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Abstract

This note describes ANOVAs and how they can be implemented in SPM.
For each type of ANOVA we show what are the relevant statistical models and
how they can be implemented in a GLM. We give examples of how main effects
and interactions can be tested for using F-contrasts in SPM. We also show
how to implement a repeated-measures M-way ANOVA with partitioned errors
using a two-level procedure in SPM.

1 Introduction

The mainstay of many scientific experiments is the factorial design. These
comprise a number of experimental factors which are each expressed over a
number of levels. Data are collected for each factor/level combination and then
analysed using Analysis of Variance (ANOVA). The ANOVA uses F-tests to
examine a pre-specified set of standard effects (main effects and interactions -
see below).

The definitive reference for ANOVAs is Winer et al. [6]. Some different
types of ANOVA are tabulated below. A two-way ANOVA, for example, is an
ANOVA with 2 factors; a K1-by-K2 ANOVA is a two-way ANOVA with K1

levels of one factor and K2 levels of the other.
A repeated measures ANOVA is one in which the levels of one or more factors

are measured from the same unit (e.g, subjects). Repeated measures ANOVAs
are also sometimes called within-subject ANOVAs, whereas designs in which
each level is measured from a different group of subjects are called between-
subject ANOVAs (designs in which some factors are within-subject, and others
between-subject, are sometimes called mixed designs).

This terminology arises because in a between-subject design the difference
between levels of a factor is given by the difference between subject responses
eg. the difference between levels 1 and 2 is given by the difference between those
subjects assigned to level 1 and those assigned to level 2. In a within-subject
design the levels of a factor are expressed within each subject eg. the difference
between levels 1 and 2 is given by the average difference of subject responses to
levels 1 and 2. This is like the difference between two-sample t-tests and paired
t-tests.
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The benefit of repeated measures is that we can match the measurements
better. However, we must allow for the possibility that the measurements are
correlated (so-called ‘non-sphericity’ - see section 3.2).

The level of a factor is also sometimes referred to as a ‘treatment’ or a ‘group’
and each factor/level combination is referred to as a ‘cell’ or ‘condition’. For
each type of ANOVA we show what are the relevant statistical models and how
they can be implemented in a GLM. We also give examples of how main effects
and interactions can be tested for using F-contrasts in SPM.

Factors Levels Simple Repeated Measures

1 2 Two-sample t-test Paired t-test
1 K One-way ANOVA One-way ANOVA within-subject
M K1, K2, .., KM M-way ANOVA M-way ANOVA within-subject

Table 1: Types of ANOVA

1.1 Notation

In the mathematical formulations below, N(m,Σ) denotes a uni/multivariate
Gaussian with mean m and variance/covariance Σ. IK denotes the K × K
identity matrix, 1K is a K × 1 vector of 1’s, 0K is a K × 1 vector of zeros and
0KN is a K ×N matrix of zeros. We consider factorial designs with n = 1..N
subjects and m = 1..M factors where the mth factor has k = 1..Km levels.

2 One-way between-subject ANOVA

In a between-subject ANOVA, differences between levels of a factor are given by
the differences between subject responses. We have one measurement per sub-
ject and different subjects are assigned to different levels/treatments/groups.
The response from the nth subject (yn) is modelled as

yn = τk + µ + en (1)

where τk are the treatment effects, k = 1..K, k = g(n) and g(n) is an indicator
function whereby g(n) = k means the nth subject is assigned to the kth group
eg. g(13) = 2 indicates the 13th subject being assigned to group 2. This is
the single experimental factor that is expressed over K levels. The variable µ
is sometimes called the grand mean or intercept or constant term. The ran-
dom variable en is the residual error, assumed to be drawn from a zero mean
Gaussian distribution.

If the factor is significant, then the above model is a significantly better
model of the data than the simpler model

yn = µ + en (2)

where we just view all of the measurements as random variation about the
grand mean. Figure 1 compares these two models on some data.

In order to test whether one model is better than another, we can use an
F-test based on the extra sum of squares principle (see Appendix A). We refer
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Figure 1: One-way between-subject ANOVA. 48 subjects are assigned to one of
four groups. The plot shows the data points for each of the four conditions (crosses),
the predictions from the ‘one-way between-subjects model’ or the ‘full model’ (solid
lines) and the predicitons from the ‘reduced model’ (dotted lines). In the reduced
model (equation 2) we view the data as random variation about a grand mean. In the
full model (equation 1) we view the data as random variation about condition means.
Is the full model significantly better than the reduced model ? That responses are much
higher in condition 4 suggests that this is indeed the case and this is confirmed by the
results in Table 2.

to Equation 1 as the ‘full’ model and Equation 2 as the ‘reduced’ model. If RSS
denotes the residual sum of squares (ie. the sum of squares left after fitting a
model) then

F =
(RSSreduced −RSSfull)/(K − 1)

RSSfull/(N −K)
(3)

has an F-distribution with K−1, N−K degrees of freedom. If F is significantly
non-zero then the full model has a significantly smaller error variance than the
reduced model. That is to say, the full model is a significantly better model, or
the main effect of the factor is significant.

