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Introduction

Hierarchical models are central to many current analyses of functional imaging
data including random effects analysis (Chapter 12), EEG source localization
(Chapter 28 to 30) and spatiotemporal models of imaging data (Chapters 25 and
26 and [Friston et al. 2002b]). These hierarchical models posit linear relations
among variables with error terms that are Gaussian. The General Linear Model
(GLM), which to date has been so central to the analysis of functional imaging
data, is a special case of these hierarchical models consisting of just a single
layer.

Model fitting and statistical inference for hierarchical models can be im-
plemented using a Parametric Empirical Bayes (PEB) algorithm described in
Chapter 24 and in [Friston et al. 2002a]. The algorithm is sufficiently general
to accomodate multiple hierarchical levels and allows for the error covariances
to take on arbitrary form. This generality is particularly appealing as it renders
the method applicable to a wide variety of modelling scenarios. Because of this
generality, however, and the complexity of scenarios in which the method is ap-
plied, readers wishing to learn about PEB for the first time are advised to read
this Chapter first. Chapter 24 then goes on to discuss the more general case.
It also shows that the variance components that are estimated using PEB, can
also be estimated using an algorithm from classical statistics called Restricted
Maximum Likelihood (ReML).

In this Chapter we provide an introduction to hierarchical models and focus
on some relatively simple examples. This Chapter covers the relevant mathe-
matics and numerical examples are presented in the following Chapter. Each
model and PEB algorithm we present is a special case of that described in
[Friston et al. 2002a]. Whilst there are a number of tutorials on hierarchical
modelling [Lee 1997, Carlin and Louis 2000] what we describe here has been
tailored for functional imaging applications. We also note that a tutorial on
hierarchical models is, to our minds, also a tutorial on Bayesian inference, as
higher levels act as priors for parameters in lower levels. Readers are there-
fore encouraged to also consult background texts on Bayesian inference, such as
[Gelman 1995].

This Chapter focusses on two-level models and shows how one computes the
posterior distributions over the first- and second-level parameters. These are
derived, initially, for completely general designs and error covariance matrices.
We then consider two special cases; (i) models with equal error variances and
(ii) separable models. We assume initially that the covariance components are
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known, and then in the section on PEB, we show how they can be estimated.
A numerical example is then given showing PEB in action. The Chapter then
describes how Bayesian inference can be implemented for hierarchical models
with arbitrary probability distributions (eg. non-Gaussian), using the belief
propagation algorithm. We close with a discussion.

In what follows, the notation N(m,Σ) denotes a uni/multivariate normal
distribution with mean m and variance/covariance Σ and lower-case p’s denote
probability densities. Upper case letters denote matrices, lower case denote
column vectors and xT denotes the transpose of x. We will also make extensive
use of the normal density ie. if p(x) = N(m,Σ) then

p(x) ∝ exp
(
−1

2
(x−m)T Σ−1(x−m)

)
(1)

We also use Var[] to denote variance, ⊗ to denote the Kronecker product and
X+ to denote the pseudo-inverse.

Two-level models

We consider two-level linear Gaussian models of the form

y = Xw + e (2)
w = Mµ + z

where the errors are zero mean Gaussian with covariances Cov[e] = C and
Cov[z] = P . The model is shown graphically in Figure 1. The column vectors
y and w have K and N entries respectively. The vectors w and µ are the
first- and second-level parameters and X and M are the first- and second-level
design matrices. Models of this form have been used in functional imaging.
For example, in random effects analysis the second level models describe the
variation of subject effect sizes about a population effect size, µ. In Bayesian
inference with shrinkage priors, the second-level models variation of effect-size
over voxels around a whole-brain mean effect size of µ = 0 (ie. for a given
cognitive challenge the response of a voxel chosen at random is, on average,
zero). See, for example, [Friston et al. 2002b].

The aim of Bayesian inference is to make inferences about w and µ based
on the posterior distributions p(w|y) and p(µ|y). These can be derived as fol-
lows. We first note that the above equations specify the likelihood and prior
probability distributions

p(y|w) ∝ exp
(
− 1

2 (y −Xw)T C−1(y −Xw)
)

(3)

p(w) ∝ exp
(
− 1

2 (w −Mµ)T P−1(w −Mµ)
)

The posterior distribution is then

p(w|y) ∝ p(y|w)p(w) (4)

Taking logs and keeping only those terms that depend on w gives

log p(w|y) = −1
2
(y −Xw)T C−1(y −Xw) (5)
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− 1
2
(w −Mµ)T P−1(w −Mµ) + ..

