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Abstract

We describe a Bayesian estimation and inference procedure for fMRI time series based on the use of General Linear Models with
Autoregressive (AR) error processes. We make use of the Variational Bayesian (VB) framework which approximates the true posterior
density with a factorised density. The fidelity of this approximation is verified via Gibbs sampling. The VB approach provides a natural
extension to previous Bayesian analyses which have used Empirical Bayes. VB has the advantage of taking into account the variability of
hyperparameter estimates with little additional computational effort. Further, VB allows for automatic selection of the order of the AR
process. Results are shown on simulated data and on data from an event-related fMRI experiment.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In neuroimaging, the estimation and inferences about
evoked responses have, thus far, rested largely upon classi-
cal inference. In statistics, however, there are two main
frameworks for making inferences, classical inference and
Bayesian inference. For a comparison of the different
frameworks see Barnett (1999) and Casella and Berger
(1990). Strong advocates of Bayesian analysis consider it
the only logical and self-consistent framework for probabi-
listic inference. The rationale behind such claims is laid
down in classic texts such as Box and Tiao (1992) and
Bernardo and Smith (2000). Adoption of a Bayesian infer-
ence framework has led to a multitude of advances in areas
such as image processing (Blake and Isard, 1998), signal
processing (O’Ruaniaidh and Fitzgerald, 1996), machine
learning (Jordan, 1999), and pattern recognition (Bishop,
1995). This is especially important as developments in these
fields have a follow-on impact on neuroimaging methodol-
ogy. The initial impact is already being felt (Friston et al.,
2002b).

Both (classical) maximum likelihood and Bayesian
analysis use the same model of how the data are caused,
often a linear model. However, they differ in both esti-

mation and inference. Bayesian analysis can be consid-
ered an extension of maximum likelihood that relies upon
the specification of prior expectations about the parame-
ters of the model, e.g., activations. In maximum-likeli-
hood estimation, the parameters are chosen to maximize
the likelihood of obtaining the observed data. In Bayesian
analysis the objective is to compute the probability of the
activation given the data, that is, the posterior density.
Through Bayes rule this requires the specification of
priors on the parameters or activations.

Inference in classical statistics proceeds by considering
the null hypothesis that there is no activation. A statistic is
then formed whose distribution under the null hypothesis
can be used to reject that hypothesis if the data are suffi-
ciently unlikely. For example a T statistic is a linear com-
pound of parameter estimates divided by the standard error.
The standard error in turn is based on the variance of the
compounding likelihood density. This variance corresponds
to a hyperparameter (a parameter of a probability density
function of parameters).

In Bayesian inference the probability that the activation
or contrast of parameters exceeds some specified threshold
can be computed directly from the posterior density. This
posterior density is parameterized by its own hyperparam-
eters. In short, to make an inference of a classical or Bayes-
ian sort both the parameters and the hyperparameters of a
model must be estimated. In classical inference the hyper-
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parameters are Restricted Maximum Likelihood (ReML)
estimates. These are simply the values of the hyperparam-
eter that maximize the probability of the data.

Critically, the variability in hyperparameter estimates
must enter into the inference. This variability is ex-
pressed through the degrees of freedom of classical sta-
tistics. For hierarchical linear Gaussian models with mul-
tiple hyperparameters we show (Kiebel et al., 2002a) how
this variability can be taken into account using a Satter-
thwaite-type approximation based on ReML estimates of
the hyperparameters.

In Bayesian inference this variability can be taken into
account by forming the full posterior over the parameters
and hyperparameters and then integrating out (i.e., aver-
aging over) the hyperparameters. The ensuing marginal
distribution is the posterior density of the parameters
required for inference. In practice, however, this integra-
tion is often problematic. Either time-consuming sam-
pling approaches are used or the variability is simply
ignored. In the empirical Bayes framework (Carlin and
Louis, 2000), for example, the variability in the hyper-
parameters is typically ignored leading to the “over-
confidence problem” (Friston et al., 2002a).

In this paper we present the general approach, Varia-
tional Bayes (VB), that approximates the posterior density
with an analytically tractable form based on the use of
conjugate priors and the assumption of (a degree of) factor-
ization in the posterior. This enables the posterior densities
of the hyperparameters to be modeled and resolves the
over-confidence problem. We introduce VB for functional
neuroimaging time series and illustrate its application to the
analysis of fMRI in the context of unknown hyperparam-
eters governing serial correlations among the errors.

In section 2 we describe the time-series model. In section
3 we describe the Variational Bayes methodology and in
section 4 show how it is applied to our model. This section
makes extensive reference to mathematical derivations
which are given in an appendix. In section 5 we present
results on simulated data and on data from an event-related
fMRI experiment.

2. Models of fMRI time series

A key issue in the analysis of fMRI time series is the
concern that succesive samples are serially correlated.
These correlations arise from neural, physiological, and
physical sources including the pulsatile motion of the brain
caused by cardiac cycles, local modulation of the static
magnetic field by respiratory movement, and unmodeled
neuronal activity. See Zarahn et al. (1997) and Woolrich et
al. (2001) for a full discussion. Not all of this correlation can
be removed by high-pass filtering as the required filter
cutoffs would also remove much of the signal.

A standard approach to the analysis of fMRI time series
employs voxel-wise General Linear Models (GLMs). The
data at each voxel, Y, are explained with a set of effects that
are incorporated into a design matrix, X. One then proceeds
by fitting the model

Y � Xw � E (1)

and making inferences based on the parameters, w. The
voxel-wise GLM approach, pioneered in (Friston et al.,
1995c) and developed in a Bayesian context (Friston et al.,
2002b), allows one to produce functional maps of the hu-
man brain derived from single- or multiple-subject fMRI
studies.