The above expression is also sometimes expressed in terms of sums of squares
(SS) due to treatment and due to error

F =
SStreat/DFtreat

SSerror/DFerror
(4)

where

SStreat = RSSreduced −RSSfull (5)
DFtreat = K − 1
SSerror = RSSfull

DFerror = N −K

DFtotal = DFtreat + DFerror = N − 1
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Expressions 3 and 4 are therefore equivalent.

2.1 Example Implementation in SPM

Figure 2: Design matrix for one-way (1x4) between-subjects ANOVA. White and gray
represent 1 and 0. There are 48 rows, one for each subject ordered by condition, and
5 columns, the first 4 for group effects and the 5th for the grand mean.

Consider a one-way ANOVA with K = 4 groups each having n = 12 subjects
(i.e. N = Kn = 48 subjects/observations in total). The GLM for the full model
in equation 1 is

y = Xβ + e (6)

where the design matrix X = [IK ⊗ 1n, 1N ] is shown in Figure 2, where ⊗
denotes the Kronecker product (see Appendix B). The vector of parameters is
β = [τ1, τ2, τ3, τ4, µ]T .

Equation 3 can then be implemented in SPM using the effects of interest
F-contrast (see Appendix A.1)

CT =


1 −1/3 −1/3 −1/3 0

−1/3 1 −1/3 −1/3 0
−1/3 −1/3 1 −1/3 0
−1/3 −1/3 −1/3 1 0

 (7)

or equivalently

CT =

 1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0

 (8)

These contrasts can be thought of as testing the null hypothesis H0

H0 : τ1 = τ2 = τ3 = τ4 (9)
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Main effect of treatment F=3.62 DF=[3,44] p=.02

Table 2: Results of one-way (1x4) between-subjects ANOVA.

Note that a significant departure from H0 can arise from any pattern of these
treatment means (parameter estimates) - they need not be monotonic across
the four groups for example.

The correspondence between this F-contrast in SPM and the classical for-
mulation in equation 3 is detailed in Appendix A1.

We now analyse an example data set shown in Figure 1. The results of a
one-way between-subjects ANOVA are in Table 2.

Note that the above design matrix is rank-deficient and the alternative
design matrix X = [IK⊗1n] could be used with appropriate F-contrasts (though
the parameter estimates themselves would include a contribution of the grand
mean, equivalent to the contrast [1, 1, 1, 1]T ). If β1 is a vector of parameter
estimates after the first four columns of X are mean-corrected (orthogonalised
with respect to the fifth column), and β0 is the parameter estimate for the
corresponding fifth column, then

SStreatment = nβT
1 β1 = 51.6 (10)

SSmean = nKβ2
0 = 224.1

SSerror = rT r = 208.9
SStotal = yT y = SStreatment + SSmean + SSerror = 484.5

where the residual errors are r = y −XX−y.

3 One-way within-subject ANOVA

In this model we have K measurements per subject. The treatment effects
for subject n = 1...N are measured relative to the average response made by
subject n on all treatments. The kth response from the nth subject is modelled
as

ynk = τk + πn + enk (11)

where τk are the treatment effects (or within-subject effects),πn are the subject
effects and enk are the residual errors. We are not normally interested in πn,
but its explicit modelling allows us to remove variability due to differences
in average responsiveness of each subject. See, for example, the data set in
Figure 3. It is also possible to express the full model in terms of differences
between treatments (see eg. equation 14 for the two-way case).

To test whether the experimental factor is significant we compare the full
model in equation 11 with the reduced model

ynk = πn + enk (12)

An example of comparing these full and reduced models is shown in Figure 4.
The equations for computing the relevant F-statistic and degrees of freedom
are given, for example, in Chapter 14 of [3].
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Figure 3: Portion of example data for one-way within-subject ANOVA. The
plot shows the data points for 3 subjects in each of 4 conditions (in the whole data set
there are 12 subjects). Notice how subject 6’s responses are always high, and subject
2’s are always low. This motivates modelling subject effects as in equations 11 and
12.

Main effect of treatment F=6.89 DF=[3,33] p=.001

Table 3: Results of one-way (1x4) within-subjects ANOVA.

3.1 Example Implementation in SPM

The design matrix X = [IK ⊗ 1N , 1K ⊗ IN ] for equation 11, with K = 4 and
N = 12, is shown in Figure 5. The first 4 columns are treatment effects and the
next 12 are subject effects. The main effect of the factor can be assessed using
the same effects of interest F-contrast as in equation 7 but with additional zeros
for the columns corresponding to the subject effects.

We now analyse another example data set, a portion of which is shown in
Figure 3. Measurements have been obtained from 12 subjects under each of
K = 4 conditions.

Assuming sphericity (see below), we obtain the ANOVA results in Table 3.
In fact this data set contains exactly the same numerical values as the between-
subjects example data. We have just relabelled the data as being measured from
12 subjects with 4 responses each instead of from 48 subjects with 1 response
each. The reason that the p-value is less than in the between-subjects example
(it has reduced from 0.02 to 0.001) is that the data were created to include
subject effects. Thus, in repeated measures designs, the modelling of subject
effects normally increases the sensitivity of the inference.
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(a) (b)

Figure 4: One-way within-subjects ANOVA. The plot shows the data points for
each of the four conditions for subjects (a) 4 and (b) 6, the predictions from the
one-way within-subjects model (solid lines) and the reduced model (dotted lines).

