
Bayesian Inference
for Nonlinear
Dynamical
Systems

Will Penny

Nonlinear
Dynamical Models
Model

DCM for fMRI

Posteriors

Model Comparison
Free Energy

Complexity

General Linear Model

DCM for fMRI

Sample-based methods

Comparing
Families

Intrinsic Dynamics

References

Extras
Hierarchy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

Bayesian Inference for Nonlinear
Dynamical Systems

Will Penny

MPI Workshop on Networks in the Human Brain,
Leipzig, 8th March 2011



Bayesian Inference
for Nonlinear
Dynamical
Systems

Will Penny

Nonlinear
Dynamical Models
Model

DCM for fMRI

Posteriors

Model Comparison
Free Energy

Complexity

General Linear Model

DCM for fMRI

Sample-based methods

Comparing
Families

Intrinsic Dynamics

References

Extras
Hierarchy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

Acknowledgements

Klaas Stephan, Alex Leff, Tom Schofield, Jean
Daunizeau, Karl Friston, Maria Joao.



Bayesian Inference
for Nonlinear
Dynamical
Systems

Will Penny

Nonlinear
Dynamical Models
Model

DCM for fMRI

Posteriors

Model Comparison
Free Energy

Complexity

General Linear Model

DCM for fMRI

Sample-based methods

Comparing
Families

Intrinsic Dynamics

References

Extras
Hierarchy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

Context



Bayesian Inference
for Nonlinear
Dynamical
Systems

Will Penny

Nonlinear
Dynamical Models
Model

DCM for fMRI

Posteriors

Model Comparison
Free Energy

Complexity

General Linear Model

DCM for fMRI

Sample-based methods

Comparing
Families

Intrinsic Dynamics

References

Extras
Hierarchy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

Model

We consider Bayesian estimation of nonlinear models of
the form

y = g(θ,m) + e

where g(θ) is some nonlinear function, and e is Gaussian
noise.

As an example we consider g(θ,m) to be the prediction
from a nonlinear differential equation model, such as a
Dynamic Causal Model (DCM) for fMRI (Friston et al,
2003).
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Hemodynamics

Hemodynamic variables x = [s, f , v ,q].

Buxton et al (2004).
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Integrating dynamics

Integrating neurodynamic

ż =

(
A +

∑
i

uiBi

)
z + Cu

and hemodynamic

ẋ = h(x , z,w)

equations gives predictions of BOLD data y

y = g(θ,m) + e

where θ are all parameters and m indexes model
structure.
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Likelihood and Prior

We consider Bayesian estimation of nonlinear models of
the form

y = g(θ,m) + e

The likelihood of the data is therefore

p(y |θ, λ,m) = N(y ;g(θ,m),Cy )

We allow Gaussian priors over model parameters

p(θ|m) = N(θ;µθ,Cθ)

where the prior mean and covariance are assumed
known.
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Posteriors

Because we have a nonlinear model there is no simple
formula for the posterior density. We therefore have to
resort to approximate inference methods such as
variational inference or sampling methods.

Here, we assumed
the posterior to have a
Gaussian form

q(θ|y ,m) = N(θ;mθ,Sθ)

Its parameters are set using the Variational Laplace (VL)
algorithm (Friston et al. 2007). This allows for inferences
to be made about model parameters.

DCM for fMRI good for event-related designs.
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Bayes rule for model inference

The posterior model probability is given by Bayes rule

p(m|y) = p(y |m)p(m)

p(y)

where p(y |m) is the model evidence.

Bayesian model comparison can of course be applied to all
statistical models eg. multivariate autoregressive models used
for multivariate Granger causality (Penny et al. 2002).
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Model Evidence

The model evidence is not straightforward to compute,
since this computation involves integrating out the
dependence on model parameters

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.

