters as random effects and other as fixed.  The random effects 
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 are those that we are interested in and the fixed effects 
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 are nuisance variables or confounds (e.g. drift or the constant term) modeled by the regressors in 
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This model posits that there is a voxel-wide prior distribution for the parameters 
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 with zero mean and unknown covariance 
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 specify the prior covariance structure and would usually comprise a basis for each parameter whose ith leading diagonal element was one and zeros elsewhere.   In other words, with these bases, if we selected a voxel at random from the search volume, the ith parameter at that voxel would conform to a sample from a Gaussian distribution of zero expectation and variance 
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.  By concatenating the data from all voxels and using Kronecker tensor products of the design matrices and covariance bases, it is possible to create a very large hierarchical observation model that could be subject to EM (see for example Friston et al 2002b, Section 3.2).  However, given the enormous number of voxels in neuroimaging this is, computationally, prohibitive.  A mathematically equivalent but more tractable approach is to consider the estimation of the prior hyperparameters as a variance component estimation problem after reducing (5) to a single-level model 
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We now have a simple linear model with a new compound error covariance that includes the observation error covariance and m components for each parameter in 
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 induced by variation of that parameter over voxels.
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7
Equation (7) affords a computationally expedient way to estimate the prior covariances for the parameters that then enter into (2) to provide for voxel-specific error hyperparameter estimates and conditional moments.  In brief, the hyperparameters are estimated by pooling the data from all voxels to provide ReML estimates of the variance components of 
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 according to (7).  The nice thing about this pooling is that the hyperparameters of the parameter covariances are, of course, the same for all voxels.  This is not the case for the error covariance hyperparameters that may change from voxel to voxel.  The pooled estimate of 
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Until convergence {
E-Step
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It can be seen that this has exactly the form as (4) used for the analysis at each voxel.  The differences are (i) 
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 and (ii) there are no priors because the parameters controlling the expression of confounding effects or nuisance variables are treated as fixed effects.  This is equivalent to setting their prior variance to infinity (i.e. flat priors) so that 
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 have disappeared from the design matrix because these effects are embodied in the covariance components of the compound error.  The inclusion of confounds effectively restricts the hyperparameter estimation to the null space of 
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.  Hence restricted maximum likelihood (ReML).  In the absence of confounds the hyperparameters would simply be maximum likelihood (ML) estimates that minimize the Kullback-Leibler (KL) divergence between the estimated and observed covariance of the data, averaged over voxels.  The ensuing ReML estimates are very high precision estimators.  Their precision increases linearly with the number of voxels n and is in fact equal to nH, the curvature of the log likelihood.  These hyperparameters now enter as priors into the voxel-specific estimation along with the flat priors for the nuisance variables
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Dealing with multiple error hyper-parameters

Above it was assumed that the error covariance could be modeled with a single hyperparameter that scaled a known non-sphericity matrix V.  In many instances the exact form of V may not be known (e.g. serial correlations in fMRI or heteroscedasticity when using different sorts of data).  In this case, nonsphericity among the errors is modeled by uses more than one covariance basis.   I.e. the bases and hyperparameters in (7) are augmented to
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Additional bases can model serial correlations or a block diagonal set could accommodate different forms of heteroscedasticy.  The nonsphericity matrix is can then be computed by renormalizing 
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.  This ensures that the voxel-specific error hyperparameters are estimated with high precision by reducing the number of error hyperparameters to one.  However, it does entail the assumption that nonsphericity among the errors is the same for all voxels searched.
A computational saving

Although it would be possible to save the conditional covariances of the parameters for every voxel, this is quite burdensome both in terms of memory and time (because one would have to save a matrix for each voxel).  A simple approximation to the conditional covariance of the parameters obtains through a first-order Taylor expansion in terms of the hyperparameters
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where the expectations are over voxels.  A first-order approximation means that we only have to save the voxel-specific hyperparameters for each voxel which speeds up the computation of voxel-specific conditional variances of contrasts (as in Equation 3).  This first-order approximation provides an upper-bound on the variance due to the concavity of the function relating the conditional covariance to the hyperparameters (see Figure 1).  This upper-bound on the variance translates into a conservative lower-bound on the posterior probability.
    In summary, a natural hierarchy characterizes all neuroimaging experiments where the second level is provided by variation over voxels.  Although it would be possible to form a very large two-level observation model and estimate the conditional means and covariances of the parameters at the first level this would involve dealing with matrices of size (ns) x (ns) (number of voxels n times the number of scans s).  The same conditional estimators can be computed using the two-step approach described above.  First, the data covariance components induced by parameter variation over voxels and observation error are computed using ReML estimates of associated covariance hyperparameters.  Second, each voxel is revisited to compute voxel-specific error variance hyperparameters and the conditional moments of the parameters, using the empirical priors from the first step.  Both these steps deal only with matrices of size n x n.  The voxel-specific estimation sacrifices the simplicity of a single large iterative scheme for lots of smaller ones at each voxel.  For those interested in using parallel computing architectures in neuroimaging this approach lends itself nicely to parallelizing.