Figure 5: Design matrix for one-way (1x4) within-subjects ANOVA. The first 4
columns are treatment effects and the last 12 are subject effects.

3.2 Nonsphericity

Due to the nature of the levels in an experiment it may be the case that if a
subject responds strongly to level i he may respond strongly to level j. In other
words there may be a correlation between responses. In figure 6 we plot subject
responses for level i against level j for the example data set. These show that for
some pairs of conditions there does indeed seem to be a correlation. This cor-
relation can be characterised graphically by fitting a Gaussian to each 2D data
cloud and then plotting probability contours. If these contours form a sphere
(a circle, in two dimensions) then the data is Independent and Identically Dis-
tributed (IID) (ie. same variance in all dimensions and there is no correlation).
The more these contours look like ellipses, the more ‘nonsphericity’ there is in
the data.

The possible nonsphericity can be taken into account in the analysis using
a correction to the degrees of freedom. In the above example, a Greenhouse-
Geisser (GG) correction estimates ε = .7, giving DFs of [2.1, 23.0] and a p-value
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(with GG we use the same F-statistic ie. F = 6.89) of p = 0.004. Assuming
sphericity as in section 3.1 we computed p = 0.001. Thus the presence of
nonsphericity in the data makes us less confident of the significance of the
effect.

An alternative representation of the within-subjects model is given in Ap-
pendix D. This shows how one can take into account nonsphericity. Various
other relevant terminology is defined in Appendix C.

Figure 6: One-way within-subjects ANOVA: Nonsphericity. Each subgraph
plots each subjects response to condition i versus condition j as a cross. There are
twelve crosses from 12 subjects. We also plot probability contours from the correpond-
ing Gaussian densities. Subject responses, for example, to conditions 1 and 3 seem
correlated - the sample correlation coefficient is -0.75. Overall, the more non-spherical
the contours the greater nonsphericity there is.

4 Two-way within-subject ANOVAs

The full model for a two-way, K1-by-K2 repeated measures ANOVA, with P =
K1K2 measurements taken from each of N subjects, can be written as

ynkl = τkl + πn + enkl (13)

where k = 1...K1 and l = 1...K2 index the levels of factor A and factor B
respectively. Again, πn are subject effects and enkl are residual errors.

However, rather than considering each factor/level combination separately,
the key concept of ANOVA is to model the data in terms of a standard set of
experimental effects. These consist of main effects and interactions. Each factor
has an associated main effect, which is the difference between the levels of that
factor, averaging over the levels of all other factors. Each pair of factors (and
higher-order tuples; see section 5) has an associated interaction. Interactions
represent the degree to which the effect of one factor depends on the levels of
the other factors that comprise the interaction. A two-way ANOVA thus has
two main effects and one interaction.
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Equation 13 can be rewritten as

ynkl = τA
q + τB

r + τAB
qr + πn + enkl (14)

where τA
q represents the differences between each succesive level q = 1...(K1−1)

of factor A, averaging over the levels of factor B; τ2
r represents the differences

between each successive level r = 1...(K2 − 1) of factor B, averaging over the
levels of factor A; and τAB

qr represents the differences between the differences
of each level q = 1...(K1 − 1) of factor A across each level r = 1...(K2 − 1)
of factor B. This rewriting corresponds to a rotation of the design matrix (see
section 4.3). Again, πn are subject effects and enkl are residual errors.

Figure 7: Design matrix for 2x2 within-subjects ANOVA. This design is the same
as in Figure 5 except that the first four columns are rotated. The rows are ordered
all subjects for cell A1B1, all for A1B2 etc. White, gray and black represent 1, 0
and -1. The first four columns model the main effect of A, the main effect of B, the
interaction between A and B and a constant term. The last 12 columns model subject
effects. This model is a GLM instantiation of equation 14.

4.1 Pooled versus partitioned errors

In the above model, enkl is sometimes called a pooled error, since it does not
distinguish between different sources of error for each experimental effect. This
is in contrast to an alternative model

ynkl = τA
q + τB

r + τAB
qr + πn + ρA

nq + ρB
nr + ρAB

nqr (15)

in which the original residual error enkl has been split into three terms ρA
nq, ρB

nr

and ρAB
nqr, each specific to a main effect or interaction. This is a different form

of variance partitioning. Each such term is a random variable and is equivalent
to the interaction between that effect and the subject variable.

The F-test for, say, the main effect of factor 1 is then

F =
SSk/DFk

SSnk/DFnk
(16)
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where SSk is the sum of squares for the effect, SSnk is the sum of squares for the
interaction of that effect with subjects, DFk = K1− 1 and DFnk = N(K1− 1).

Note that, if there are no more than two levels of every factor in an M-way
repeated measures ANOVA (i.e, Km = 2 for all m = 1...M), then the covari-
ance of the errors Σe for each effect is a 2-by-2 matrix which necessarily has
compound symmetry, and so there is no need for a nonsphericity correction 1.
This is not necessarily the case if a pooled error is used, as in equation 14.

4.2 Full and reduced models

The difference between pooled and partitioned error models is perhaps more
conventionally expressed by specifying the relevant full and reduced models.