The serial correlation in the error time series, E, affects
both the model fitting and the statistical inference. This is
typically handled using a two-stage process where the cor-
relation is estimated in the first stage and the parameters are
estimated in the second stage. The diversity of ensuing
approaches results from different characterisations of the
serial correlation. These range from autoregressive (AR)
processes (Friston et al., 1995b; Bullmore et al., 1996;
Worsley et al., 2002), Autoregressive Moving Average
(ARMA) processes (Locascio et al., 1997), AR plus white
noise models (Purdon and Weisskoff, 1998), frequency do-
main models where the magnitude falls of as 1/f (Zarahn et
al., 1997), or by multitapering (Woolrich et al., 2001). For
a review of many of these approaches see Woolrich et al.,
(2001).

The two-stage process for handling the serial correlation
can be extended to multiple iterations using ReML (Friston
et al., 2002a) and this allows for both more accurate param-
eter estimation and statistical inference. While this is more
computationally demanding (Worsley et al., 2002) and is
subject to the law of diminishing returns (Bullmore et al.,
1996; Woolrich et al., 2001) we nevertheless take such an
iterative approach in this paper.

In this paper, we use the voxel-wise GLM approach in
conjunction with AR error processes of arbitrary order.
These are referred to as GLM-AR(p) models where p is the
order of the AR process. The reason for this choice is that,
of the many characterisations, AR processes are the most
amenable to mathematical analysis. Further, as we will
show, low-order AR processes are sufficient to characterise
the serial correlation in fMRI time series (provided low-
frequency drift terms are modeled as fixed effects).

Mathematically, the GLM-AR(p) model is given by

Y � Xw � E (2)

E � ẼTaT � Z (3)

where Y is a [N � 1] vector of fMRI time-series samples, X
is the [N � k] design matrix (see Fig. 7 for an example of
a design matrix), w is a [k � 1] vector of regression coef-
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ficients, E is a [N � 1] vector of errors which are modeled
as an AR process where a is a [1 � p] vector of AR
coefficients, Ẽ is a [p � N] matrix of “embedded” errors
(see later) and Z is a [N � 1] vector of Independent and
Identically Distributed (IID) Gaussian errors.

This same model can also be written in terms of the
response at scan t

yt � xtw � et (4)

et � �
j�1

p

ajet�j � zt, (5)

where yt , xt , et , and zt are the tth rows of Y, X, E, and Z. For
the design matrix in Fig. 7, for example, the row vector xt

corresponds to the tth row. The noise zt is Gaussian with
zero mean and precision (inverse variance) �. The tth col-
umn of the embedded error matrix Ẽ is

Ẽt � �
et�1

et�2

. . .

et�p

� . (6)

We also define the embedding matrices D and X̃ whose tth
columns are given by

dt � �
yt�1

yt�2

. . .

yt�p

� (7)

and

X̃t � �
xt�1

xt�2

. . .

xt�p

� , (8)

where dt is [p � 1] and X̃t is [p � k]. Note that D is
[p � N] and X̃ is [p � kN] and because et � yt � xtw we
have Ẽt � dt � X̃tw. To apply the above equations to a
time series we simply ignore the first p values of yt. This
will have little effect on the ensuing inferences. In what
follows the notation N(�, �) refers to the multivariate
Normal distribution with mean � and covariance �. The
notation Ga(b,c) refers to the Gamma probability distri-
bution with parameters b and c.

2.1. Likelihood

Equations (4) and (5) can be used to express the log-
likelihood of the fMRI time series as

log p�Y�w, a, ��

�
� �

2 �
t

�� yt�adt� � � xt � aX̃t�w�2

�
N � p

2
log

�

2�
. (9)

This may equivalently be written as

log p�Y�w, a, �� �
� �

2 �
t

�� yt � xtw�

�a�dt � X̃tw��2 �
N � p

2
log

�

2�
.

(10)

We present the two versions because in the first, the regres-
sion coefficients w are more easily isolated, and in the second,
the AR coefficients a are. This will simplify the math later.

2.2. Priors

In this paper we use vague priors on the model parameters

p�w��� � N�0, ��1I� (11)

p�a��� � N�0, ��1I�

p��� � Ga�b0, c0�, (12)

where � � 10�6, � � 10�3, b0 � 1000, c0 � 0.001, and N
and Ga refer to the Normal and Gamma densities defined in
Appendix A. The value � is larger than � because the
regression coefficients are typically larger than the autore-
gressive coefficients. The particular value used for � can, in
principle, affect the model order selection process. This is
discussed further in sections 4.2 and 5.2.

We choose vague priors because the focus of this paper
is on modeling the error process. Future work will allow for
spatial priors and for priors allowing information to be
aggregated over voxels and subjects. For example, for a
random effects analysis (Yandell, 1997) of data from mul-
tiple subjects a hierarchical prior such as

p�w��� � N�wpop , ��1I� (13)

would be more appropriate, where wpop are the population
regression coefficients and � is the between-subject preci-
sion. Alternatively, one might wish to use a shrinkage prior
based on the variability of the regression coefficients over
voxels (see, e.g., Friston et al., 2002a). In this case

p�w��� � N�0, ��1I�, (14)

where � is the precision of the regression coefficients over
voxels.