= −1
2
wT (XT C−1X + P−1)w + wT (XT C−1y + P−1Mµ) + ..

Taking logs of the Gaussian density p(x) in equation 1 and keeping only those
terms that depend on x gives

log p(x) = −1
2
xT Σ−1x + xT Σ−1m + .. (6)

Comparing equation 5 with terms in the above equation shows that

p(w|y) = N(m,Σ) (7)
Σ−1 = XT C−1X + P−1

m = Σ(XT C−1y + P−1Mµ)

The posterior distribution over the second-level coefficient is given by Bayes’
rule as

p(µ|y) =
p(y|µ)p(µ)

p(y)
(8)

However, because we do not have a prior p(µ) this posterior distribution becomes
identical to the likelihood term, p(y|µ), which can be found by eliminating the
first-level parameters from our two equations ie. by substituting the second level
equation into the first giving

y = XMµ + Xz + e (9)

which can be written as
y = X̃µ + ẽ (10)

where X̃ = XM and ẽ = Xz + e. The solution to equation 10 then gives

p(µ|y) = N(µ̂, Σµ) (11)

µ̂ = (X̃T C̃−1X̃)−1X̃T C̃−1y

Σµ = (X̃T C̃−1X̃)−1

where the covariance term

C̃ = Cov[ẽ] (12)
= XPXT + C

We have now achieved our first goal, the posterior distributions of first- and
second-level parameters being expressed in terms of the data, design and error-
covariance matrices. We now consider the special cases of sensor fusion, equal
variance models and separable models.

Sensor Fusion

The first special case is the univariate model

y = w + e (13)
w = µ + z
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with a single scalar data point, y, and variances C = 1/β, P = 1/α specified
in terms of the data precision β and the prior precision α (the ‘precision’ is the
inverse variance). Plugging these values into equation 7 gives

p(w|y) = N(m,λ−1) (14)
λ = β + α

m =
β

λ
y +

α

λ
µ

Despite its simplicity this model possesses two important features of Bayesian
learning in linear-Gaussian models. The first is that ‘precisions add’ - the pos-
terior precision is the sum of the data precision and the prior precision. The
second is that the posterior mean is the sum of the data mean and the prior
mean, each weighted by their relative precisions. A numerical example is shown
in Figure 2.

Equal variance

This special case is a two-level multivariate model as in equation 2 but with
isotropic covariances at both the first and second levels. We have C = β−1IK

and P = α−1IN . This means that observations are independent and have the
same error variance. This is an example of the errors being Independent and
Identically Distribution (IID), where in this case the distribution is a zero-mean
Gaussian having a particular variance. In this Chapter we will also use the
term ‘sphericity’ for any model with IID errors. Models without IID errors will
have ‘non-sphericity’ (as an aside we note that IID is not actually a require-
ment of ‘sphericity’ and readers looking for a precise definition are referred to
[Winer et al. 1991] and to Chapter 10).

On a further point of terminology, the unknown vectors w and µ will be
referred to as ‘parameters’ whereas variables related to error covariances will be
called ‘hyperparameters’. The variables α and β are therefore hyperparameters.
The posterior distribution over first level parameters is given by

p(w|y) = N(ŵ, Σ̂) (15)
Σ̂ = (βXT X + αIN )−1

ŵ = Σ̂
(
βXT y + αMµ

)
Note that if α = 0 we recover the Maximum Likelihood estimate

ŵML = (XT X)−1XT y (16)

This is the familiar Ordinary Least Squares (OLS) estimate used in the GLM
[Holmes et al. 1997]. The posterior distribution over the second level parame-
ters is given by equation 11 with

C̃ = β−1IK + α−1XXT (17)