4.2.1 Pooled errors

The full model is given by equation 14. To test for the main effect of A we
compare this to the reduced model

ynkl = τB
r + τAB

qr + πn + enkl

Similarly for the main effect of B. To test for an interaction we compare the
full model to the reduced model

ynkl = τA
r + τB

r + πn + enkl

For example, for a 3-by-3 design, there are q = 1..2 differential effects for
factor A and r = 1..2 for factor B. The full model is therefore

ynkl = τA
1 + τA

2 + τB
1 + τB

2 + τAB
11 + τAB

12 + τAB
21 + τAB

22 + πn + enkl

(there are 8 factor variables here, the 9th would be the grand mean). The
reduced model used in testing for the main effect of A is

ynkl = τB
1 + τB

2 + τAB
11 + τAB

12 + τAB
21 + τAB

22 + πn + enkl

The reduced model used in testing for the interaction is

ynkl = τA
1 + τA

2 + τB
1 + τB

2 + πn + enkl

4.2.2 Partitioned errors

For partitioned errors we first transform our data set ynkl into a set of differen-
tial effects for each subject and then model these in SPM. This set of differential
effects for each subject is created using appropriate contrasts at the ‘first-level’.
The models that we describe below are then at SPM’s ‘second-level’.

To test for the main effect of A, we first create the new data points ρnq

which are the differential effects between the levels in A for each subject n (see
eg. section 5). We then compare the full model

ρnq = τA
q + enq

to the reduced model ρnq = enq. We are therefore testing the null hypothesis,
H0 : τA

q = 0 for all q.

1Although one could model inhomegeneity of variance.
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Figure 8: In a 3 × 3 ANOVA there are 9 cells or conditions. The numbers in the
cells correspond to the ordering of the measurements when re-arranged as a column
vector y for a single-subject General Linear Model. For a repeated measures ANOVA
there are 9 measurements per subject. The variable ynkl is the measurement at the
kth level of factor A, the lth level of factor B and for the nth subject. To implement
the partitioned error models we use these original measurements to create differential
effects for each subject. The differential effect τA

1 is given by row 1 minus row 2
(or cells 1, 2, 3 minus cells 4,5,6 - this is reflected in the first row of the contrast
matrix in equation 32). The differential effect τA

2 is given by row 2 minus row 3.
These are used to assess the main effect of A. Similarly, to assess the main effect of
B we use the differential effects τB

1 (column 1 minus column 2) and τB
2 (column 2

minus column 3). To assess the interaction between A and B we compute the four
‘simple interaction’ effects τAB

11 (cells (1-4)-(2-5)), τAB
12 (cells (2-5)-(3-6)), τAB

21 (cells
(4-7)-(5-8)) and τAB

22 (cells (5-8)-(6-9)). These correspond to the rows of the contrast
matrix in equation 34.
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Main effect of A [ 1 1 -1 -1 ]
Main effect of B [ 1 -1 1 -1 ]
Interaction, AxB [ 1 -1 -1 1 ]

Table 4: Contrasts for experimental effects in a two-way ANOVA.

Similarly for the main effect of B. To test for an interaction we first create
the new data points ρnqr which are the differences of differential effects for each
subject. For a K1 by K2 ANOVA there will be (K1 − 1)(K2 − 1) of these. We
then compare the full model

ρnqr = τAB
qr + enqr

to the reduced model ρnqr = enqr. We are therefore testing the null hypothesis,
H0 : τAB

qr = 0 for all q, r.
For example, for a 3-by-3 design, there are q = 1..2 differential effects for

factor A and r = 1..2 for factor B. We first create the differential effects ρnq.
To test for the main effect of A we compare the full model

ρnq = τA
1 + τA

2 + enq

to the reduced model ρnq = enq. We are therefore testing the null hypothesis,
H0 : τA

1 = τA
2 = 0. Similarly for the main effect of B.

To test for an interaction we first create the differences of differential effects
for each subject. There are 2×2 = 4 of these. We then compare the full model

ρnqr = τAB
11 + τAB

12 + τAB
21 + τAB

22 + enqr

to the reduced model ρnqr = enqr. We are therefore testing the null hypothesis,
H0 : τAB

11 = τAB
12 = τAB

21 = τAB
22 = 0 ie. that all the ‘simple’ interactions are

zero. See eg. figure 8.

4.3 Example Implementation in SPM

4.3.1 Pooled Error

Consider a 2x2 ANOVA of the same data used in the previous examples, with
K1 = K2 = 2, P = K1K2 = 4, N = 12, J = PN = 48. The design matrix for
equation 14 with a pooled error term is the same as that in Figure 5, assuming
that the four columns/conditions are ordered

1 2 3 4
A1B1 A1B2 A2B1 A2B2

(17)

where A1 represents the first level of factor A, B2 represents the second level
of factor B etc, and the rows are ordered all subjects data for cell A1B1, all
for A1B2 etc. The basic contrasts for the three experimental effects are shown
in Table 4 with the contrast weights for the subject-effects in the remaining
columns 5-16 set to 0.

Assuming sphericity, the resulting F-tests give the ANOVA results in Ta-
ble 5. With a Greenhouse-Geisser correction for nonsphericity, on the other
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Main effect of A F=9.83 DF=[1,33] p=.004
Main effect of B F=5.21 DF=[1,33] p=.029
Interaction, AxB F=5.64 DF=[1,33] p=.024

Table 5: Results of 2×2 within-subjects ANOVA with pooled error assuming sphericity.