3W. Penny et al. / NeuroImage 0 (2003) 000–000

ARTICLE  IN  PRESS



Given a Gaussian likelihood function with IID errors the
conjugate prior for the noise precision is a Gamma density.
This is the prior we use in this paper and its mathematical
form is described in the appendix. All of the parameters of
our model are collectively written as 	. That is, 	 �
{w, a, �}. The prior over the parameters is

p�	 � � p�w��� p�a��� p���. (15)

The log-likelihood in Eqs. (9) and (10) is also written as log
p(Y�	).

The posterior distribution, p(w�Y), can now be computed
by combining the prior and likelihood using Bayes’ rule.
For the model we have described, however, there is no
analytic form for p(w�Y). A common solution is to resort to
sampling methods (Kiebel et al., 2002b). In this paper,
however, we make use of the Variational Bayesian frame-
work in which the true posterior density is approximated
with a factorised density. In the numerical examples in this
paper the accuracy of this approximation will be verified
using Gibbs sampling.

3. Variational Bayes

The central quantity of interest in Bayesian learning is
the posterior distribution p(	�Y). This implies estimation of
both the parameters 	 and the uncertainties associated with
their estimation. This can be achieved with the VB frame-
work, a full tutorial on which is given in Lappalainen and
Miskin (2002). In what follows we describe the key fea-
tures.

Given a probabilistic model of the data, the log of the
“evidence” or “marginal likelihood” can be written as

log p�Y� � �q�	�Y� log p�Y�d	

� �q�	�Y�log
p�Y, 	 �

p�	�Y�
d	

��q�	�Y�log �q�	�Y� p�Y, 	 �

p�	�Y�q�	�Y� �d	

� F � KL. (16)

Here, q(	�Y) is to be considered, for the moment, as an
arbitrary density. We have

F � �q�	�Y�log
p�Y, 	 �

q�	�Y�
d	, (17)

which is known (to physicists) as the negative variational
free energy and

KL � �q�	�Y�log
q�	�Y�

p�	�Y�
d	 (18)

is the KL divergence (Cover and Thomas, 1991) between
the density q(	�Y) and the true posterior p(	�Y).

Equation (16) is the fundamental equation of the VB
framework. Importantly, because the KL divergence is al-
ways positive (Cover and Thomas, 1991), F provides a
lower bound on the model evidence. Moreover, because the
KL divergence is zero when the two densities are the same,
F will become equal to the model evidence when q(	�Y) is
equal to the true posterior. This is shown schematically in
Fig. 1. For this reason q(	�Y) can be viewed as an approx-
imate posterior.

The aim of VB learning is to maximise F and so make
the approximate posterior as close as possible to the true
posterior. To obtain a practical learning algorithm we must
also ensure that the integrals in F are tractable. One generic
procedure for attaining this goal is to assume that the ap-
proximating density factorizes over groups of parameters
(in physics this is known as the mean-field approximation).
Thus, we consider

q�	�Y� � �
i

q�	i�Y�, (19)

where 	i is the ith group of parameters. The distributions
which maximise F can then, via the calculus of variations,
be shown to be (Lappalainen and Miskin, 2000)

q�	i�Y� �
exp�I�	i��

�exp�I�	i��d	i

, (20)

where

I�	i� � �q�	
i�Y� log p�Y, 	 �d	
 i (21)

and 	
i denotes all parameters not in the ith group. Note that,
importantly, this means we are able to determine the optimal
analytic form of the component posteriors [using eq. (20)].
This is to be contrasted with Laplace approximations where
we have to arbitrarily fix the form of the component poste-
riors to be Gaussian (O’Ruaniaidh and Fitzgerald, 1996).

The above principles lead to a set of coupled update rules

Fig. 1. The quantity F provides a lower bound on the log-evidence of the
model with equality when the approximate posterior equals the true pos-
terior.
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for the parameters of the component posteriors, iterated
application of which leads to the desired maximisation.
Further, by computing F for models of different order, we
can perform model order selection (see, e.g., Roberts and
Penny, 2002). The Bayesian Information Criterion (BIC)
model order criterion has been shown to be a special case of
the VB criterion (F), recovered in the limit of a large
number of data points (Attias, 2000).

4. Variational Bayes for GLM-AR

We assume the following factorised form for the approx-
imate posterior

q�	�Y� � q�w�Y�q�a�Y�q���Y�. (22)

By plugging in the likelihood and priors for our GLM-AR
model (from section 2) into Eq. (20), the approximate pos-
teriors turn out to be

q�w�Y� � N�ŵ,�̂�

q�a�Y� � N�m, V�

q���Y� � Ga�b�, c��. (23)

Note that, for each component, the form of the approximate
posterior is the same as the prior. In fact, this is no accident,
as we chose the priors to achieve this (for a discussion of
such “conjugate” priors, see Box and Tiao, 1992). In the
appendix we show how the parameters of these distributions
are updated to maximise F [see Eq. (17)]. Parameter esti-
mation in VB consists of iterative application of these up-
date rules as shown by the pseudo-code in Fig. 2.

4.1. Initialisation

The distribution for the regression coefficients, q(w|Y), is ini-
tialised by ignoring the autocorrelation in the errors. This is set
using the well-known Ordinary Least Squares (OLS) solution

ŵ � �XTX��1XTY

�̂ � �e
2�XTX��1, (24)

where

�e
2 �

1

N � k
�

t
� yt � xtŵ�2. (25)

If we now assume the regression coefficients to be correct,
the distribution for the AR coefficients can be set using the
Maximum Likelihood (ML) solution [from inspection of
Eq. (3)]

m � �ẼẼT��1ẼE

V � �z
2�ẼẼT��1, (26)

where

�z
2 �

1

N � p
�

t
�et � Ẽt

TmT �2, (27)

which uses Ẽt � dt � x̂tŵ, i.e., the value of ŵ estimated in
(24). Equation (24) constitutes the OLS update for the
regression coefficients and Eq. (26) the OLS update for the
AR coefficients.