It can however be approximated using a number of
methods

I Akaike’s Information Criterion
I Bayesian Information Criterion
I Variational Free Energy
I Prior Arithmetic Mean
I Posterior Harmonic Mean
I Thermodynamic Integration
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Free Energy

The free energy is composed of sum squared precision
weighted prediction errors and an Occam factor

F = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

− 1
2

eT
θ C−1

θ eθ −
1
2

log
|Cθ|
|Sθ|

where prediction errors are the difference between what
is expected and what is observed

ey = y − g(mθ)

eθ = mθ − µθ
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Free Energy
This can be rearranged as

F (m) = Accuracy(m)− Complexity(m)

where

Accuracy(m) = −1
2

eT
y C−1

y ey −
1
2

log |Cy | −
Ny

2
log 2π

Complexity(m) = KL[q(θ|Y )||p(θ)]

=
1
2

eT
θ C−1

θ eθ +
1
2

log
|Cθ|
|Sθ|

with prediction errors

ey = y − g(mθ)

eθ = mθ − µθ

Model complexity will tend to increase with the number of
parameters because distances tend to be larger in higher
dimensional spaces.
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AIC and BIC

A simple approximation to the log model evidence is
given by the Bayesian Information Criterion

BIC = log p(y |θ̂,m)− p
2

log Ny

where θ̂ are the estimated parameters and
hyperparameters, p is the number of parameters, and Ny
is the number of data points. The BIC is a special case of
the Free Energy approximation that drops all terms that
do not scale with the number of data points

An alternative approximation is Akaike’s Information
Criterion (or ‘An Information Criterion’)

AIC = log p(y |θ̂,m)− p



Bayesian Inference
for Nonlinear
Dynamical
Systems

Will Penny

Nonlinear
Dynamical Models
Model

DCM for fMRI

Posteriors

Model Comparison
Free Energy

Complexity

General Linear Model

DCM for fMRI

Sample-based methods

Comparing
Families

Intrinsic Dynamics

References

Extras
Hierarchy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

Synthetic fMRI example
Design matrix from Henson et al. Regression coefficients
from responsive voxel in occipital cortex. Data was
generated from a 12-regressor model with SNR=0.2. We
then fitted 12-regressor and 9-regressor models. This
was repeated 25 times.
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True Model: Complex GLM
Log Bayes factor of complex versus simple model, Log
Bc,s, versus the signal to noise ratio, SNR, when true
model is the complex GLM for F (solid), AIC (dashed) and
BIC (dotted).
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True Model: Simple GLM
Log Bayes factor of simple versus complex model, Log
Bs,c , versus the signal to noise ratio, SNR, when true
model is the simple GLM for F (solid), AIC (dashed) and
BIC (dotted).
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fMRI study of auditory word processing
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Synthetic data

A simple (left) and complex (right) DCM. The complex
DCM is identical to the simple DCM except for having an
additional modulatory forward connection from region P
to region A.

Use empirical regressors (i) auditory input and (ii)
intelligibility (speech versus reversed speech)



Bayesian Inference
for Nonlinear
Dynamical
Systems

Will Penny

Nonlinear
Dynamical Models
Model

DCM for fMRI

Posteriors

Model Comparison
Free Energy

Complexity

General Linear Model

DCM for fMRI

Sample-based methods

Comparing
Families

Intrinsic Dynamics

References

Extras
Hierarchy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

True Model: Complex DCM
Log Bayes factor of complex versus simple model, Log
Bc,s, versus the signal to noise ratio, SNR, when true
model is the complex DCM for F (solid), AIC (dashed)
and BIC (dotted).
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True Model: Simple DCM
Log Bayes factor of simple versus complex model, Log
Bs,c , versus the signal to noise ratio, SNR, when true
model is the simple DCM for F (solid), AIC (dashed) and
BIC (dotted).



Bayesian Inference
for Nonlinear
Dynamical
Systems

Will Penny

Nonlinear
Dynamical Models
Model

DCM for fMRI

Posteriors

Model Comparison
Free Energy

Complexity

General Linear Model

DCM for fMRI

Sample-based methods

Comparing
Families

Intrinsic Dynamics

References

Extras
Hierarchy

Sampling

Prior Arithmetic Mean

Posterior Harmonic Mean

Savage-Dickey

Thermodynamic Integration

General Linear Model

A surprise

For generating data from the simpler models the results
are the same for GLMs and DCMs. But for generating
data from complex models they are not (left: GLM,
right:DCM)

What is going on ?
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Complexity
By decomposing the Free Energy difference into contributions
from different parameters, we found that this ability was mainly
due to penalising the simple model for having a very large, and
a-priori unlikely, intrinsic connection from brain region F to A.