Main effect of A F=9.83 DF=[0.7,23.0] p=.009
Main effect of B F=5.21 DF=[0.7,23.0] p=.043
Interaction, AxB F=5.64 DF=[0.7,23.0] p=.036

Table 6: Results of 2×2 within-subjects ANOVA with pooled error using Greenhouse-
Geisser correction.

hand, ε is estimated as .7, giving the ANOVA results in Table 6.
Main effects are not really meaningful in the presence of a significant in-

teraction. In the presence of an interaction, one does not normally report the
main effects, but proceeds by testing the differences between the levels of one
factor for each of the levels of the other factor in the interaction (so-called
simple effects). In this case, the presence of a significant interaction could be
used to justify further simple effect contrasts (see above), e.g. the effect of B
at the first and second levels of A are given by the contrasts c = [1,−1, 0, 0]T

and c = [0, 0, 1,−1]T .
Equivalent results would be obtained if the design matrix were rotated so

that the first three columns reflect the experimental effects plus a constant
term in the fourth column (only the first four columns would be rotated).
This is perhaps a better conception of the ANOVA approach, since it is closer
to equation 14, reflecting the conception of factorial designs in terms of the
experimental effects rather than the individual conditions. This rotation is
achieved by setting the new design matrix

Xr = X

[
CT 04,12

012,4 I12

]
(18)

where

CT =


−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1

 (19)

Notice that the rows of CT are identical to the contrasts for the main effects
and interactions plus a constant term (cf. Table 4). This rotated design matrix
is shown in Figure 7. The three experimental effects can now be tested by the
contrasts [1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T (again, padded with zeros).

4.3.2 Partitioned errors

The design matrix for the model with partitioned errors in equation 15 is shown
in Figure 9. This is created by Xf = [C ⊗ 1N , C ⊗ IN ] to give the model

y = Xfβ (20)
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(a)

(b)

(c)

Figure 9: 2x2 within-subjects ANOVA with partitioned errors (a) design matrix, (b)
contrast matrix for main effect of A in the full model, CT

1 and (c) contrast matrix for
main effect in the reduced model, CT

0 . White, gray and black correspond to 1, 0 and
-1.
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with no residual error.
The parameters corresponding to this design matrix could not actually be

estimated in SPM, because there is no residual error (ie, rank(Xf ) = J). How-
ever, we show in Appendix A.2 how the relevant effects could still be calculated
in principle using two F-contrasts to specify subspaces of X that represent two
embedded models to be compared with an F-ratio. We next show how the same
effects could be tested in SPM in practice using a two-stage procedure.

4.3.3 Two-stage procedure

Even though equation 15 cannot be implemented in a single SPM analysis
one can obtain identical results by applying contrasts to the data, and then
creating a separate model (ie. separate SPM analysis) to test each effect. In
other words, a two-stage approach can be taken [2], in which the first stage is
to create contrasts of the conditions for each subject, and the second stage is to
put these contrasts into a model with a block-diagonal design matrix (actually
the one-way ANOVA (without a constant term) option in SPM).

The equivalence of this two-stage procedure to the multiple F-contrasts
approach in Appendix A.2 is seen by projecting the data onto the subspace
defined by the matrix

C = c⊗ IN (21)

where c is the contrast of interest (e.g, main effect of A, [1, 1,−1,−1]T ), such
that

y2 = C−y (22)

Continuing the 2-by-2 ANOVA example (eg. in Figure 7), y2 is an N-by-1
vector. This vector comprises the data for the second-stage model

y2 = X2β2 + e2 (23)

in which the design matrix X2 = 1N , a column of 1’s, is the simplest possible
block-diagonal matrix (the one-sample t-test option in SPM). This is interro-
gated by the F-contrast c2 = [1].

The equivalence of this second-stage model to that specified by the appro-
priate subspace contrasts for the model y = Xfβ in equation 20 is because
C−Xf = C1, where C1 is identical to that in equation 40. This means

y2 = C−y = C−Xfβ = C1β (24)

Given that

CT
1 =

[
c 01,J

0N,P c⊗ IN

]
(25)

comparison of equations 23 and 24 reveals that β2 is equal to the appropriate
one of the first three elements of β (depending on the specific effect tested by
contrast c) and that e2 is comprised of the remaining nonzero elements of C1β,
which are the appropriate interactions of that effect with subjects.

Using the example dataset, and analogous contrasts for the main effect of B
and for the interaction, we get the results in Table 7. Note how (1) the degrees
of freedom have been reduced relative to table 5, being split equally among
the three effects, (2) there is no need for a nonsphericity correction in this case
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Main effect of A F=12.17 DF=[1,11] p=.005
Main effect of B F=11.35 DF=[1,11] p=.006
Interaction, AxB F=3.25 DF=[1,11] p=.099

Table 7: Results of ANOVA using partitioned errors.

(since K1 = K2 = 2, see section 4.1, and (3) the p-values for some of the effects
have decreased relative to tables 5 and 6, while those for the other effects have
increased. Whether p-values increase or decrease depends on the nature of the
data (particularly correlations between conditions across subjects), but in many
real datasets partitioned error comparisons yield more sensitive inferences. This
is why, for repeated-measures analyses, the partitioning of the error into effect-
specific terms is normally preferred over using a pooled error[3].