   This approach conforms to empirical Bayes under parametric assumptions (PEB).  PEB is simple [Restricted] maximum likelihood estimation in the context of hierarchical models, where the [Re]ML estimators can be viewed as conditional estimators by treating any level as providing priors for its subordinate (c.f. Efron and Morris 1973).
Applications

In this section we compare and contrast Bayesian and classical inference using PPMs and SPMs applied to real data.  The first data is the PET verbal fluency data that has been used to illustrate methodological advances in SPM over the years.  In brief, these data were required from five subjects each scanned 12 times during the performance of one of two word generation tasks.  The subjects were asked to either repeat a heard letter or to respond with a word that began with the heard letter.  These tasks were performed in alternation over the 12 scans and the order randomized over subjects.  The second data set comprised data from a study of attention to visual motion (Büchel & Friston 1997).  The data used in this note came from the first subject studied.  This subject was scanned at 2T to give a time series of 360 images comprising 10 block epochs of different visual motion conditions.  These conditions included a fixation condition, visual presentation of static dots, visual presentation of radially moving dots under attention and no-attention conditions.  In the attention condition subjects were asked to attend to changes in the speed (which did not actually occur).  These data were re-analyzed using a conventional SPM procedure and using the empirical Bayesian approach described in the previous section.  The ensuing SPMs and PPMs are presented below for the PET and fMRI data respectively.  The contrast for the PET data compared the word generation with the word shadowing condition and the contrast for the fMRI data tested for the effect of visual motion above and beyond that due to photic stimulation with stationary dots.  

Inference for the PET data
The upper panel of figure 1 shows PPM for a deactivating effect of verbal fluency.  There are two thresholds for the PPM.  The first and more important is ( in equation 3.  This defines what we mean by “activation” and by default is set at one deviation of the prior variance of the contrast, in this instance 2.06.  This corresponds to a change in rCBF of 2.06 a-dimensional units (equivalent to mm/dl/min).  The second threshold is more trivial and simply enables the use of maximum intensity projections.  This is the probability the voxel has to exceed in order to be displayed.  In the figures shown this was set at 95%.  This means that all voxels shown have greater than 95% probability of being deactivated by 2.06 or more.  The PPM can be regarded as a way of summarizing ones confidence that an effect is present (c.f. the use of confidence intervals where the lower bound on the interval is set at ()..  It should be noted that posterior inference would normally require the reporting of the conditional probability whether it exceeded some arbitrary threshold or not.  However, for the visual display of posterior probability maps it is useful to remove voxels that fall below some arbitrary threshold.  
   The corresponding SPM is shown in the lower panel (Figure 1b).  The SPM has been thresholded at 0.05 adjusted for the search volume using a Gaussian field correction. There is a remarkable correspondence between the activation profiles inferred by the PPM and the SPM.  The only notable difference is the presence of an orbital prefrontal deactivation in the SPM that is not evident in the PPM.  This suggests that responses in this area were smaller than 2.06 yet could be estimated very efficiently due to low error variance.  The similarity between the PPM and the SPM for these data should not be taken as characteristic.  The key difference between Bayesian inference based on the confidence we have about an activation and the classical inference based on rejecting the null hypothesis is that the latter depends on the search volume.  The classical approach, when applied in a mass univariate setting (i.e. over a family of voxels) induces a multiple comparison problem that calls for a procedure to control for family wise false positives.  In the context of imaging data that this procedure is a Random filed adjustment to the threshold.  This adjustment depends on the search volume.  The consequence is that if we increased the search volume the threshold would rise and some of the voxels seen in the SPM would disappear.  Because he PPM does not afford the label ‘activated’ to any voxel there is no multiple comparison problem and the 95% confidence threshold is the same irrespective of search volume.  This difference between PPMs and SPMs is highlighted in the analysis of the fMRI data.  Here the search volume is increased by reducing the smoothness of the data by moving from PET to fMRI.  The smoothness controls the ‘statistical’ search volume, which is generally much greater for fMRI than for PET.
The difference between the PPM and SPM for the fMRI analysis is immediately apparent on inspection of Figure 2. Here is default threshold for the PPM was 0.04  (equivalent to percentage whole brain mean signal).  Again only voxels that exceed 95% confidence are shown.  The critical thing to note here is that the corresponding SPM identifies a much smaller umber of voxels than the PPM.  These restricted to visual and extrastriate cortex involved in motion processing.  The SPM is much more conservative because the correction for multiple comparisons in these data is very severe, rendering classical inference relatively insensitive.  It could be argued that a threshold of 0.04 is rather small (0.1% is more typical in fMRI).  However, it is interesting to note that dynamic motion in the visual field has such widespread (if small) effects at a hemodynamic level.
PPMs and FDR

There is an interesting connection between the false discovery rate (FDR) threshold and the thresholded PPMs.  The PPMs thresholded at 95% mean that every voxel seen has, at most, a 5% probability of not exceeding (.  In other words, if we declared these voxels as “activated”, 5% of the voxels could be false activations.  This is exactly the same as FDR in the sense that the FDR is the proportion of voxels that are declared significant that are not.  It should be noted that many voxels will have a posterior probability that is more than 95%.  Therefore, the 5% is an upper bound on FDR.  This interpretation rests explicitly on thresholding the PPM and labeling the excursion set as “activated”.  It is reiterated that this declaration is unnecessary and only has any meaning in relation to classical inference.  However, thresholded PPMs do have this interesting connection to SPMs in which false discovery rate has been controlled.