Separable model

We now consider ‘separable models’ which can be used, for example, for random
effects analysis. Figure 3 shows the corresponding generative model. In these
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models, the first-level splits into N separate sub-models. For each sub-model, i,
there are ni observations. These form the ni-element vector yi giving informa-
tion about the parameter wi via the design vector xi. For fMRI analysis these
design vectors comprise stimulus functions eg. boxcars or delta functions, con-
volved with an assumed hemodynamic response. The overall first-level design
matrix X then has a block-diagonal form X = blkdiag(x1, .., xi, .., xN ) and the
covariance is given by C = diag[β11T

n1
, .., βi1T

ni
, .., βN1T

nN
] where 1n is a column

vector of 1’s with n entries. For example, for N = 3 groups with n1 = 2, n2 = 3
and n3 = 2 observations in each group

X =



x1(1) 0 0
x1(2) 0 0
0 x2(1) 0
0 x2(2) 0
0 x2(3) 0
0 0 x3(1)
0 0 x3(2)


(18)

and C−1 = diag[β1, β1, β2, β2, β2, β3, β3]. The covariance at the second level is
P = α−1IN , as before, and we also assume that the second level design matrix is
a column of 1’s, M = 1N . The posterior distribution over first level parameters
is found by substituting X and C into equation 7. This gives a distribution
which factorises over the different first level coefficients such that

p(w|y) =
N∏

i=1

p(wi|y) (19)

p(wi|y) = N(ŵi, Σ̂ii)
Σ̂−1

ii = βix
T
i xi + α

ŵi = Σ̂iiβix
T
i yi + Σ̂iiαµ

The posterior distribution over second level parameters is, from equation 11,
given by

p(µ|y) = N(µ̂, σ2
µ) (20)

σ2
µ =

1∑N
i=1 xT

i (α−1xixT
i + β−1

i )−1xi

µ̂ = σ2
µ

N∑
i=1

xT
i (α−1xix

T
i + β−1

i )−1yi

We note that in the absence of any second level variability, ie. α → ∞, the
estimate µ̂ reduces to the mean of the first level coefficients weighted by their
precision

µ̂ =
∑

i βix
T
i yi∑

i βixT
i xi

(21)

Parametric Empirical Bayes

In the previous section we have shown how to compute the posterior distribu-
tions p(w|y) and p(µ|y). As can be seen from equations 7 and 11, however,
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these equations depend on covariances P and C. In this section we show how
covariance components can be estimated for the special cases of equal variance
models and separable models.

In [Friston et al. 2002a] the covariances are decomposed using using

C =
∑

j

λ1
jQ

1
j (22)

P =
∑

j

λ2
jQ

2
j

where Q1
j and Q2

j are basis functions that are specified by the modeller depend-
ing on the application in mind. For example, for analysis of fMRI data from a
single subject two basis functions are used, the first relating to error variance
and the second relating to temporal autocorrelation [Friston et al. 2002b]. The
hyperparameters λ = [{λ1

j}, {λ2
j}] are unknown but can be estimated using the

PEB algorithm described in [Friston et al. 2002a]. Variants of this algorithm
are known as the evidence framework [Mackay 1992] or Maximum Likelihood II
(ML-II) [Berger 1985]. The PEB algorithm is also referred to as simply Empir-
ical Bayes but we use the term PEB to differentiate it from the Nonparametric
Empirical Bayes methods described in [Carlin and Louis 2000]. The hyperpa-
rameters are set so as to maximise the evidence (also known as the marginal
likelihood)

p(y|λ) =
∫

p(y|w, λ)p(w|λ)dw (23)

This is the likelihood of the data after we have integrated out the first-level
parameters. For the two multivariate special cases described above, by substi-
tuting in our expressions for the prior and likelihood, integrating, taking logs
and then setting the derivatives to zero, we can derive a set of update rules
for the hyperparameters. These derivations are provided in the following two
sections.

Equal variance

For the equal variance model the objective function is

p(y|α, β) =
∫

p(y|w, β)p(w|α)dw (24)

Substituting in expressions for the likelihood and prior gives

p(y|α, β) =
(

β

2π

)K/2 ( α

2π

)N/2
∫

exp
(
−β

2
e(w)T e(w)− α

2
z(w)T z(w)

)
dw

where e(w) = y −Xw and z(w) = w −Mµ. By re-arranging the terms in the
exponent (and keeping all of them, unlike before) where we were only interested
in w-dependent terms) the integral can be written as

I =
[∫

exp
(
−1

2
(w − ŵ)T Σ̂−1(w − ŵ)

)
dw

]
(25)

.