5 Generalisation to M-way ANOVAs

The above examples can be generalised to M-way ANOVAs. For a K1-by-K2-..
-by-KM design, there are

P =
M∏

m=1

Km (26)

conditions. An M-way ANOVA has 2M − 1 experimental effects in total, con-
sisting of M main effects plus M !/(M − r)!r! interactions of order r = 2...M .
A 3-way ANOVA for example has 3 main effects (A, B, C), three second-order
interactions (AxB, BxC, AxC) and one third-order interaction (AxBxC). Or
more generally, an M-way ANOVA has 2M − 1 interactions of order r = 0...M ,
where a 0th-order interaction is equivalent to a main effect.

We consider models where every cell has its own coefficient (like Equa-
tion 13). We will assume these conditions are ordered in a GLM so that the
first factor rotates slowest, the second factor next slowest, etc, so that for a
3-way ANOVA with factors A, B, C

1 2 ... K3 ... P
A1B1C1 A1B1C2 ... A1B1CK3 ... AK1BK2CK3

(27)

The data is ordered all subjects for cell A1B1C1, all subjects for cell A1B1C2

etc.
The F-contrasts for testing main effects and interactions can be constructed

in an iterative fashion as follows. We define initial component contrasts

Cm = 1Km Dm = orth(diff(IKm)T ) (28)

where diff(A) is a matrix of column differences of A (as in the Matlab function
diff) and orth(A) is the orthonormal basis of A (as in the Matlab function orth).
So for a 2-by-2 ANOVA

C1 = C2 = [1, 1]T D1 = D2 = [1,−1]T (29)

(ignoring overall scaling of these matrices). Cm can be thought of as the com-
mon effect for the mth factor and Dm as the differential effect for the mth
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factor. Then contrasts for each experimental effect can be obtained by the
Kronecker products of Cm’s and Dm’s for each factor m = 1...M . For a 2-by-2
ANOVA for example the two main effects and interaction are respectively

D1 ⊗ C2 = [1 1 −1 −1]T

C1 ⊗D2 = [1 −1 1 −1]T

D1 ⊗D2 = [1 −1 −1 1]T
(30)

This also illustrates why an interaction can be thought of as a difference of
differences. The product C1 ⊗ C2 represents the constant term.

For a 3-by-3 ANOVA

C1 = C2 = [1, 1, 1]T D1 = D2 =

[
0.82 −0.41 −0.41

0 0.71 −0.71

]T

(31)

and the two main effects and interaction are respectively

D1 ⊗ C2 =

[
0.82 0.82 0.82 −0.41 −0.41 −0.41 −0.41 −0.41 −0.41

0 0 0 0.71 0.71 0.71 −0.71 −0.71 −0.71

]T

(32)

C1 ⊗D2 =

[
0.82 −0.41 −0.41 0.82 −0.41 −0.41 0.82 −0.41 −0.41

0 0.71 −0.71 0 0.71 −0.71 0 0.71 −0.71

]T

(33)

D1 ⊗D2 =


0.67 −0.34 −0.34 −0.34 0.17 0.17 −0.34 0.17 0.17

0 0.58 −0.58 0 −0.29 0.29 0 −0.29 0.29
0 0 0 0.58 −0.29 −0.29 −0.58 0.29 0.29
0 0 0 0 0.50 −0.50 0 −0.50 0.50


T

(34)

5.1 Two-stage procedure for partitioned errors

Repeated measures M-way ANOVAs with partitioned errors can be imple-
mented in SPM using the following recipe.

1. Set up first level design matrices where each cell is modelled separately
as indicated in equation 27.

2. Fit first level models.

3. For the effect you wish to test, use the Kronecker product rules outlined
in the previous section to see what F-contrast you’d need to use to test
the effect at the first level. For example, to test for an interaction in a
3×3 ANOVA you’d use the F-contrast in equation 34 (application of this
contrast to subject n’s data tells you how significant that effect is in that
subject).

4. If the F-contrast in the previous step has Rc rows then, for each subject,
create the corresponding Rc contrast images. For N subjects this then
gives a total of NRc contrast images that will be modelled at the second-
level.

5. Set up a second-level design matrix, X2 = IRc ⊗ 1N , obtained in SPM by
selecting a one-way ANOVA (without a constant term). The number of
conditions is Rc. For example, in a 3x3 ANOVA, X2 = I4 ⊗ 1N as shown
in Figure 10.
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6. Fit the second level model.

7. Test for the effect using the F-contrast C2 = IRc .

For each effect we wish to test we must get the appropriate contrast images
from the first level (step 3) and implement a new 2nd level analysis (steps 4 to
7).

Note that, because we are taking differential effects to the second level we
don’t need include subject effects at the second level.

Figure 10: Second-stage design matrix for interaction in 3x3 ANOVA (partitioned
errors).

6 Note on effects other than main effects

and interactions

Finally, note that there are situations where one uses an ”ANOVA-type” model,
but does not want to test a conventional ”main effect” or ”interaction”. One
example is when one factor represents the ”basis functions” used in an event-
related fMRI analysis. So if one used three basis functions, such as SPM’s
canonical HRF and two partial derivatives, to model a single event-type (versus
baseline), one might want to test the reliability of this response over subjects. In
this case, one would create for each subject the first-level contrasts: [1, 0, 0]T ,
[0, 1, 0]T and [0, 0, 1]T , and enter these as the data for a second-level 1-by-3
ANOVA, without a constant term.