1
2

eT
θ C−1

θ eθ =
1
σa

∑
i

a2
i + ...

Because AIC and BIC use the same complexity penalty for
every parameter (regardless of its magnitude) they lack this
sensitivity.
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Model Evidence

The model evidence is not straightforward to compute,
since this computation involves integrating out the
dependence on model parameters

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.

It can however be approximated using a number of
methods

I Akaike’s Information Criterion
I Bayesian Information Criterion
I Variational Free Energy
I Prior Arithmetic Mean
I Posterior Harmonic Mean
I Thermodynamic Integration
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Sample-based methods

For GLMs the free energy defaults to the exact model
evidence. Bayes factors are therefore exact. The boxplots
show estimated minus true logBF for each sample-based
approach.
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Comparing large numbers of models

Bayes rule for families

p(f |y) = p(y |f )p(f )
p(y)

For comparing model families having unequal numbers of
models, the model level prior p(m) can be adjusted to
make p(f ) uniform (Penny et al. 2010).
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Comparing model families

The same model space can be partitioned into different
ways, like a factorial design, and inferences can be made
about a particular factor by collapsing over others eg
linear vs nonlinear, recurrent versus feedforward.
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Bayesian Model Averaging

Integrating out model uncertainty

p(θ|Y ) =
∑

m

p(θ|Y ,m)p(m|Y )

Make inferences about parameters eg between subjects

and groups.
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Intrinsic Dynamics

Nonlinear oscillator with a = 0.2, b = 0.2, c = 3.

v̇ = c[v − 1
3

v3 + r ] (1)

ṙ = −1
c
[v − a + br ]
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Priors

A plot of log p(θ)

µθ = [−0.69,−0.69]T ,Cθ = diag([1/8,1/8]);
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True value a = 0.2, b = 0.2 is apriori unlikely
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A plot of log[p(y |θ)p(θ)]
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A plot of log[p(y |θ)p(θ)]
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Global maxima
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MH - Scaling

Init: [−0.2,−0.2]. Then 1000 samples
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MH - Tuning

1000 samples
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Hierarchical Predictive Coding

Mumford (1991) ”I put forward a hypothesis on the role of
the reciprocal, topographic pathways between two
cortical areas, one often a ‘higher’ area dealing with more
abstract information about the world, the other ’lower’
dealing with more concrete data. The higher area
attempts to fit its abstractions to the data it receives from
lower areas by sending back to them from its deep
pyramidal cells a template reconstruction best fitting the
lower level view. The lower area attempts to reconcile the
reconstruction of its view that it receives from higher
areas with what it knows, sending back from its
superficial pyramidal cells the features in its data which
are not predicted by the higher area. The whole
calculation is done with all areas working simultaneously,
but with order imposed by synchronous activity in the
various top-down, bottom-up loops”
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Predictive Coding

Top-down connections (from deep layers) embody an
(Empirical Bayesian) generative model.
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Predictive Coding
Bottom-up connections (from superficial layers) send
prediction errors.

Fries,Weeden,Turner.
But see Lohmann/Logothetis for hidden node problem ?
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Prior Arithmetic Mean

The simplest approximation to the model evidence

p(y |m) =

∫
p(y |θ,m)p(θ|m)dθ.

is the Prior Arithmetic Mean

pPAM(y |m) =
1
S

S∑
s=1

p(y |θs,m)

where the samples θs are drawn from the prior density.

A problem with this estimate is that most samples from
the prior will have low likelihood. A large number of
samples will therefore be required to ensure that high
likelihood regions of parameter space will be included in
the average.
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Posterior Harmonic Mean

A second option is the Posterior Harmonic Mean

pPHM(y |m) =

[
1
S

S∑
s=1

1
p(y |θs,m)

]−1

where samples are drawn from the posterior (eg. through
MH sampling).

A problem with the PHM is that the largest contributions
come from low likelihood samples which results in a
high-variance estimator.