[
exp

(
−β

2
e(ŵ)T e(ŵ)− α

2
z(ŵ)T z(ŵ)

)]
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where the second term is not dependent on w. The first factor is then simply
given by the normalising constant of the multivariate Gaussian density

(2π)N/2|Σ̂|1/2 (26)

Hence,

p(y|α, β) =
(

β

2π

)K/2

αN/2|Σ̂|1/2 exp
(
−β

2
e(ŵ)T e(ŵ)− α

2
z(ŵ)T z(ŵ)

)
where |Σ̂| denotes the determinant of Σ̂. Taking logs gives the ‘log-evidence’

F =
K

2
log

β

2π
+

N

2
log α +

1
2

log |Σ̂| − β

2
e(ŵ)T e(ŵ)− α

2
z(ŵ)T z(ŵ) (27)

To find equations for updating the hyperparameters we must differentiate F
with respect to α and β and set the derivative to zero. The only possibly
problematic term is the log-determinant but this can be differentiated by first
noting that the inverse covariance is given by

Σ̂−1 = βXT X + αIN (28)

If λj are the eigenvalues of the first term then the eigenvalues of Σ̂−1 are λj +α.
Hence,

|Σ̂−1| =
∏
j

(λj + α) (29)

|Σ̂| =
1∏

j(λj + α)

log |Σ̂| = −
∑

j

log(λj + α)

∂

∂α
log |Σ̂| = −

∑
j

1
λj + α

Setting the derivative ∂F/∂α to zero then gives

αz(ŵ)T z(ŵ) = N −
∑

j

α

λj + α
(30)

=
∑

j

λj + α

λj + α
−

∑
j

α

λj + α

=
∑

j

λj

λj + α

This is an implicit equation in α which leads to the following update rule. We
first define the quantity γ which is computed from the ‘old’ value of α

γ =
N∑

j=1

λj

λj + α
(31)
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and then let

1
α

=
z(ŵ)T z(ŵ)

γ
(32)

The update for β is derived by first noting that the eigenvalues λj are linearly
dependent on β. Hence

∂λj

∂β
=

λj

β
(33)

The derivative of the log-determinant is then given by

∂

∂β
log |Σ̂−1| =

1
β

∑
j

λj

λj + α
(34)

which leads to the update

1
β

=
e(ŵ)T e(ŵ)

K − γ
(35)

The PEB algorithm consists of iterating the update rules in equations 31, 32, 35
and the posterior estimates in equation 15, until convergence.

The update rules in equations 31, 32 and 35 can be interpreted as follows.
For every j for which λj >> α, the quantity γ increases by 1. As α is the prior
precision and λj is the data precision (of the jth ‘eigencoefficient’) γ therefore
measures the number of parameters that are determined by the data. Given K
data points, the quantity K − γ therefore corresponds to the number of degrees
of freedom in the data set. The variances α−1 and β−1 are then updated based
on the sum of squares divided by the appropriate degrees of freedom.

Separable models

For separable models the objective function is

p(y|α, {βi}) =
∫

p(y|w, {βi})p(w|α)dw (36)

Because the second-level here is the same as for the equal variance case, so is
the update for alpha. The updates for βi are derived in a similar manner as
before but we also make use of the fact that the first-level posterior distribution
factorises (see equation 19). This decouples the updates for each βi and results
in the following PEB algorithm

êi = yi − ŵixi (37)
ẑi = ŵi − µ̂

λi = βix
T
i xi

γi =
λi

λi + α

γ =
∑

i

γi

βi = (ni − γi)/êT
i êi

α = γ/ẑT ẑ
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ŵi = (βix
T
i yi + αµ)/(λi + α)

di = (α−1xix
T
i + β−1

i Ini
)−1

σ2
µ = 1/(

∑
i

xT
i dixi)

µ̂ = σ2
µ

∑
i

xT
i diyi

Initial values for ŵi and βi are set using OLS, µ̂ is initially set to the mean of
ŵi and α is initially set to 0. The equations are then iterated until convergence
(in our examples in Chapter 12 we never required more than ten iterations).
Whilst the above updates may seem somewhat complex, they can perhaps be
better understood in terms of messages passing among nodes in a hierarchical
network. This is shown in Figure 4 for the ‘prediction’ and ‘prediction error’
variables.