In this model, we do not want to test for differences between the means
of each basis function. For example, it is not meaningful to ask whether the
parameter estimate for the canonical HRF differs from that for the temporal
derivative. In other words, we do not want to test the null hypothesis for a
conventional ”main effect”, as described in equation 9. Rather, we want to test
whether the sum of squares of the mean of each basis function explains signifi-
cant variability relative to the total variability over subjects. This corresponds
to the F-contrast:
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c2 =

 1 0 0
0 1 0
0 0 1

 (35)

(which is the default ”effects of interest” contrast given for this model in
SPM). This is quite different from the F-contrast:

c2 =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 (36)

which is the default ”effects of interest” contrast given for a model that
includes a constant term (or subject effects) in SPM, and would be appropriate
instead for testing the main effect of such a 3-level factor.

References

A The extra sum-of-squares principle

The statistical machinery behind analysis of variance is model comparison. In
classical statistics this rests on the use of F-tests as described in the following
material taken from [5].

The extra sum-of-squares principle provides a method of assessing general
linear hypotheses, and for comparing models in a hierarchy, where inference is
based on a F-statistic. Here, we will describe the classical F-test based on the
assumption of an independent identically distributed error.

We first describe the classical F-test as found in nearly all introductory
statistical texts. After that we will point at two critical limitations of this
description and derive a more general and better suited implementation of the
F-test for typical models in neuroimaging.

Suppose we have a model with parameter vector β that can be partitioned
into two, β = [β1, β2]

T , and suppose we wish to test H0 : β1 = 0. The cor-
responding partitioning of the design matrix X is X = [X1, X2], and the full
model is:

y = [X1, X2]

 β1

· · ·
β2

 + ε

which, whenH0 is true, reduces to the reduced model : Y = X2β2+ε. Denote
the residual sum-of-squares for the full and reduced models by S(β) and S(β2)
respectively. The extra sum-of-squares due to β1 after β2 is then defined as
S(β1|β2) = S(β2) − S(β). Under H0, S(β1|β2) ∼ σ2χ2

p independent of S(β),
where the degrees of freedom are rank(X)− rank(X2). (If H0 is not true, then
S(β1|β2) has a non-central chi-squared distribution, still independent of S(β).)
Therefore, the following F -statistic expresses evidence against H0:

F =
S(β2)−S(β)

p−p2

S(β)
J−p

∼ Fp−p2,J−p (37)
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where p = rank(X), p2 = rank(X2) and J is the number of observations
(length of y). The larger F gets, the more unlikely it is that F was sampled
under the null hypothesis H0. Significance can then be assessed by comparing
this statistic with the appropriate F -distribution.

This formulation of the F -statistic has two limitations. The first is that two
(nested) models, the full and the reduced model, have to be fitted to the data.
In practice, this is implemented by a two-pass procedure on a, typically, large
data set. The second limitation is that a partitioning of the design matrix into
two blocks of regressors is not the only way one can partition the design matrix
space. Essentially, one can partition X into two sets of linear combinations of
the regressors. As an example, one might be interested in the difference between
two effects. If each of these two effects is modelled by one regressor, a simple
partitioning is not possible and one cannot use Eq. 37 to test for the difference.
Rather, one has to re-parameterize the model such that the differential effect
is explicitly modelled by a single regressor. As we will show in the following
section this re-parameterization is unnecessary.

The key to implement an F-test that avoids these two limitations is the
notion of contrast matrices. A contrast matrix is a generalisation of a contrast
vector (see [4]). Each column of a contrast matrix consists of one contrast
vector. Importantly, the contrast matrix controls the partitioning of the design
matrix X.

A.1 Equivalence of contrast approach

A (user-specified) contrast matrix C is used to determine a subspace of the
design matrix, i.e. Xc = XC. The orthogonal contrast to C is given by
C0 = IJ − CC−. Then, let X0 = XC0 be the design matrix of the reduced
model. We wish to compute what effects Xc explain, after first fitting the re-
duced model X0. The important point to note is that although C and C0 are
orthogonal to each other, Xc and X0 are possibly not, because the relevant re-
gressors in the design matrix X can be correlated. If the partitions X0 and Xc

are not orthogonal, the temporal sequence of the subsequent fitting procedure
attributes their shared variance to X0. However, the subsequent fitting of two
models is unnecessary, because one can construct a projection matrix from the
data to the subspace of Xc, which is orthogonal to X0. We denote this subspace
by X1.

The projection matrix M due to X1 can be derived from the residual forming
matrix of the reduced model X0. This matrix is given by R0 = IJ − X0X0

−.
The projection matrix is then M = R0 − R, where R is the residual forming
matrix of the full model, i.e. R = IJ −XX−.

The F-statistic can then be written as

F =
(My)T My

(Ry)T Ry

J − p

p1
=

yT My

yT Ry

J − p

p1
∼ Fp1,J−p (38)

where p1 is the rank of X1. Since M is a projector onto a subspace within
X, we can also write

F =
β̂T XT MXβ̂

yT Ry

J − p

p1
∼ Fp1,J−p (39)
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This equation means that we can conveniently compute a F-statistic for
any user-specified contrast without any re-parameterization. In SPM, all F -
statistics are based on the full model so that yT Ry needs only to be estimated
once and be stored for subsequent use.