4.2. Negative free energy

The negative free energy is used both to monitor con-
vergence during parameter estimation and as a criterion for
selecting the optimal AR order. As shown in the appendix,
it can be computed as

F� p� � Lav � KL��� � KL�w� � KL�a�, (28)

where, for a generic parameter 	i, KL(	i) denotes the KL
divergence between the approximate posterior q(	i�Y) and
the prior p(	i). Expressions for the KL divergences for the
various densities are given in (Roberts and Penny, 2002).
These KL terms should not be confused with the KL diver-
gence in Eq. (18) which is between the approximate poste-
rior and the true posterior.

The first term is given by

Lav �
N � p

2
log�̃ �

�̄

2
G̃ �

N � p

2
log 2� (29)

and

log�̃ � ��c�� � log b� (30)

and where G̃ is computed from Eq. (77). Note that we write
F(p) here to emphasise the dependence of F on AR model
order p. This dependence arises because F, being a lower
bound on the model evidence, can be used as a model order
selection criterion (see section 3). It consists of two terms:
the average likelihood constitutes an accuracy term and the
KL divergences constitute penalties for model complexity.
The penalty term arises because KL(a) increases with p. Just
how much it increases, in part, depends on the value of �
(the prior precision of the AR coefficients). In section 5.2,
however, we provide a numerical example showing that this
dependence is very weak.

Fig. 2. Pseudo-code for VB algorithm. Update rules for the sufficient statistics
of the distributions q(w�Y), q(a�Y), and q(��Y) are applied until the relative
increase in the objective function F is less than a specified tolerance, tol.
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When F(p) is used for model order selection it is impor-
tant that all models be given the same number of data points.
For this reason the terms (N � p) in Eqs. (29) and (75)
should be replaced by (N � pmax), where pmax is the max-
imum putative model order.

The presence of the penalty terms in the objective func-
tion (F(p)) also prevents model overfitting, even for very
large AR model orders. This comprises the VB solution to
the over-confidence problem (Friston et al., 2002b).

One can imagine an alternative scheme for estimating the
optimal AR order; fit a GLM model using OLS and then fit
AR models to the residuals using a criterion such as BIC to
choose the optimal order (Neumaier and Schneider, 2000).
While this approach will give some indication of the true
AR model order it is based on OLS estimators which, for
any particular data sample, may contain a large error (that
is, large in comparison to the VB estimate). Furthermore, in
previous research on autoregressive modeling we have es-
tablished that the VB selection criterion is superior to BIC
(Roberts and Penny, 2002). To our knowledge, the VB
scheme we have described is the only way for finding the
optimal AR order from data sets with activations. A viable
alternative is to focus on null data sets as in (Woolrich et al.,
2001).

5. Results

5.1. Synthetic data I

We generated data from a known GLM-AR model

yt � xtw � et (31)

et � aet�1 � z t , (32)

where xt � 1 for all t, w � 2.7, a � 0.3, and 1/� � Var(z) �
�2 � 4. We generated N � 128 samples. Now, given any
particular values of w, a, � it is possible to compute the
exact posterior distribution up to a normalisation factor, as

p�w, a, ��Y� 	 p�Y�w, a, �� p�w��� p�a��� p���.

(33)

If we evaluate the above quantity over a grid of values w, a,
� we can then normalise it so it sums to one and so make
plots of the exact posterior density.

Fig. 3 compares the exact and approximate posterior
joint densities for w, a. In the true posterior it is clear that
there is a dependence between w and a (the width of the
density over w depends on a) and that the approximate
posterior used in VB ignores this dependence. Fig. 4 com-
pares the exact and approximate posterior marginal densi-
ties for w, a and �2 showing good agreement. This example
epitomises the VB approach, showing that accurate estima-
tion of the marginal distributions is possible without de-
tailed modeling of the joint distributions.

5.2. Synthetic data II

We generated data from a larger GLM-AR model having
two regression coefficients and three autoregressive coeffi-
cients. While it is possible, in principle, to plot the exact
posteriors using the method described previously, this
would require a prohibitive amount of computer time. We
therefore validated the VB algorithm by comparing it with
Gibbs sampling (Kiebel et al., 2002b).

We used the model

yt � xtw � et (34)

et � �
j�1

p

ajet�j � z t, (35)

where xt is a two-element row vector, the first element
flipping between a ‘�1’ and ‘1’ with a period of 40 scans
(i.e., 20 �1’s followed by 20 1’s) and the second element
being ‘1’ for all t. The two corresponding entries in w reflect
the size of the activation, w1 � 2, and the mean signal level,
w2 � 3. We used an AR(3) model for the errors with

Fig. 3. The figures show contour lines of constant probability density from
(a) the exact posterior p(a, w�Y) and (b) the approximate posterior used in
the VB algorithm, q(a, w�Y) for the example in section 5.1. This clearly
shows the effect of the factorisation, q(a, w�Y) � q(a�Y)q(w�Y).
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parameters a1 � 0.8, a2 � �0.6, and a3 � 0.4. The noise
precision was set to 1/� � Var(z) � �2 � 1 and we initially
generated N � 400 samples. An example time series pro-
duced by this process is shown in Fig. 5a.