The PEB algorithms we have described show how Bayesian inference can
take place when the variance components are unknown (in the previous sec-
tion, we assumed the variance components were known). An application of this
PEB algorithm to random effects analysis is provided in the next Chapter. We
now provide a brief numerical example demonstrating the iterations with PEB
updates.

Numerical example

This numerical example caricatures the use of PEB for estimating effect sizes
from functional imaging data described in Chapter 23. The approach uses a
‘global shrinkage prior’ which embodies a prior belief that across the brain (i)
the average effect is zero, µ = 0 and (ii) the variability of responses follows a
Gaussian distribution with precision α. Mathematically, we can write p(wi) =
N(0, α−1). Figure 5(a) shows effect sizes generated from this prior for a N = 20-
voxel brain and α = 1.

Chapter 23 allows for multiple effects to be expressed at each voxel and for
PET/fMRI data to be related to effect sizes using the full flexibility of General
Linear Models (GLMs). Here, we just assume that data at each voxel are
normally distributed about the effect size at that voxel. That is, p(yi|wi) =
N(wi, β

−1
i ). Figure 5(b) shows ni = 10 data points at each voxel generated

from this likelihood. We have allowed the observation noise precision βi to be
different at each voxel. Voxels 2, 15 and 18, for example, have noisier data than
others.

Effect sizes were then estimated from this data using Maximum-Likelihood
(ML) and PEB. ML estimates are shown in Figure 5(c) and (d). These are sim-
ply computed as the mean value observed at each voxel. PEB was implemented
using the updates in equation 37 with µ = 0 and xi = 1ni

and initialised with
α = 0 and βi and ŵi set to ML-estimated values.

Equation 37 was then iterated, resulting in effect size estimates shown in
Figure 6 before iterations one, three, five and seven. These estimates seem rather
stable after only two or three iterations. Only the effects at voxels 5 and 15
seem markedly changed between iterations three and seven. The corresponding
estimates of α were 0, 0.82, 0.91 and 0.95, showing convergence to the true prior
response precision value of 1.
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It is well known that PEB provides estimates that are, on average, more
accurate than ML. Here, we quantify this using, σs, the standard deviation
across voxels of the difference between the true and estimated effects. For ML,
σs = 0.71 and for PEB, σs = 0.34. That PEB estimates are twice as accurate
on average can be seen by comparing Figures 6(a) and (d). Of course, PEB is
only better ‘on average’. It does better at most voxels at the expense of being
worse at a minority, for example, voxel 2. This trade-off is discussed further in
Chapter 22.

PEB can do better than ML because it uses more information. Here, the
information that effects have a mean of zero across the brain and follow a Gaus-
sian variability profile. This shows the power of Bayesian estimation, which
combines prior information with data in an optimal way. In this example, a
key parameter in this trade off is the parameter γi which is computed as in
equation 37. This quantity is the ratio of the data precision to the posterior
precision. A value of 1 indicates that the estimated effect is determined solely
by the data, as in ML. A value of 0 indicates the estimate is determined solely
by the prior. For most voxels in our data set we have γi ≈ 0.9, but for the
noisy voxels 2, 15 and 18, we have γi ≈ 0.5. PEB thus relies more on prior
information where data is unreliable.

PEB will only do better than ML if the prior is chosen appropriately. For
functional imaging data, we will never know what the ‘true prior’ is, just as we’ll
never know what the ‘true model’ is. But some priors and models are better
than others, and there is a formal method for deciding between them. This is
‘Bayesian model selection’ and is described in Chapter 35.

Finally, we note that the prior used here does not use spatial information
ie. there is no notion that voxel 5 is ‘next to’ voxel 6. It turns out that
for functional imaging data, spatial information is important. In Chapter 25
we describe Bayesian fMRI inference with spatial priors. Bayesian model se-
lection shows that models with spatial priors are preferred to those without
[Penny et al. 2006].