Both PAM and PHM can be motivated from the
perspective of importance sampling.
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Savage-Dickey
For models 1 and 2 having common parameters θ1 and
model 2 having additional parameters θ2, then if

p(θ1|m2) = p(θ1|m1)

the Bayes factor is given by

B12 =
p(θ2 = 0|y ,m2)

p(θ2 = 0|m2)

Here B12 = 0.9.
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Thermodynamic Integration

We define inverse ‘temperatures’ βk such that

0 = β0 < β1 < .. < βk−1 < βK = 1

For example

βk =

(
k
K

)5

We also define

fk (θ) = p(y |θ,m)βk p(θ|m)

Sample from k th chain using MH with prob

r =
fk (θ

′

k )

fk (θk )
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Thermodynamic Integration

We can define the normalising constants

zk =

∫
fk (θ)dθ

where z0 = 1 and zK = p(y |m). Now

log p(y |m) = log zK − log z0

We can write this as

log p(y |m) =

∫ 1

0

d log z(β)
dβ

dβ
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Thermodynamic Integration

The log evidence can therefore be approximated as

log pTI(y |m) =
K−1∑
k=1

(βk+1 − βk )

(
Ek+1 + Ek

2

)
where

Ek =
1

Nk

Nk∑
s=1

log p(y |θks)

where θks is the sth sample from the k th chain.
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Synthetic fMRI example
Design matrix from Henson et al. Regression coefficients
from responsive voxel in occipital cortex. Data was
generated from a 12-regressor model with SNR=0.2. We
then fitted 12-regressor and 9-regressor models. This
was repeated 25 times.
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Log Bayes factors

For these linear Gaussian models the free energy
defaults to the exact model evidence. Bayes factors are
therefore exact. The boxplots show estimated minus true
logBF for each approach.
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Energies

The above distributions allow one to write down an
expression for the joint log likelihood of the data,
parameters and hyperparameters

L(θ, λ) = log[p(y |θ, λ,m)p(θ|m)p(λ|m)]

The approximate posteriors are estimated by minimising
the Kullback-Liebler (KL) divergence between the true
posterior and these approximate posteriors. This is
implemented by maximising the following variational
energies

I(θ) =

∫
L(θ, λ)q(λ)

I(λ) =

∫
L(θ, λ)q(θ)
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Gradient Ascent

This maximisation is effected by first computing the
gradient and curvature of the variational energies at the
current parameter estimate, mθ(old). For example, for the
parameters we have

jθ(i) =
dI(θ)
dθ(i)

Hθ(i , j) =
d2I(θ)

dθ(i)dθ(j)

where i and j index the i th and j th parameters, jθ is the
gradient vector and Hθ is the curvature matrix. The
estimate for the posterior mean is then given by

mθ(new) = mθ(old)− H−1
θ jθ
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Likelihood

y(t) = −60 + Va[1− exp(−t/τ)] + e(t)

Va = 30, τ = 8,exp(λ) = 1
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Prior Landscape
A plot of log p(θ)

µθ = [3,1.6]T ,Cθ = diag([1/16,1/16]);

µλ = 0,Cλ = 1/16
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Samples from Prior

The true model parameters are unlikely apriori

Va = 30, τ = 8
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Posterior Landscape

A plot of log[p(y |θ)p(θ)]
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VL optimisation

Path of 6 VL iterations (x marks start)
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Modulations

Stephan et al (2010): ”...rapid changes of connection
strength can result either from membrane excitability changes,
synaptic plasticity, or a combination of both. For example,
postsynaptic responses of ionotropic glutamatergic receptors
are modulated by metabotropic receptors (Coutinho and
Knopfel, 2002) and by receptors of various neuromodulatory
transmitters (McCormick and Williamson, 1989). Alternatively,
various forms of short-term synaptic plasticity can lead to fast
changes in synaptic strength, e.g. synaptic depression and
facilitation (Zucker and Regehr, 2002), NMDA- and
dopamine-dependent phosphorylation of AMPA receptors
(Chao et al., 2002;Wang et al., 2005), or dendritic spine motility
(Holtmaat and Svoboda, 2009). All of these changes in
synaptic strength can unfold within milliseconds to seconds.”
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