We then generated 10 such time series and fitted GLM-
AR(p) models to each using the VB algorithm. In each case
the putative model order was varied between p � 0 and p �
5. Fig. 5b shows a plot of the average value of the negative
free energy, F(p) as a function of p, indicating that the
maximum occurs at the true model order. We note that the
criterion F(p) is dependent on KL(a) and therefore on the
chosen value of the prior precision �. We have found,
however, that this dependence is very weak in that values in
the range 10�1 to 106 did not change the optimal value of p.

We also generated a number of data sets containing
either N � 40, N � 160, or N � 400 scans. At each data set
size we applied the VB algorithm to a number of data sets

and compared Gibbs and VB posteriors for each of the
regression coefficients. For the purpose of these compari-
sons the model order was kept fixed at p � 3 for the
generating models and the models inferred by Gibbs and
VB. Fig. 6 shows representative results indicating a better
agreement with increasing number of scans. We also note
that the VB algorithm requires more iterations for fewer
scans (typically 4 iterations for N � 400, 5 iterations for
N � 160, and 7 iterations for N � 40). This is because the
algorithm is initialised with the OLS solution which is
closer to the VB estimate if there are a large number of
scans.

Finally, we generated a number of data sets of various
sizes to compare VB and OLS estimates of activation size
with the true value of w1 � 2. This comparison was made
using a matched-pairs t test on the absolute estimation error.
For N 
 100 the VB estimation error was significantly
smaller for VB than for OLS (p � 0.05). For N � 160, for
example, the VB estimation error was 15% smaller than the
OLS error (p � 0.02).

Fig. 5. The figures show (a) an example time series from a GLM-AR model
with AR model order of p � 3 and (b) a plot of the negative free energy
F(p) versus p. This shows that F(p) picks out the correct model order.

Fig. 4. The figures compare the exact (solid lines) and approximate (dashed
lines) marginal posteriors (a) p(w�Y) and q(w�Y), (b) p(a�Y) and q(a�Y), (c)
p(�2�Y) and q(�2�Y) (where �2 � 1/�).

7W. Penny et al. / NeuroImage 0 (2003) 000–000

ARTICLE  IN  PRESS



5.3. Face-repetition data

This data set1 was recorded during an experiment con-
cerned with the processing of images of faces (Henson et
al., 2002). This was an event-related study in which gray-
scale images of faces were presented for 500 ms, replacing
a baseline of an oval chequerboard which was present
throughout the interstimulus interval. Images were acquired
from a 2T VISION system (Siemens, Erlangen, Germany)
which produced T2*-weighted transverse echo-planar im-
ages (EPIs) with blood oxygen level-dependent (BOLD)
contrast. Whole brain EPIs consisting of 24 transverse slices
were acquired every 2-s resulting in a total of 351 scans. In
this paper we restrict our analysis to a single slice at z �
�24 mm [Talairach coordinates (Talairach and Tournoux,
1988)].

All functional images were realigned to the first func-
tional image using a six-parameter rigid-body transforma-
tion (Friston et al., 1995a). To correct for the fact that
different slices were acquired at different times, time series
were interpolated to the acquisition time of the reference
slice (Henson et al., 2002). Images were then spatially
normalised to a standard EPI template using a nonlinear

warping method (Ashburner and Friston, 1999). We then
computed the global mean value, g, over all time series,
excluding non-brain voxels, and scaled each time series by
the factor 100/g. After scaling by the peak magnitude of the
hemodynamic response function (HRF) (see below) this
makes the units of the regression coefficient values �per-
centage of global mean signal.” Each time series was then
high-pass-filtered using a set of discrete cosine basis func-
tions with a filter cutoff of 120 s.

The data set was analysed using a GLM with a design
matrix as shown in Fig. 7. This consists of 19 regressors.
The 1st, 3rd, 5th, and 7th are indicator variables, indicating
the presentation of a face image, which have been con-
volved with a “canonical” HRF (Friston et al., 1998). The
2nd, 4th, 6th, and 8th regressors are the corresponding HRF
derivatives. Modeling the HRF in this way allows one to
capture onset variability across voxels. Regressors 9 to 12
relate to performace errors and 13 to 18 to subject move-
ment and the last regressor is an offset.

The data were then analysed using conventional least-
squares SPM and the GLM-AR approach. For the SPM
analysis, the images were smoothed using a Gaussian kernel
of width 8 mm. For the GLM-AR analysis the images were
not smoothed. The results of a standard SPM analysis show-
ing the effect of presenting face images (using a contrast
that averages the contributions from the 1st, 3rd, 5th, and
7th regressors) is shown in Fig. 8c. The corresponding
structural image is shown in Fig. 8a. The SPM shows
bilateral activation of fusiform cortex and earlier visual
areas. We also note that many within-brain voxels did not
show any BOLD effect due to T2*-signal dropout. The rest
of our analysis is restricted to the non-dropout voxels.

We then applied GLM-AR(p) models to each voxel with
p varying from 0 to 5. In Fig. 4b we plot a map of the
optimal AR model order as computed by the VB approach.

1 This data set and a full description of the experiments and data
preprocessing are available from http://www.fil.ion.ucl.ac.uk/spm/data.

Fig. 7. Design matrix for face-repetition fMRI analysis. There are 19
regressors, 8 relating to the presentation of face images, 4 relating to
performance errors, 6 relating to subject movement, and 1 being an offset.
The first 12 regressors consist of indicator variables indicating the occur-
rence of events, such as the presentation of face images to a subject, that
have been convolved with a canonical hemodynamic response function or
its derivative (Friston et al., 1998).

