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Cortical Units

Jansen and Rit (Biol Cybernetics, 1995), building on
the work of Lopes Da Sliva and others, developed a
biologically inspired model of EEG activity using Neural
Masses.

It models a cortical unit with three subpopulations of cells
I Stellate cells with average membrane potential vs

and current cs.
I Pyramidal cells with average membrane potential vp

and current cp.
I Inhibitory interneurons with average membrane

potential vi and current ci .
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Firing Rate Curves

Membrane potentials are transformed into firing rates via
sigmoidal functions

s(x) =
1

1 + exp(−rx)
− 1

2
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Alpha Function Synapses

Firing rates cause postsynaptic potentials via convolutions with
alpha function synaptic kernels

vout (t) = he(t)⊗ s(vin)

where
he(t) =

He

τe
t exp(−t/τe)

Similarly for inhibitory synapses with hi (t), Hi , τi .
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Inhibitory Interneurons

The inhibitory interneurons receive excitatory input from
the pyramidal cells

vi = γ3s(vp)⊗ he
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Stellate Cells

The stellate cells receive external input from thalamus or
other cortical regions and excitatory feedback from
pyramidal cells

vs = (s(u) + γ1s(vp))⊗ he
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Pyramidal Cells

The pyramidal cells receive excitatory input from stellate
cells and inhibitory input from interneurons. This
produces both excitatory vpe and inhibitory vpi
postsynaptic potentials.

vpe = γ2s(vs)⊗ he

vpi = γ4s(vi)⊗ hi

vp = vpe − vpi
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Brain Connectivity
Cortex is organised hierarchically with higher level
regions processing more abstract features and lower
levels more concrete ones.

Felleman and Van Essen, Cerebral Cortex, 1991
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Brain Connectivity

Multiple, parallel, convergent hierarchies with information
flow both towards and away from senses.

Mesulam, Brain, 1999
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Connecting Cortical Units

Primary Sensory Secondary Sensory

David et al. Neuroimage, 2006 proposed connecting
neural mass units together according to the Felleman and
Van-Essen connection rules.
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Brain Connectivity Model

Garrido et al. PNAS, 2007
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MEG/EEG Forward Model
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MEG/EEG data

Event-Related Fields/Potentials y .
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Bayesian Inference
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Bayesian Inference
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Bayesian Inference

MEG/EEG data, y .

Likelihood p(y |w , Γ) where Γ is a
covariance matrix specifying
observation noise.

We have a Gaussian prior over
model parameters

p(w |µ,Λ) = N(w ;µ,Λ)

with known prior mean µ and
precision Λ. This captures our
prior knowledge about likely
range of synaptic time
constants.
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Bayesian Inference

Want posterior distribution
over parameters p(w |y) to make
inferences about connection
strengths.

Want model evidence p(y |m)
so we can use Bayes rule over
models

p(m|y) =
p(y |m)p(m)

p(y)

to find out e.g. how many
cortical sources there are, what
is the best model of a cortical
unit, what is the connectivity
structure of the network.

” Although this may
seem a paradox, all
exact science is
dominated by the idea
of approximation” -
Bertrand Russell.
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Variational Inference

Assume an approximate posterior distribution that
factorises among chosen grouping of unknown
parameters. For example

q(w , Γ|y) = q(w |y)q(Γ|y)

assumes posterior independence between connectivity
parameters and observation noise parameters.

Minimise Kullback-Liebler (KL) divergence between
approximate q(w , Γ|y) and true posterior p(w , Γ|y).

This is equivalent to maximising a lower bound (F , the
negative variational free energy) on the model evidence
p(y |m), where m indexes model assumptions.

M Beal, PhD Thesis, UCL, 2003
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Variational Laplace

Additionally assume that each factorised density is a
Gaussian

q(w |y) = N(w ; mw ,Sw )

q(Γ|y) =
∏

i

N(log Γii ; mΓ(i),SΓ(i))

Minimise KL divergence by finding the moments of the
approximate posterior density (mw , Sw , mΓ, SΓ) that
maximise F .

We can also use F as a model selection criterion.

Friston et al. Neuroimage, 2007.
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Variational Laplace

In practice F is maximised using a local gradient-based
search method making VL very fast.

I Local optimisation based on gradients and
curvatures

I Posterior assumed Gaussian
I Provides model evidence estimate
I Very fast
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Annealed Importance Sampling
For the j th temperature the algorithm produces a sample from

fj (w) = p(y |w)βj p(w)

Sample from prior at β = 0 and posterior at β = 1.

