Skip to content Skip to menu
This website uses cookies to help us understand the way visitors use our website. We can't identify you with them and we don't share the data with anyone else. If you click Reject we will set a single cookie to remember your preference. Find out more in UCL's privacy notices.

Neural mechanisms for economic and strategic decision-making

Real life decisions often occur in volatile environments and require strategic interaction between multiple decision makers. Imagine decisions at a poker table or foraging decisions in a competitive, changing environment. In both situations, animals make decisions based on incomplete information, under risk and uncertainty, and in a multi-agent social context. Due to the multiplexed and dynamic nature of these types of decisions, there are usually no uniquely correct answers. Instead, choices reflect individuals’ varied decision preferences that lead to differential short-term and long-term gains. Our goal is to understand how animals make flexible decisions under risk and social influence, and the neural circuit mechanisms underlying these choices. Towards this goal, we combine theory-motivated behavioural designs in mice, quantitative extraction of animals’ internal states, large-scale, cellular-resolution monitoring and manipulation of brain activity during decision tasks, and computational modelling. In this talk, I will present our progress in probing the behavioural and neural mechanisms for value-based decision-making under risk and in a multi-agent context.