Fig. 6. The figures show the posterior distributions from Gibbs sampling
(solid lines) and Variational Bayes (dashed lines) for data sets containing
40 scans (top row), 160 scans (middle row), and 400 scans (bottom row).
The distributions in the left column are for the first regression coefficient
(size of activation) and in the right column for the second regression
coefficient (offset). The fidelity of the VB approximation increases with
number of scans.
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Matching this figure with the structural image in Fig. 4a we
see that cerebro-spinal fluid (CSF) voxels typically have a
higher model order than gray or white matter voxels. To
investigate this further we segmented the structural image
into gray, white, and CSF voxels using the algorithm de-
scribed in (Ashburner and Friston, 2000) and computed
histograms of optimal AR model order. These are shown in
Fig. 9. We note that, overall, a model order of p � 3 is
sufficient for all voxels.

In a similar vein, Fig. 10 shows a map of the AR(1)
coefficient from the GLM-AR(1) models. This shows a
similar pattern to that of the optimal model order map.
Tissue-specific boxplots of the AR(1) coefficients in Fig. 11
confirm that, as was also observed in (Bullmore et al.,
1996), temporal correlation is stronger in CSF than in gray
or white matter.

We then compared VB posteriors with posteriors derived
from Gibbs sampling. For this comparison only the first 8
columns of the design matrix (plus an offset) were used in

order to reduce the computation time required by the Gibbs
sampler. Fig. 12 shows the posteriors for an activated voxel
in right fusiform cortex for the four coefficients relating to
the presentation of face images. The model order was set to
the maximum of F(p) for that voxel (p � 1) for both the
Gibbs sampler and the VB algorithm. These results are
typical of the data set as a whole indicating a very close
agreement between Gibbs and VB.

We then took the fitted GLM-AR(1) model for that voxel
and generated 100 different data sets from it using different
realisations of the noise process. A comparison of VB ver-
sus OLS parameter estimates showed that, on average, all 8
of the regression coefficients were estimated more accu-
rately using VB and 5 of them significantly so (p � 0.05).
This was repeated for a number of voxels with similar
results, the improvement being commensurate with strength
of correlation.

Finally, in Fig. 8d we plot a posterior probability map
(see Friston et al., 2002b) of the effect of presenting images

Fig. 8. The figures show (a) a structural MRI image, (b) a map of the optimal AR model order with black being 0 and white being 3, (c) a statistical parametric
map of the t statistic from an SPM analysis, the background gray shade indicating non-brain voxels and areas of fMRI signal dropout, and (d) a posterior
probability map showing the effect of presenting face images. The map shows the probability that the peak effect is greater than 0.5% of the global mean
value.
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of faces. The map shows the probability that the effect is
greater than 0.5% of the global mean value. This is similar
to the SPM in Fig. 8c in having highly activated voxels in
bilateral fusiform cortex. For a discussion of the relation
between PPMs and SPMs see Friston et al. (2002b).

6. Discussion

We have described a Bayesian estimation and inference
procedure for General Linear Models with Autoregressive
error processes of arbitrary order. The algorithm makes use
of the VB framework which approximates the true posterior
density with a factorised density. The fidelity of this ap-
proximation was verified via Gibbs sampling. With low
numbers of scans and a high degree of serial correlation the
posterior density over regression components is highly non-

Gaussian showing dependence between autoregressive co-
efficients and regression coefficients. The corresponding
VB posterior is the best matching multivariate Gaussian
without such dependence. With the numbers of scans used
in current fMRI studies (typically 
 100) the true posteriors
are well approximated by the VB posteriors. This good
agreement has been found on both synthetic and real data.

Although the VB posterior over regression coefficients is
Gaussian it is not the same Gaussian as would correspond to
the OLS solution. First, the centre of the Gaussian is rees-
timated to take the autocorrelation into account. This results
in consistently better estimates of the true regression coef-
ficients. Secondly, the width of the OLS-Gaussian is a

Fig. 9. The figures show histograms of optimal AR model order for (a) gray
matter, (b) white matter, and (c) CSF.

Fig. 10. The figures show a map of the AR(1) coefficient in GLM-AR(1)
models of the face data set.

Fig. 11. Box and whisker plots of the autoregressive coefficient from
GLM-AR(1) models applied to the face data set for CSF and gray and
white matter. The boxes have lines at the lower, median, and upper quartile
values. The whiskers extend out to the most extreme value within a
distance of one and a half times the interquartile range from the box. Data
points outside of the whiskers are drawn as dots.
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consistent underestimate of the true width of the posterior,
whereas this is not the case with VB (see, e.g., Fig. 6b).

Experiments comparing the accuracy with which VB and
OLS estimate activation effects showed VB to be signifi-
cantly more accurate in data sets with at least 100–200
scans. This shows that it is worthwhile modeling the error
autocorrelation and correcting the estimated regression co-
efficients accordingly. It also shows that a certain minimum
amount of data is required in order for the AR coefficients
to be estimated well enough for this correction to be bene-
ficial. This improvement over OLS will also be shared by
other iterative algorithms such as the Expectation-Maximi-
sation (EM) algorithms described in Friston et al. (2002b)
and Worsley et al. (2002).

The VB approach provides a natural extension to these
algorithms, however, in that the variability of hyperparam-
eter estimation is also taken into account. This is achieved
with little additional computational effort. Specifically, the
objective function which is maximised during model fitting
contains a penalty term consisting of the KL divergence
between the prior over hyperparameters and the approxi-
mate posterior. In this way, model overfitting is prevented.
This constitutes the VB solution to the overconfidence prob-
lem (Friston et al., 2002a). Further, VB allows for automatic
selection of AR order.