Belief propagation

This Chapter has focussed on the special case of two-level models and Gaus-
sian distributions. It is worthwhile noting that the general solution to infer-
ence in tree-structured hierarchical models, which holds for all distributions,
is provided by the ‘sum-product’ or ‘belief propagation’ algorithm [Pearl 1988,
Jordan and Weiss 2002]. This is a message passing algorithm which aims to de-
liver the marginal distributions 1 at each point in the hierarchy. It does this by
propagating evidence up the hierarchy and marginal distributions down. If the
downward messages are passed after the upward messages have reached the top,
then this is equivalent to propagating the posterior beliefs down the hierarchy.
This is shown schematically in Figure 7.

This general solution is important as it impacts on non-Gaussian and/or non-
linear hierarchical models. Of particular relevance are the models of inference
in cortical hierarchies [Friston 2003] referred to in later Chapters of the book.
In these models evidence flows up the hierarchy, in the form of prediction errors,

1The probability distribution over a set of variables is known as the joint distribution. The
distribution over a subset is known as the marginal distribution.
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and marginal distributions flow down, in the form of predictions. Completion of
the downward pass explains late components of event related potentials which
are correlated with eg. extra-classical receptive field effects [Friston 2003]. This
general solution also motivates a data analysis approach known as Bayesian
Model Averaging (BMA), described further in Chapter 35, where eg. x3 in
Figure 7 embodies assumptions about model structure. The downward pass
of belief propagation then renders our final inferences independent of these as-
sumptions. See Chapter 16 of [Mackay 2003] and [Ghahramani 1998] for further
discussion of these issues.

Discussion

We have described Bayesian inference for some particular two-level linear-Gaussian
hierarchical models. A key feature of Bayesian inference in this context is that
the posterior distributions are Gaussian with precisions that are the sum of the
data and prior precisions. The posterior means are the sum of the data and
prior means, but each weighted according to their relative precision. With zero
prior precision, two-level models reduce to a single-level model (ie. a GLM)
and Bayesian inference reduces to the familiar maximum-likelihood estimation
scheme. With non-zero and, in general unknown, prior means and precisions
these parameters can be estimated using PEB. These covariance components
can also be estimated using the ReML algorithm from classical statistics. The
relation between PEB and ReML is discussed further in Chapter 22.

We have described two special cases of the PEB algorithm, one for equal
variances and one for separable models. Both algorithms are special cases of
a general approach described in [Friston et al. 2002a] and in Chapter 24. In
these contexts, we have shown that PEB automatically partitions the total
degrees of freedom (ie. number of data points) into those to be used to estimate
the hyperparameters of the prior distribution and those to be used to estimate
hyperparameters of the likelihood distribution. The next Chapter describes how
PEB can be used in the context of random effects analysis.

References

[Berger 1985] J.O. Berger. Statistical Decision Theory and Bayesian Analysis.
Springer-Verlag, 1985.

[Carlin and Louis 2000] B.P. Carlin and T.A. Louis. Bayes and Empirical Bayes
Methods for Data Analysis. Chapman and Hall, 2000.

[Friston et al. 2002a] K.J. Friston, W.D. Penny, C. Phillips, S.J. Kiebel, G. Hin-
ton, and J. Ashburner. Classical and Bayesian inference in neuroimaging:
Theory. NeuroImage, 16:465–483, 2002.

[Friston et al. 2002b] K.J. Friston, D.E. Glaser, R.N.A. Henson, S.J. Kiebel,
C. Phillips, and J. Ashburner. Classical and Bayesian inference in neu-
roimaging: Applications. NeuroImage, 16:484–512, 2002.

[Friston 2003] K. Friston. Learning and inference in the brain. Neural Networks,
16:1325–1352, 2003.

11



[Gelman 1995] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian
Data Analysis. Chapman and Hall, Boca Raton, 1995.

[Ghahramani 1998] Z. Ghahramani. Learning dynamic bayesian networks. In
C.L. Giles and M.Gori, editors, Adaptive Processing of Temporal Informa-
tion. Springer-Verlag, 1998.