In summary, the formulation of the F-statistic in Eq. 39 is a powerful tool,
because by using a contrast matrix C we can test for a subspace spanned by con-
trasts of the design matrix X. Importantly, we do not need to reparameterise
the model and estimate an additional parameter set, but can use estimated
parameters of the full model. This is very important in neuroimaging because
model parameters must be estimated at every voxel in the image, and typically
there are 105 voxels.

A.2 F-contrasts to specify subspaces

To test, for example, the main effect of factor A, we can specify two contrasts
that specify subspaces of X in Figure 9(a). The contrast for the full model of
the main effect of A is

CT
1 =

[
c 01,J

0N,P c⊗ IN

]
(40)

where 0N,P is an N × P zero matrix and c = [1, 0, 0, 0], while the contrast for
the corresponding reduced model is

CT
0 =

[
0N,P c⊗ IN

]
(41)

These two contrasts are shown in Figures 9(b) and (c) respectively. We can
then define

D0 = IJ − C0C
−
0 (42)

D1 = IJ − C1C
−
1

X0 = XD0

X1 = XD1

R0 = IJ −X0X
−
0

R1 = IJ −X1X
−
1

with which (see Appendix A.1)

M = R0 −R1 (43)
DF = [rank(X1)− rank(X0), J − rank(X1)]

β̂ = X−
1 y

F =
β̂T XT

1 MX1β̂

yT R1y

(J − rank(X1))
rank(X1)− rank(X0)

B The Kronecker Product

If A is an m1 ×m2 matrix and B is an n1 × n2
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matrix, then the Kronecker product of A and B is the (m1n1) × (m2n2)
matrix

A⊗B =

 a11B ... a1m2B
...
am11B am1m2B

 (44)

C Definitions

C.1 Circularity

A covariance matrix Σ is circular if

Σii + Σjj − 2Σij = 2λ (45)

for all i,j.

C.2 Compound Symmetry

If all the variances are equal to λ1 and all the covariances are equal to λ2 then
we have compound symmetry.

C.3 Nonsphericity

If Σ is a K×K covariance matrix and the first K−1 eigenvalues are identically
equal to

λ = 0.5(Σii + Σjj − 2Σij) (46)

then Σ is spherical. Every other matrix is non-spherical or has nonsphericity.

C.4 Greenhouse-Geisser correction

For a 1-way ANOVA between subjects with N subjects and K levels the overall
F statistic is then approximately distributed as

F [(K − 1)ε, (N − 1)(K − 1)ε] (47)

where

ε =
(
∑K−1

i=1 λi)2

(K − 1)
∑K−1

i=1 λ2
i

(48)

and λi are the eigenvalues of the normalised matrix Σz where

Σz = MT ΣyM (49)

and M is a K by K − 1 matrix with orthogonal columns (eg. the columns are
the first K − 1 eigenvectors of Σy).
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D Within-subject models

The model in equation 11 can also be written as

yn = 1Kπn + τ + en (50)

where yn is now the K × 1 vector of measurements from the nth subject, 1K

is a K × 1 vector of 1’s, and τ is a K × 1 vector with kth entry τk and en is a
K × 1 vector with kth entry enk where

p(en) = N(0,Σe) (51)

We have a choice as to whether to treat the subject effects πn as fixed-effects
or random-effects. If we choose random-effects then

p(πn) = N(µ, σ2
π) (52)

and overall we have a mixed-effects model as the typical response for subject n,
πn, is viewed as a random variable whereas the typical response to treatment
k, τk, is not a random variable. The reduced model is

yn = 1Kπn + en (53)

For the full model we can write

p(y) =
N∏

n=1

p(yn) (54)

p(yn) = N(my,Σy)

and

my = 1Kµ + τ (55)
Σy = 1Kσ2

π1T
K + Σe

of the subject effects are random-effects and Σy = Σe otherwise. If Σe = σ2
eIK

then Σy has compound symmetry. It is also spherical (see Appendix C). For
K = 4 for example

Σy =


σ2

π + σ2
e σ2

π σ2
π σ2

π

σ2
π σ2

π + σ2
e σ2

π σ2
π

σ2
π σ2

π σ2
π + σ2

e σ2
π

σ2
π σ2

π σ2
π σ2

π + σ2
e

 (56)

If we let Σy = (σ2
π + σ2

e)Ry then

Ry =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 (57)
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where

ρ =
σ2

π

σ2
π + σ2

e

(58)

For a more general Σe, however, Σy will be non-spherical. In this case,
we can attempt to correct for the nonsphericity. One approach is to reduce
the degrees of freedom by a factor 1

K−1 ≤ ε ≤ 1, which is an estimate of the
degree of nonsphericity of Σy (the Greenhouse-Geisser correction; see Appendix
C.4). Various improvements of this correction (eg. Huhn-Feldt) have also been
suggested (see [3]). Another approach is to explicitly parameterise the error
covariance matrix Σe using a linear expansion and estimated using ReML (see
[1] for a full treatment).
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