In an exploratory analysis of event-related fMRI data the
optimal AR order was seen to be higher in CSF than in gray
or white matter. Overall, an AR(3) model was seen to be
sufficient for all voxels. Also, the magnitude of the first AR
coefficient was seen to be higher in CSF. This confirms
earlier observations (Bullmore et al., 1996; Worsley et al.,
2002) that the values of AR coefficients have spatial struc-
ture. On other data sets Woolrich et al. (2001) observed
stronger correlation in gray matter than in white matter or
CSF. These observations confirm that there is a physiolog-

ical component to the autocorrelation, whereas earlier in-
vestigations using phantoms suggested that this correlation
might be purely due to the physics of the measurement
process (Zarahn et al., 1997).

In this paper we have used the order criterion furnished
by VB for “model selection.” Using it we have established
that GLM models with low-order AR error processes are
suitable for fMRI data analysis. We also note that the order
criterion could be used for “model averaging” (Gelman et
al., 1995) in which, rather than selecting the “best” model
order, we average over model orders using the criterion as
a weighting factor. This approach is, for example, used
routinely in Bayesian wavelet analysis (Clyde et al., 1998).

Currently the VB algorithm is implemented in MATLAB
(Mathworks, Inc.) and requires 30 min on a high-end com-
puter to analyse a single slice of data. This is an order of
magnitude faster than Gibbs sampling. With an optimised
compiled software implementation this could be reduced
further.

This paper has focused on voxel-wise Bayesian model-
ing of fMRI time series in which priors over the regression
and autoregressive coefficients were set to be vague. The
next step is to tie together the voxel-wise models using
informative priors where voxel-wise parameter estimates
will be informed by data from other voxels and other sub-
jects (see, e.g., Friston et al., 2002a; Worsley et al., 2002).
In this way, quantities such as the prior precisions on re-
gression and autoregressive parameters (� and �) can be
estimated rather than set to arbitrary values. This will ulti-
mately lead to a multiple-subject random effects model with
Bayesian regularisation.
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Appendix A: Gamma density

We define the Gamma density

p� x� � Ga�b, c� (36)

as

Ga�b, c� �
1

�c�

xc�1

bc exp	 � x

b 
 . (37)

In the derivations that follow in the next section we will
refer to the log of a gamma density

log p� x� � � log �c� � c log b

� �c � 1�log x �
x

b
. (38)

Note that the mean and variance of a Gamma variate are bc
and b2c.

Fig. 12. The figures compare the exact posterior, p(wi�Y) (solid lines), as
computed from Gibbs’ sampling with the approximate posterior, q(wi�Y)
(dashed lines), as used in VB for regression coefficients (a) w1, (b) w3, (c)
w5, and (d) w7 from a GLM belonging to a single voxel in the right
fusiform activation area of the face-repetition data set.
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Appendix B: Derivation of VB algorithm

B.1. Autoregressive coefficients

We first note that the log-likelihood in Eq. (10) can be
expressed as a quadratic function of a and dropping all
terms not dependent on a we get

log p�Y�w, a, �� � �
�

2
�aC�w�aT � 2D�w�aT�,

(39)

where

C�w� � �
t

�dt � X̃tw� �dt � X̃tw�T

D�w� � �
t

� yt � xtw� �dt � X̃tw�T. (40)

From Eq. (20) we see that

q�a�Y� 	 exp�I�a��, (41)

where

I�a� � �� q�	�Y� �log p�Y�	 � � log p�	 ��d	.

(42)

This gives

I�a� � � q�w�Y�q���Y� log p�Y�w, a, ��dwd�

� log p�a��� (43)

� �
�̄

2
�aC̃aT � 2D̃aT� � �aaT � . . . (44)

where

C̃ � � q�w�Y�C�w�dw

D̃ � � q�w�Y� D�w�dw. (45)

Given that I(a) can be expressed as the quadratic

I�a� � �
1

2
�a��� C̃ � �I�aT � 2�̄D̃aT � � . . . (46)

and that the log of a Gaussian density p(a) with mean m (a
row vector) and covariance V, including only a-dependent
terms, is

log p�a� � �
1

2
�aV�1aT � 2mV�1aT �, (47)

we see that

q�a�Y� � N�m, V�, (48)

where

V � ��̄C̃ � �I��1

m � �� D̃V. (49)

It now remains to compute the integrals C̃ and D̃ which
are given as follows

C̃ � �
t

dtdt
T � X̃t�ŵŵT � �^ �X̃t

T

�dtŵ
T X̃t

T � X̃tŵdt
T

D̃ � �
t

ytdt
T � xtŵdt

T � ytŵ
TX̃T

� xt�ŵŵ T � �̂�X̃t
T. (50)

If instead of integrating out the dependence on q(w�Y)
we simply use the point estimate ŵ, then C̃ � ẼẼT and
D̃ � ẼE where the elements of Ẽ are now given by Ẽt �
dt � x̃tŵ. If we also have no prior on the AR coeffi-
cients, i.e., � � 0, we then recover the ML update (see
Eq. (26)]

m � �ẼẼT��1ẼE. (51)

B.2. Regression coefficients

The regression coefficients are derived in much the same
way. We first note that the log-likelihood in Eq. (9) can be
expressed as a quadratic function of w and dropping all
terms not dependent on w we get

log p�Y�w, a, �� � �
�

2
�wT A�a�w � 2B�a�w�,

(52)

where

A�a� � �
t

� xt � aX̃t�� xt � aX̃t�
T

B�a� � �
t

� yt � adt�� xt � aX̃t�
T. (53)

From Eq. (20) we see that

q�w�Y� 	 exp�I�w��, (54)

where

I�w� � � q�	�Y� �log p�Y�	 � � log p�	 �� d	. (55)
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This gives