[Holmes et al. 1997] A.P. Holmes, J.B. Poline, and K.J. Friston. Characterizing
brain images with the general linear model. In R.S.J. Frackowiak, K.J.
Friston, C. Frith, R. Dolan, and J.C. Mazziotta, editors, Human Brain
Function, pages 59–84. Academic Press USA, 1997.

[Jordan and Weiss 2002] M. Jordan and Y. Weiss. Graphical models: Proba-
bilistic inference. In M. Arbib, editor, The Handbook of Brain Theory and
Neural Networks. MIT Press, 2002.

[Lee 1997] P. M. Lee. Bayesian Statistics: An Introduction. Arnold, 2 edition,
1997.

[Mackay 1992] D.J.C. Mackay. Bayesian Interpolation. Neural computation,
4(3):415–447, 1992.

[Mackay 2003] D.J.C Mackay. Information Theory, Inference and Learning Al-
gorithms. Cambridge University Press, Cambridge, 2003.

[Pearl 1988] J. Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kauffman, 1988.

[Penny et al. 2006] W.D. Penny, G. Flandin, and N. Trujillo-Barreto. Bayesian
Comparison of Spatially Regularised General Linear Models. Human Brain
Mapping, 2006. Accepted for publication.

[Winer et al. 1991] B.J. Winer, D.R. Brown, and K.M. Michels. Statistical prin-
ciples in experimental design. McGraw-Hill, 1991.

12



Figure 1: Two-level hierarchical model. The data y are explained as deriving
from an effect w and a zero-mean Gaussian random variation with covariance
C. The effects w in turn are random effects deriving from a superordinate
effect µ and zero-mean Gaussian random variation with covariance P . The goal
of Bayesian inference is to make inferences about µ and w from the posterior
distributions p(µ|y) and p(w|y).
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Figure 2: Bayes rule for univariate Gaussians. The two solid curves show the
probability densities for the prior p(w) = N(µ, α−1) with µ = 20 and α = 1
and the likelihood p(y|w) = N(w, β−1) with w = 25 and β = 3. The dotted
curve shows the posterior distribution, p(w|y) = N(m,λ−1) with m = 23.75 and
λ = 4, as computed from equation 14. The posterior distribution is closer to the
likelihood because the likelihood has higher precision.
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Figure 3: Generative model for random effects analysis.
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Figure 4: Part of the PEB algorithm for separable models requires the upwards
propagation of prediction errors and downwards propagation of predictions. This
passing of messages between nodes in the hierarchy is a special case of the more
general belief propagation algorithm referred to in Figure 7

16



Figure 5: Data for PEB example. (a) Red circles denote ‘true’ effect sizes,
wi, for each voxel i, generated from the prior p(wi|α) = N(0, α−1) with α = 1.
(b) The black dots denote ni = 10 data points at each voxel generated from
the likelihood p(yi|wi) = N(wi, β

−1
i ) with βi drawn from a uniform distribution

between 0.1 and 1. Thus some voxels, eg. voxels 2, 15 and 18, have noisier data
than others. Plots (c) and (d) are identical to (a) and (b) but with blue crosses
indicating Maximum Likelihood (ML) estimates of the effect size, ŵi. These are
simply computed as the mean of the data at each voxel, and are used to initialise
PEB - see Figure 6.
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Figure 6: The plots show the true effect sizes, wi (red circles) and estimated
effect sizes, ŵi, (blue crosses) before PEB iteration number (a) one, (b) three,
(c) five and (d) seven. Plot (a) here is the same as plot (c) in the previous
figure, as the estimates were initialised using ML.
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Figure 7: Belief propagation for inference in hierarchical models. This algorithm
is used to update the marginal densities ie. to update p(xi) to p(xi|y). Inferences
based on purely the upward pass are contingent on variables in the layer above
whereas inferences based on upwards and downwards passes are not. Completion
of the downward pass delivers the marginal density. Application of this algorithm
to the two-level Gaussian model will produce the update equations 7 and 11.
More generally, this algorithm can be used for Bayesian model averaging, where
eg. x3 embodies assumptions about model structure, and as a model of inference
in cortical hierarchies, where eg. completion of the downward pass explains
extra-classical receptive field effects [Friston 2003].
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