Conclusion

In this note we have presented a simple way to construct posterior probability maps using empirical Bayes.  Empirical Bayes can be used because of the natural hierarchy in neuroimaging engendered by trying to observe the same thing over multiple voxels.  The approach essentially provides shrinkage priors based on between voxel variation in parameters controlling effects of interest.  A computationally expedient way of computing these priors using ReML has been presented.

   A key consideration in the use of empirical Bayes in this setting is which voxels to include in the hierarchy.  There is not right or wrong answer here (c.f. the search volume in classical inference with SPMs).  The most important thing to bear in mind is that the conditional estimators of an activation or effect are those which minimize some cost function..  This cost function can be regarded as the ability to predict the observed response with minimum error on average over the voxels included in the hierarchical model.  In other words, the voxels over which the priors are computed define the space one wants, on average, the best estimates for.  In this work we have simply used potentially responsive voxels within the brain as defined by thresholding the original images.
   The theory described in this technical note has been implemented in the next version of the SPM software (SPM2).  Simple posterior inferences that are enabled by this approach may find a useful role in characterizing evoked brain responses or differences among cohorts.
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Figure 1

An example of the relationship between the conditional variance of a parameter estimate and the value of a single hyperparameter governing error variance.  It can be seen that the conditional variance of the parameter (or contrast) is always less than it would have been in the absence of priors (dashed line).  Critically, when the error variance is high the conditional variance asymptotes to the prior covariance (here 0.5).  Conversely when the error variance becomes very low so does the conditional variance.  The important thing here is that this relationship is concave such that a first order Taylor expansion around any expected value for the hyperparameter will provide an upper-bound on the conditional variance (dotted-line)
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Figure 2

Bayesian and classical and inference for the PET study of word generation.   1a)  PPM (left) for a contrast reflecting the difference between word-shadowing and word-generation, using an activation threshold of 2.06 and a confidence of 95%.  The design matrix and contrast for this model is shown (right) in image format. 1b) Classical SPM of the T statistic for the same This SPM has been thresholded at 0.05 corrected using a Gaussian field adjustment. 
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Figure 3

As for Figure 2, but this time showing the PPM (2a) and  SPM (2b) for the fMRI study of attention to visual motion.  The display format in the lower panels uses axial slices through the extra striate region but the thresholds are the same as employed in maximum intensity projections (upper panels).  The activation threshold for the PPM was 0.05.

� Note that the augmentation step shown in Figure 4 of Friston et al (2002a) is unnecessary because the prior covariance enters explicitly into the conditional covariance.


� In the SPM2 implementation we allow for any mean of the parameters at the second level by subtracting the mean over voxels from the data.  This mean represents an estimate of the prior expectation projected onto the observation space by the design matrix. 





PAGE  
11

[image: image48.wmf]SPM

mip

[0, 0, 0]

<

<

<

SPM{T

39.0

}

rest

SPMresults:

C:\home\spm\analysis_PET

Height threshold T = 5.50

Extent threshold k = 0 voxels

Design matrix

1

4

7

10

13

16

19

22

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

60

contrast(s)

3

[image: image49.wmf]SPM

mip

[0, 0, 0]

<

<

<

PPM

2.06

rest [2.06]

SPMresults:

C:\home\spm\analysis_PET

Height threshold P = 0.95

Extent threshold k = 0 voxels

Design matrix

1

4

7

10

13

16

19

22

1

4

7

10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

60

contrast(s)

4

[image: image50.wmf]SPM

mip

[0, 0, 0]

<

<

<

SPM{T

247.7

}

motion

SPMresults:

C:\home\spm\analysis_set

Height threshold T = 4.88

Extent threshold k = 0 voxels

Design matrix

1

2

3

4

5

6

7

1

16

31

46

61

76

91

106

121

136

151

166

181

196

211

226

241

256

271

286

301

316

331

360

contrast(s)

9

0

2

4

6

8

10

_1085498250.unknown

_1085570942.unknown

_1086691657.unknown

_1086692704.unknown

_1086693008.unknown

_1086702001.unknown

_1086693104.unknown

_1086692737.unknown

_1086692942.unknown

_1086692684.unknown

_1086692603.unknown

_1085571902.unknown

_1085581471.unknown

_1085581577.unknown

_1085845098.unknown

_1085581517.unknown

_1085581085.unknown

_1085571376.unknown

_1085571643.unknown

_1085571188.unknown

_1085571367.unknown

_1085568735.unknown

_1085570182.unknown

_1085570246.unknown

_1085569358.unknown

_1085567215.unknown

_1085567340.unknown

_1085567128.unknown

_1085567191.unknown

_1083770380.unknown

_1083770644.unknown

_1085497976.unknown

_1083770706.unknown

_1083770576.unknown

_1083770481.unknown

_1083770214.unknown

_1083770227.unknown

_1083770202.unknown