I�w� � �� q�a�Y�q���Y� log p�Y�w, a, ��dad�

� log p�w��� (56)

� �
�̄

2
�wT Ãw � 2B̃w� � �wTw � · · · , (57)

where

Ã � � q�a�Y� A�a�da

B̃ � � q�a�Y� B�a�da. (58)

Given that I(w) can be expressed as the quadratic

I�w� � �
1

2
�wT��� Ã � �I�w � 2�� B̃w� � · · · (59)

and that the log of a Gaussian density p(w) with mean ŵ (a
column vector) and covariance �̂, including only w-depen-
dent terms, is

log p�w� � �
1

2
�wT�^ �1w � 2ŵT�^ �1w�, (60)

we see that

q�w�Y� � N�ŵ, �^ �, (61)

where

�^ � ��� Ã � �I��1

ŵ � �^ �� B̃T. (62)

It now remains to compute the integrals Ã and B̃ which are
given by

Ã � �
t

xt
Txt � X̃t

T�mTm � V�X̃t

�xt
TmX̃t � X̃t

T mTxt (63)

B̃ � �
t

ytxt � mdtxt � ytmX̃t � dt
T�mTm � V�X̃t.

(64)

Note that for the special case in which the errors E
are uncorrelated, i.e., m � 0, we have Ã � XTX and B̃ �
XTY. If we also have no prior on the regression coeffi-
cients, i.e., � � 0, we then recover the OLS update [see
Eq. (24)]

ŵ � �XTX��1XTY. (65)

B.3. Noise precision

We write the log-likelihood in Eq. (9), dropping all terms
not dependent on �, as

log p�Y�	 � � �
�

2
G�w, a� �

N � p

2
log�, (66)

where

G�w, a� � �
t

��yt � adt� � �xtw � aX̃tw��2. (67)

From Eq. (20) we see that

q���Y� 	 exp�I����, (68)

where

I��� � � q�	�Y��log p�Y�	 � � log p�	 ��d	. (69)

This gives

I��� � �
�

2 �� q�w�Y�q�a�Y�G�w, a�dwda

�
N � p

2
log� � log p���

� �
�

2
G̃ �

N � p

2
log� � log p���, (70)

where

G̃ � �� q�w�Y�q�a�Y�G�w, a�dwda. (71)

Substituting for log p(�) and keeping only �-dependent
terms give

I��� � �
�

2
G̃ �

N � p

2
log � � �c0 � 1�log � �

�

b0

(72)

� � �	 G̃

2
�

1

b0

 � 	N � p

2
� c0 � 1
 log �.

(73)

Comparing this with the log of a gamma density in appendix
A we see that

q���Y� � Ga�b�, c��, (74)
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where

1

b�

�
G̃

2
�

1

b0

c� �
N � p

2
� c0 . (75)

Note that the mean of this density is

�� � b�c�. (76)

It now remains to compute the integral

G̃ � �
t
� � q�w�Y�q�a�Y��� yt � adt�

� � xtw � aX̃tw��2dwda

� G̃1 � G̃2 � G̃3, (77)

where

G̃1 � �
t
� q�a�Y�� yt � adt�

2da

G̃2 � �
t
�� q�w�Y�q�a�Y�� xtw � aX̃tw�2dwda

G̃3 � � 2�
t
�� q�w�Y�q�a�Y�� yt � adt�

 � xtw � aX̃tw�dwda. (78)

These integrals can be evaluated as

G̃1 � �
t

yt
2 � dt

T�mTm � V�dt � 2ytdt
Tm (79)

G̃2 � �
t

xt�ŵŵT � �^ � xt
T � Tr�X̃t

T�mTm � V�X̃t�^ �

� ŵT X̃t
T�mTm � V�X̃tŵ � 2xt�ŵŵT � �^ �X̃tm

T

(80)

G̃3 � �
t

� 2ytxtŵ � 2mdtxtŵ

� 2ytmX̃tŵ � 2dt
T�mTm � V�X̃tŵ. (81)

B.4. Negative free energy

From Eq. (17) we have

F � � q�	�Y�log
p�Y, 	 �

q�	�Y�
d	

� Lav � KLprior , (82)

where

Lav � � q�	�Y�log p�Y�	 �d	 (83)

KLprior � � q�	�Y�log
q�	�Y�

p�	 �
d	. (84)

Now, from Eq. (15) we have

p�	 � � p�w��� p�a��� p��� (85)

and from Eq. (22)

q�	�Y� � q�w�Y�q�a�Y�q���Y�. (86)

Hence

KLprior � KL�w� � KL�a� � KL���, (87)

where, for a generic parameter 	i , KL(	i) denotes the KL
divergence between the approximate posterior q(	i�Y) and
the prior p(	i). Expressions for the KL divergences for the
various densities are given in (Roberts and Penny, 2002).
The average log-likelihood is given by

Lav � ��� q�w�Y�q�a�Y�q���Y�

� log p�Y�w, a, ��dwdad�. (88)

From Eq. (9)

log p�Y�w, a, �� � �
�

2
G�w,a� �

N � p

2
log�,

(89)

where

G�w, a� � �
t

�� yt � adt� � � xtw � aX̃tw��2. (90)

Hence,

Lav � �
�̄

2
G̃ �

N � p

2 � q���Y�log�d�

�
N � p

2
log 2�

�
N � p

2
log �� �

��

2
G̃ �

N � p

2
log 2�, (91)

where G̃ is given in Eq. (77) and

log �̃ � � q���Y�log�d�

� ��c�� � log b� (92)

and �() is the digamma function.
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