Neal, Statistics and Computing, 2001.
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Annealed Importance Sampling
For the j th temperature the algorithm produces a sample from

fj (w) = p(y |w)βj p(w)

Inverse temperatures βj with j = 0..J, β0 = 0 and βJ = 1.
Geometric schedule βj = (j/J)5 (solid), βj = (j/J)4 (dotted).
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Annealed Importance Sampling

An independent sample w (i) from the posterior density is
produced by generating a sequence of points w1,w2, ...wJ
as follows

I Generate w1 from p(w)

I Generate w2 from w1 using T1(w2|w1)

I ...
I Generate wj from wj−1 using Tj−1(wj |wj−1)

I ...
I Generate wJ from wJ−1 using TJ−1(wJ |wJ−1)

and then let w (i) = wJ . We refer to the process of
producing a single independent sample as a ‘trajectory’.

We are using Langevin Monte Carlo (LMC) for the Tj ’s.
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Langevin Monte Carlo (LMC)
Given log joint and its gradient as a function of w

fj (w) = p(y |w , Γ)βj p(w |µ,Λ)

Lj (w) = βj log p(y |w , Γ) + log p(w |µ,Λ)

gj (w) =
dLj (w)

dw

the LMC Proposal is drawn as

w∗
j ∼ p(w∗

j |wj−1)

p(w∗
j |wj−1) = N (w∗

j ; mj ,Cj )

mj = wj−1 +
1
2

Cjgj (wj−1)

Cj = h2
(

Λ + βjST ΓS
)−1

where S is a sensitivity matrix

S(i , k) =
dy(i)

dws(k)
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Langevin Monte Carlo

The proposal is accepted using the standard
Metropolis-Hastings probability

a =
fj(w∗

j )

fj(wj−1)

p(wj−1|w∗
j )

p(w∗
j |wj−1)

The proposal is always accepted if a > 1.

If the step is accepted we set wj = w∗
j . If it is rejected we

set wj = wj−1.

The second term above ensures reversibility, and in
principle that we visit all of parameter space in proportion
to its (posterior) probability.

Girolami and Calderhead, J Roy Stat Soc B, 2011.
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Annealed Importance Sampling

The above process is repeated i = 1..I times to produce I
independent samples from the posterior density.

Because the samples are produced independently,
without interaction among trajectories, the AIS algorithm
is amenable to ‘embarrassing parallelization’

We need not concern ourself with within-trajectory
correlation (as e.g. Hamiltonian Monte Carlo does) as
we’re only taking one sample from each

Effectively, AIS is a multistart algorithm, that has a
principled way of combining information from multiple
starts/trajectories
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Annealed Importance Sampling

Each sample is also accompanied by an importance
weight

v (i) =
f1(w1)

f0(w1)

f2(w2)

f1(w2)

f3(w3)

f2(w3)
...

fJ(wJ)

fJ−1(wJ)

which can be evaluated as

log v (i) =
J∑

j=1

(
βj − βj−1

)
log p(y |wj)

The importance weights, or average of them, provide an
approximation to the model evidence.

AIS is highly efficient as every sample contributes to the
model evidence estimate.
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VL versus AIS
Variational Laplace (VL):

I Local optimisation based on grad and curve
I Provides model evidence estimate
I Posterior assumed Gaussian
I Will not avoid local maxima
I Very fast

Annealed Importance Sampling (AIS):
I LMC uses grad and curve for proposals
I Provides model evidence estimate
I Posterior not assumed Gaussian
I More likely to avoid local maxima
I Slow, but maps perfectly onto multi-core
I Test parametric assumptions of VL
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Neural Masses

We estimate a 10-dimensional parameter vector w .
These are between-region connex, a12, a21, between
region delays δ12, δ21, within-region connex γ1..4 and
parameters of firing rate function r1, r2.
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Two region model
Observed time series, y2, is pyramidal cell activity in
higher-level region.

Impulse of activity, u, at t = 0 produces observed time
series, y1, being pyramidal cell activity in lower-level
(sensory) region.
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Parameter Estimates

With 95% confidence intervals. AIS (red) VL (blue).

True parameters are all zero except first two.
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Model Evidence
Vary resolution of annealing schedule

AIS (red), VL (black)
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Evidence, Bayes Factors, Compute Time

Model Estimate Time(s)
VL AIS VL AIS

Linear, LogEv, Full -11.02 -11.00 0.005 15.4
Linear, LogEv, Red -23.97 -23.94 0.002 3.1
Linear, LogBF 12.95 12.94 - -

Approach, LogEv, Full -73.88 -73.77 0.58 19.4
Approach, LogEv, Red -783.62 -783.61 0.02 2.9
Approach, LogBF 709.74 709.84 - -

Neural Mass, LogEv, Full 1524.1 1563.6 22 5290
Neural Mass, LogEv, Red 1288.4 1293.4 24 4610
Neural Mass, LogBF 235.74 270.2 - -

AIS estimates from I = 32 samples and J = 512 trajectories.
The linear model VL results are for analytic solution.
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Effect of SNR
True model has full connectivity. AIS (red), VL (black).

AIS and VL are always in agreement in favouring the true
model.
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Effect of SNR
True model has reduced connectivity. AIS (red), VL (black).

AIS and VL are always in agreement in favouring the true
model.
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Gaussianity

Table: p-values from Royston’s Gaussianity test applied to AIS
samples from ’Full’ NMM.

SNR 32 Trajectories 64 Trajectories
Full Reduced Full Reduced

1 0.02 0.18 0.02 0.03
2 0.40 0.10 0.74 0.42
4 0.80 0.54 0.07 0.29
8 0.33 0.51 0.004 0.02
16 0.40 0.17 0.02 5 x 10−4
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AIS versus Multistart VL
Baseline log joint, L, is from single default VL (start from
prior mean). We are then plotting percentage
improvement in this.

AIS (red) finds better parameters than best Multistart VL
(black). They are matched for computer time.
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Summary
I LMC explores local parameter space using gradients and

curvatures
I Embed this in AIS for global Bayesian optimisation
I Better parameter estimates than Multistart VL
I AIS provides an estimate of the model evidence
I PAM and PHM are special cases of AIS
I Test parametric assumptions of VL

But its slow (about 80 mins per Neural Mass Model)
I Anneal from posterior of full model to posterior of reduced

(or other) model to compute Bayes Factor
I Automatically tune annealing schedules whilst preserving

parallelisation

Work with Biswa Sengupta @ UCL.
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Annealed Importance Sampling

We define the normalising constant at each temperature
as

Zj =

∫
fj(w)dw

=

∫
p(y |w ,m)βj p(w |m)dw

We then have

Z1 =

∫
p(w |m)dw = 1

ZJ =

∫
p(y |w ,m)p(w |m)dw

= p(y |m)



Bayesian Inference
for Brain

Connectivity
Modelling

Will Penny

Introduction

Cortical Units

Brain Connectivity

Bayesian Inference

Variational
Inference

Annealed
Importance
Sampling

Neural Masses

Summary

Annealed Importance Sampling
Therefore

p(y) =
ZJ

Z1

=
Z2

Z1

Z3

Z2
...

ZJ

ZJ−1

=

J−1∏
j=1

rj

where rj = Zj+1/Zj . We can then write

rj =
1

Zj

∫
fj+1(w)dw

=

∫ fj+1(w)

fj (w)

fj (w)

Zj
dw

≈
1

N

N∑
n=1

fj+1(wn)

fj (wn)

where the last line indicates a Monte-Carlo approximation of the integral with samples wn drawn from the
distribution at temperature βj . This can in turn be written as

rj =
1

N

N∑
n=1

p(y|wn,m)
βj+1−βj

For N = 1 this equals the importance weight.
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Reverse Annealing

By inverting the equation for the model evidence we have

1
p(y |m)

=
Z1

ZJ

=
ZJ−1

ZJ
...

Z2

Z3
...

Z1

Z2

=
J−1∏
j=1

1
rj

Importance weights for reverse annealing are given by

v (i) =
fJ−1(wJ−1)

fJ(wJ−1)
...

f2(w2)

f3(w2)

f1(w1)

f2(w1)

and a series of samples wJ ,wJ−1, ...w2,w1 are created by
starting with wJ from forward annealing, and generating the
others sequentially using LMC.
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Reverse Annealing

For J = 2 temperatures β2 = 1, β1 = 0 we get

1
p(y |m)

=
1

p(y |w ,m)

Averaging over multiple trajectories gives

1
p(y |m)

=
1
I

I∑
i=1

1
p(y |wi ,m)

which shows that the PHM approximation to the model
evidence is a special case of AIS with a reverse
annealing schedule and only J = 2 temperatures.
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Canonical Microcircuit Model

Moran et al, J Neuroscience, 2013
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